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Abstract. In this note, a simplified version of the four main results for discrete-time infinite horizon

problems, theorems 4.2-4.5 from Stokey, Lucas and Prescott (1989) [SLP], is presented. A novel

assumption on these problems is proposed—the uniform limit condition, which is formulated in

terms of the data of the problem. It can be used for example before one has started to look for the

optimal value function and for an optimal plan or if one cannot find them analytically: one verifies

the uniform limit condition and then one disposes of criteria for optimality of the value function and

a plan in terms of the functional equation and the boundedness condition. A comparison to [SLP]

is made. The version in [SLP] requires one to verify whether a candidate optimal value function

satisfies the boundedness condition; it is easier to check the uniform limit condition instead, as is

demonstrated by examples. There is essentially no loss of strength or generality compared to [SLP].

The necessary and sufficient conditions for optimality coincide in the present paper but not in [SLP].

The proofs in the present paper are shorter than in [SLP]. An earlier attempt to simplify, in Acemoglu

(2009)—here the limit condition is used rather than the uniform limit condition—is not correct.
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1 Introduction

The aim of this note is to give a simplified version of the four main theorems for stationary

discrete-time infinite horizon optimization problems from Stokey, Lucas and Prescott (1989)

1I would like to express my great appreciation to Daron Acemoglu for his comments and suggestions.
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[SLP], which contains the most complete treatment of this type of problems. These four

theorems, theorems 4.2-4.5, concern the necessary and the sufficient conditions for optimality

of value functions and plans.

We propose a novel assumption, the uniform limit condition, formulated in terms of the data of

the problem, to wit in terms of the instantaneous payoff function. In examples it can be readily

verified whether this condition holds. We recommend to start the analysis of any problem by

checking the uniform limit condition. Once this is done, one has criteria for value functions

and plans in terms of the functional equation and the boundedness condition. Having criteria

is for example of interest if one cannot find the optimal value function and an optimal plan.

Thus one has the rather desirable situation that necessary and sufficient conditions coincide

and that these are valid under an assumption that is easy to verify. We formulate one theorem

giving the criteria under the assumption and offer a short proof.

An earlier attempt to simplify, in Acemoglu (2009)—here the limit condition is used rather

than the uniform limit condition—is not correct.

We compare the uniform limit condition approach that is proposed in the present paper to the

theorems 4.2-4.5 in [SLP]. The analysis of a problem by means of the theorems 4.2-4.5 in [SLP]

requires that one verifies whether the boundedness condition holds for some candidate optimal

value function. It is easier to verify the uniform limit condition instead. The relation between

the two conditions is that the uniform limit condition implies the boundedness condition

for the optimal value function. In [SLP] the necessary conditions do not coincide with the

sufficient conditions, in the uniform limit approach they do: then criteria are obtained. It is of

course rather convenient to have criteria rather than a gap between necessary and sufficient

conditions.

There is essentially no loss of strength in the transition to the simplified version. Indeed,

the proof of our theorem reveals this. It consists of the verification of four implications: for

the necessary and for the sufficient conditions for value functions and for plans; these four

arguments prove essentially the four theorems 4.2-4.5 from [SLP] if one eliminates the uniform

limit condition from the arguments. Moreover, it is hoped that as a rule the theorem stated

in the present paper will suffice for applications.

The proof that is given of the theorem is shorter than the proofs of the theorems 4.2-4.5.
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2 Optimality criteria and the uniform limit condition

Stationary discrete-time infinite horizon optimization problems, also called sequence problems

(SP), are optimization problems of the following type

(SP) sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, 2, . . . ,

x0 ∈ X given.

Here β ∈ (0, 1) is the discount factor, X is a set, Γ : X ⇒ X is the constraint correspondence,

and F : X × X → R is the instantaneous payoff function. To be precise, we consider this

problem as a problem depending on a parameter x0, the initial state, (SP)x0 , that is, we are

considering a family of optimization problems ((SP)x0)x0∈X .

A feasible plan of problem (SP)x0 is a sequence {xt}∞t=0 for which xt+1 ∈ Γ(xt), t = 0, 1, 2, . . . .

Let Π(x0) be the set of all feasible plans for (SP)x0 . It is assumed that Γ(x) is nonempty for

all x ∈ X and that for each x0 ∈ X and each {xt}∞t=0 ∈ Π(x0) the sum
∑∞

t=0 β
tF (xt, xt+1)

converges in R∪{±∞}. The optimal value of problem (SP)x0 is denoted by v∗(x0) ∈ R∪{±∞}
for all x0 ∈ X. This gives a function v∗ : X → R∪ {±∞} called the optimal value function of

the sequence problem (SP).

Corresponding to this problem, we have the functional equation in the unknown function

v : X → R ∪ {±∞}

(FE) v(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)], all x ∈ X, (1)

and the boundedness condition in the unknown function v at x0 ∈ X

lim
t→∞

βtv(xt) = 0 (2)

for each {xt}∞t=0 ∈ Π(x0).

The uniform limit condition. The uniform limit condition for x0 is defined to be the

assumption that the discounted sum of instantaneous payoffs,
∑∞

t=0 β
tF (xt, xt+1), converges

uniformly in R over all feasible plans {xt}∞t=0 of (SP)x0 . Now we recall in a formal style the
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usual definition of the uniformity of the limit process. Without uniformity, we would have the

so-called limit condition for x0 ∈ X,

∀x = {x(t)}∞t=0 ∈ Π(x0)∀ε > 0∃N = Nx > 0∀n ≥ Nx |
∞∑
t=n

βtF (xt, xt+1)| < ε,

or, equivalently,

∀ε > 0∀x = {xt}∞t=0 ∈ Π(x0)∃N = Nx > 0∀n ≥ N = Nx |
∞∑
t=n

βtF (xt, xt+1)| < ε.

Now we interchange ∀x = {x(t)}∞t=0 ∈ Π(x0) and ∃N > 0. This gives the uniform limit

condition

∀ε > 0∃N > 0∀{x(t)}∞t=n ∈ Π(x0)∀n ≥ N |
∞∑
t=n

βtF (xt, xt+1)| < ε.

That is, for each ε > 0 there exists an N that works for all feasible plans. Thus, the uniform

limit condition is stronger than the limit condition.

Illustration. Consider the problem to maximize
∑∞

t=0 β
tuαt subject to xt+1 = c(xt− ut), ut ≥

0, t = 0, 1, 2, . . . and x0 given. Here 0 < α < 1, c > 1, 0 < β < 1 and 0 < βcα < 1. In terms

of the problem (SP ) we have F (x, y) = (xt − c−1xt+1)α and Γ(x) = [0, cx]. Then for each

{xt}∞t=0 ∈ Π(x0) one has βtF (xt, xt+1) ≤ βtxαt and this is by repeated use of the inclusion

constraint ≤ βt(ctx0)α = (βcα)txt0. Thus the series
∑∞

t=0 β
tuαt has been majorized termwise

by a convergent geometric series that does not depend on the chosen element of Π(x0), which

implies that the uniform limit condition holds.

Theorem. Optimality criteria under the uniform limit condition. Consider the

sequence problem (SP). Assume that the uniform limit condition holds for all x0 ∈ X. Then

1. a function v : X → R ∪ {∞} is the optimal value function v∗ if and only if it satisfies

the functional equation (1) and the boundedness condition (2) ∀x0 ∈ X;

2. a feasible plan {xt}∞t=0 ∈ Π(x0) for a given x0 ∈ X is an optimal plan for (Px0) if and

only if

v∗(xt) = F (xt, xt+1) + βv∗(xt+1)

for t = 0, 1, . . ..

Remark 1. In particular, the uniform limit condition for all x0 ∈ X implies the boundedness

condition for the optimal value function.
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Remark 2. This result suggests the following procedure: 1) verify the uniform limit condition,

2) write down the characterization of the optimal value function and optimal plans in terms

of the functional equation and the boundedness condition, 3) try to find them analytically: a)

determine the optimal value function by means of the first criterion, b) determine the optimal

plan by means of the second criterion.

Proof of the theorem.

Criterion 1.

‘only if’: v∗(x0) is defined as the supremum of
∑∞

t=0 β
tF (xt, xt+1) where {xt}∞t=0 runs over

Π(x0). Taking the supremum, while holding some arbitrary x1 ∈ G(x0) fixed, gives F (x0, x1)+

βv∗(x1); taking after this the supremum of this expression over all x1 ∈ G(x0) gives the result

that v∗ satisfies the functional equation (1). The expression βtv∗(xt) equals, by the definitions,

the supremum of the expressions
∑∞

s=t β
sF (xs, xs+1), where {xs}∞s=0 runs over Π(x0), and this

tends for t → ∞ to zero, by the uniform limit condition. This shows that v∗ satisfies the

boundedness condition (2) for each x0 ∈ X.

‘if’: Assume v : X → R ∪ {∞} satisfies (1) and (2) for x0. Applying n + 1 times that v is a

solution of the functional equation, one gets

v(x0) = sup
{xt}∞t=0∈Π(x0)

[
n∑
t=0

βtF (xt, xt+1)] + βn+1v(xn+1).

Taking the limit n→∞ gives v(x0) = v∗(x0), using that v satisfies (2) and using the definition

of v∗(x0). As x0 ∈ X is arbitrary, it follows that v = v∗.

Criterion 2.

‘only if’: if {xt}∞t=0 is a solution of (Px0), then v∗(x0) =
∑∞

t=0 β
tF (xt, xt+1) and {xt}∞t=1 is a

solution of (Px1) by the stationarity of the problem, so v∗(x1) =
∑∞

t=1 β
tF (xt, xt+1). It follows

that v∗(x0) = F (x0, x1) + βv∗(x1). Replacing for each t = 0, 1, . . . in this equality (x0, x1) by

(xt, xt+1), as we may, we get the required equality v∗(xt) = F (xt, xt+1) + βv∗(xt+1).

‘if’: if {xt}∞t=0 satisfies the equation v∗(xt) = F (xt, xt+1)+βv∗(xt+1), then applying repeatedly—

n + 1 times—this equation gives v∗(x0) =
∑n

t=0 β
tF (xt, xt+1) + βn+1v∗(xn+1). Now we take

the limit n → ∞, using that βn+1v∗(xn+1) tends to zero for n → ∞ by criterion 1. This

gives v∗(x0) =
∑∞

t=0 β
tF (xt, xt+1), and so, by the definition of v∗(x0), we get that {xt}∞t=0 is a

solution of (Px0).
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Remark 3. In order to simplify the comparison of the theorem to the theorems 4.2-4.5 in

[S-L-P], we have conformed to [S-L-P] in our main text, working with plans rather than with

policies. Now we show that using policies, a further simplification of the theorem is possible. A

feasible policy is a mapping π : X → X for which π(x) ∈ Γ(x) for all x ∈ X. A feasible policy π

gives for given initial state x0 a feasible plan {xt}∞t=0 by defining recursively xt+1 = π(xt), t ≥ 0.

A feasible element of the sequence problem (SP) in feedback form (also called closed loop form)

is a pair (v, π) consisting of a feasible policy π : X → X such that for all x0 ∈ X the value of

the plan of π is v(x0). This is called a solution of the sequence problem (SP) if v is the optimal

value function of the sequence problem (SP). Now we state the theorem above in terms of

policies.

Theorem (in terms of policies). Consider the sequence problem (SP) and assume the

uniform limit condition. The following two conditions on a feasible element in feedback form

(v, π) are equivalent:

• (v, π) is a solution of (SP)

• v is a solution of the functional equation (1) and the boundedness condition (2) and for

each x ∈ X the supremum in the functional equation (1) is assumed for y = π(x).

3 Comparison to Stokey, Lucas and Prescott

By essentially the same arguments as those used to prove the theorem in the previous section,

one can prove the theorems 4.2-4.5 from SLP]. We display these theorems for convenience.

Theorem 4.2 [SLP]. The function v∗ satisfies (FE).

Theorem 4.3 [SLP]. If v is a solution to (FE) and satisfies

lim
n→∞

βnv(xn) = 0, all(x0, x1, . . .) ∈ Π(x0), all x0 ∈ X,

then v = v∗.

Theorem 4.4. [SLP]. Let x∗ ∈ Π(x0) be a feasible plan that attains the supremum in (SP)

for initial state x0, Then

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1), t = 0, 1, 2, . . . .
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Theorem 4.5. [SLP]. Let x∗ ∈ Π(x0) be a feasible plan from x0 satisfying

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1), t = 0, 1, 2, . . . .

and with

lim sup
t→∞

βtv∗(x∗t ) ≤ 0.

Then x∗ attains the supremum in (SP) for initial state x0.

These results suggest the following procedure: 1) determine the optimal value function by

means of theorem 4.3, 2) determine the optimal plan by means of theorem 4.5 (note that

the limsup condition in theorem 4.5 does not have to be veerified in this context; it holds

automatically if the previous step has been carried out. If one cannot find the optimal value

function and an optimal plan analytically, then the theorems 4.2-4.5 do not give criteria and

therefore are of limited use. In such situations one can often verify the uniform limit condition

and this gives a characterization of the optimal value function and an optimal plan.

One sees that theorem 4.5 requires an assumption on the solution, a form of the boundedness

condition on the optimal value function. Moreover, there is a gap between necessary and

sufficient conditions:

• the sufficient condition for the optimal value function contains a condition that is not

contained in the necessary condition: limn→∞ β
nv(xn) = 0, all (x0, x1, . . .) ∈ Π(x0), all

x0 ∈ X.

• the sufficient condition for the optimal plan contains a condition that is not contained

in the necessary condition: lim supt→∞ β
tv∗(x∗t ) ≤ 0.

4 Impossibility of using the limit condition

The limit condition for x0 ∈ X is defined as follows: the discounted sum of instantaneous

payoffs, limn→∞
∑n

t=0 β
tF (xt, xt+1), converges for all feasible plans {xt}∞t=0 ∈ Π(x0) with initial

state x0. We are going to show by means of counterexamples—variants of the examples on

page 74 and page 76 of Stokey, Lucas and Prescott (1989) of a consumer whose objective

function is discounted consumption—that it is impossible to simplify theorems 1 and 2 by

7



replacing the uniform limit condition by the limit condition. Actually we will do more: we

will analyze for each theorem both implications, ‘if’ and ‘only if’.

On the implication ‘only if’ in theorem 1. The optimal value function v∗ always satisfies

the functional equation (1), even without the limit condition. This follows from the proof of

theorem 1. Now we give an example where the limit condition holds and the optimal value

function v∗ does not satisfy the boundedness condition (2).

I({c(t)}∞t=0, {xt}∞t=0) =
∞∑
t=0

βtc(t)

subject to

c(t) = xt − βxt+1, 0 ≤ c(t), xt ≥ 0, t = 0, 1, . . . ,

x(0) = x0

with discount factor β ∈ (0, 1).

If we take in the set-up of the previous section β ∈ (0, 1), F (x, y) = x−βy,G(x) = [0, β−1x], X =

[0,∞), then we get this problem. We note that G(x) = [0, β−1x] is nonempty for all x ∈ [0,∞).

Now we check that the limit condition holds for all x0 ∈ X. The series
∑∞

t=0 β
tc(t) is con-

vergent as all terms are nonnegative and the partial sums are bounded above: the sum of the

terms from t = 0 till t = T equals
∑T

t=0 β
t(xt − βxt+1) = x0 − βT+1xt+1 ≤ x0. The optimal

value function of this family of problems is v∗(x) = x: we have already seen that x0 is an

upper-bound for the objective function of the problem (Px0), and this upper-bound can be

achieved for example by choosing c(0) = x0, c(t) = 0,∀t > 0 and xt = 0,∀t > 0. Now we

consider the feasible plan xt = β−tx0, t = 0, 1, . . . (‘always invest everything and never con-

sume anything’). Then limt→∞ β
tv∗(xt) = limt→∞ β

tβ−tx0 = x0, which is not zero if x0 6= 0.

Therefore, V v∗ does not satisfy the boundedness condition (2) for x0 6= 0.

On the implication ‘if ’ in theorem 1. This implication always holds, even without the

limit condition. This follows from the proof of theorem 1. Now we give an example where

the limit condition holds and where the functional equation (1) has an other solution than the

optimal value function.

I({c(t)}∞t=0, {xt}∞t=0) =
∞∑
t=0

βtc(t)

subject to

c(t) = xt − βxt+1, 0 ≤ c(t) ≤ 1, t = 0, 1, . . . ,
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x(0) = x0

with discount factor β ∈ (0, 1).

If we take in the set-up of the previous section β ∈ (0, 1), F (x, y) = x − βy,G(x) = [β−1x −
β−1, β−1x], X = R, then we get this problem. Note that [β−1x − β−1, β−1x] is nonempty for

all x ∈ R. The limit condition holds for all x0 ∈ X, as the series
∑∞

t=0 β
tc(t) is convergent

as 0 ≤ c(t) ≤ 1 for all t ≥ 0. The optimal value function of this family of problems is

v∗(x0) = (1 − β)−1 for all x0 ∈ X. This can be seen by choosing c(t) = 1 for all t ≥ 0, and

then determining the time path of the wealth of the consumer recursively by x(0) = x0, 1 =

xt − βxt+1, t = 0, 1, . . .. This gives the feasible plan x∗(t) = (x0 − (1 − β)−1)β−t + (1 − β)−1.

Now we consider the functional equation (1) for this consumer problem:

v(x) = sup
y∈[β−1x−β−1,β−1x]

[x− βy + βV v(y)].

This has more than one solution: besides the solution v∗(x) = (1 − β)−1, it has the solution

ṽ(x) = x.

On the implication ‘only if’ in theorem 2. This implication always holds, even without

the limit condition. This follows from the proof of theorem 2.

On the implication ‘if ’ in theorem 2. We give an example where the limit condition holds

and a non-optimal feasible plan satisfies the functional equation (1). It is an example that was

already considered above.

I({c(t)}∞t=0, {xt}∞t=0) =
∞∑
t=0

βtc(t)

subject to

c(t) = xt − βxt+1, 0 ≤ c(t), xt ≥ 0, t = 0, 1, . . . ,

x(0) = x0

with discount factor β ∈ (0, 1).

We have checked above that the limit condition holds for all x0 ∈ X. We consider again

the feasible plan xt = β−tx0, t = 0, 1, . . . (‘always invest everything and never consume any-

thing’). This satisfies the equation v∗(xt) = F (xt, xt+1) + βv∗(xt+1) for t = 0, 1, . . .. Indeed,
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the left-hand side is β−tx0 and the right-hand side is (xt − βxt+1) + βxt+1 = β−tx0 as well.

However, this feasible plan is not optimal if x0 > 0: it gives value 0 as nothing is ever consumed.

On the possibility that v∗ takes value ∞. Here is an example where the limit condition

holds and where the optimal value function takes the value ∞.

We consider the example: β ∈ (0, 1), X = R, G(x) = {x}∀x 6= 1, G(1) = {2, 3, . . .}, F (x, y) =

y,∀x, y ∈ R. Then the assumptions are satisfied: G(x) is nonempty for all x ∈ X, and if

x 6= 1, the only feasible plan is (x, x, . . .) and limn→∞
∑n

t=0 β
tF (x, x) = (1−β)−1x, so it exists

and is finite; if x = 1, then all feasible plans are of the form (1, k, k, k, . . .) with k ∈ {2, 3, . . .}
and limn→∞(F (1, k) +

∑n
t=1 F (k, k)) = (1 − β)−1k, so it exists and is finite; thus the limit

condition is verified. However, v∗(1) = supk=2,3,...(1− β)−1k =∞.

Now we discuss what went wrong in the proofs of Theorems 6.1 and 6.2 in Acemoglu (2009),

which state that theorems 1 and 2 hold under the limit condition and that the boundedness

condition (2) can be omitted in theorem 1.

On the proof of the equivalence of values result. The optimal value function v∗ satisfies

indeed the functional equation (1), and the proof of this fact that is given is correct. That

conversely each solution of the functional equation (1) has to be equal to v∗ is not true: a

counterexample has been given above. The proof is split up in two parts.

The aim of the first part is to show that for a solution v of the functional equation (1), one

has v(x0) ≥ J({xt}∞t=0) for each x0 ∈ X and each {xt}∞t=0 ∈ Π(x0). Applying n+ 1 times that

v is a solution of the functional equation, one gets

v(x0) ≥ [
n∑
t=0

βtF (xt, xt+1)] + βn+1v(x(n+ 1))

(the factor βt is missing but the next line shows that this is a typo). This is suggestive, as the

first term of the right hand side tends to J((xt)
∞
t=0) for n→∞. Therefore, it suffices to prove

that limn→∞ β
n+1v(x(n+ 1)) = 0. This need not be true: a counterexample has been given in

the previous section. It is stated that this is an immediate consequence of the formula

lim
n→∞

βn+1v(x(n+ 1)) = lim
n→∞

[βn+1 lim
m→∞

m∑
t=n

βtF (xt, xt+1)]

by the assumption that the series that defines J({xt}∞t=0) converges to a real number (‘the
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limit condition’). This implication holds indeed, but this formula cannot be justified (and as

has been shown by counterexample, need not be true).

The aim of the second part of the proof is to show that for each x0 ∈ X and each ε > 0 there

exists {xt}∞t=0 ∈ Π(x0) such that v(x0) ≤ J({xt}∞t=0) + ε. It uses limn→∞ β
n+1v(x(n+ 1)) = 0,

which as we have seen is not justified (and need not be true).

On the proof of the principle of optimality. For each optimal plan (x∗(t))∞t=0, one has

v∗(xt) = F (x∗(t), x∗(t+ 1)) + βv∗(x∗(t+ 1))

for t = 0, 1, . . ., and the proof of this fact that is given is correct.

That conversely each {x∗(t)}∞t=0 ∈ Π(x0) that satisfies the equation v∗(x∗(t)) = F (x∗(t), x∗(t+

1))+βv∗(x∗(t+1)) for t = 0, 1, . . ., is optimal, is not true, as has been shown by counterexample

in the previous section. The proof begins by applying repeatedly—n+ 1 times—this equation,

and this gives

v∗(x0) =
n∑
t=0

βtF (x∗(t), x∗(t+ 1)) + βn+1v∗(x∗(n+ 1)).

To finish the proof, it remains to show that limn→∞ β
n+1v∗(x∗(n+ 1)) = 0. This would be the

case if v∗ would be bounded. It is stated that the assumption that J({x∗(t)}∞t=0) is well-defined

as a real number implies that v∗ is bounded, but this implication is not justified. In fact, v∗

is not bounded in the first counterexample given in the previous section.

On the role of infinite values of the optimal value function in the proofs. The

possibility that the optimal value function v∗ or the solution v of the functional equation can

take the value∞ is ignored; these possibilities require additional arguments in the proofs given

in Stokey, Lucas and Prescott (1989).
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