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We give a thorough treatment concerning sufficient conditions involving deriva-
tives for extended regular variation of second order. Most of the results are new. A
summary of the analogous (known) results for first order extended regular varia-
tion is given first. ~ © 1996 Academic Press, Inc.

1. VON MISES-TYPE CONDITIONS IN EXTENDED
REGULAR VARIATION

DEFINITION. A function f satisfies the extended regular variation con-
dition if there exists a positive function a such that for all x > 0,

L) —f() 1
tow a(t) Y

: (1.1)

where for y = 0 the right-hand side is interpreted as log x.
We summarize some results concerning this class of functions.

Property 1. Suppose [ satisfies (1.1).

a. Fory > 0,
a(t)
lim = 7. 1.2
M5 (12
Hence for all x > 0,
x
lim m =x". (1.3)
= f(0)
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b. For vy <0,
£(=) = lim £(1) (14)
exists and
fim 2 _ y (1.5)
o= f() = (1)
Hence for all x > 0,
L) () (0

e x'Y

i~ f() = f(1)
Relations (1.5) and (1.6) also hold if y = 0 and f(«) exists. (See, e.g.,
Bingham et al. [2, Section 3.2] and Geluk and de Haan [6, Theorem 1.10].)

Remark. Note that for y > 0 relation (1.3) implies (1.1) and for y < 0
relation (1.6) implies (1.1). A function f satisfying (1.3) is said to be
regularly varying (or of regular variation) with index y (notation f € RV,).

Property 2.
a. Suppose f is differentiable and for all x > 0,
"(tx
lim f,( ) =x7 1 (1.7)
> ® f (t)

then (1.1) holds with a(¢) = ¢ (¢).

b. Conversely, if f satisfies (1.1), f is differentiable, and f’ is mono-
tone, then (1.7) holds. (See e.g., de Haan [3, pp. 13 and 21] and Bingham e¢
al. [2, Section 1.7.3].)

Property 3. Suppose f satisfies (1.1). Then there exists a twice differen-
tiable function f; with

f() = fi(r) =o(a(t)) (1 — =) (1.8)

and such that
fi(1)
t1—>rrolc fi(t) B

Remark. Conversely, (1.8) and (1.9) imply (1.1). (See e.g., [2, Sections
1.8 and 3.7] and [6, Corollaries 2.12 and 2.16].)

v— 1. (1.9)

Property 4. Suppose f satisfies (1.1). Let f; be a function with the
property that for all a > 1 there exists ¢, such that for ¢ > ¢,

f(1/a) < f(1) < f(1a). (1.10)
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Then
f(1) = fi(2) = o(a(z))

and hence f, satisfies (1.1). (See e.g. [6, Proposition 1.22] “inversely
asymptotic.”)

2. VON MISES-TYPE CONDITIONS IN EXTENDED
REGULAR VARIATION OF SECOND ORDER

We are going to prove results analoguous to Properties 1-4 for extended
regular variation of second order. A function f is of extended regular
variation of second order if for all x > 0,

lim f() —f(1) —a()(x"— 1) /y _

t—> o C(t)

flxs“"l flsu”‘l duds (2.1)

for some function a (assumed positive) and ¢ (which is necessarily of
constant sign eventually). Here v € R and p < 0 are parameters. See de
Haan and Stadtmiiller [5]. We shall need the following properties of the
function a and c:

a € RV,, (2.2)
c e RVP*V’ (23)
a(tx) —x"a(t xP =1
- (1) (0 _ ’ (2.4)
too c(t) p
hence (since p < 0)
c(t
lim ) _ 0. (25)
t— o a(t)

THEOREM 1. Suppose that f is twice differentiable and f' positive. Write

" (¢
A(t) = ;’((t)) — v+ 1.
a. Suppose
sgn( A(t)) is constant for large 7, (2.6)
lim A(t) = 0 (2.7)

t—®
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and
|4l € RV,  forsome p < 0. (2.8)
Then

) =) =1 ()
fhﬂ( KO )/{f'm”“}

= flxs“”]flsu”’lduds. (2.9)

(b). Conversely, suppose
- f(x) = f(1) —a())(x" = 1) /y
lim =

t— C(t)

fxs’/_l fsu”_' duds = H(x)
1 1
(2.10)

for some a > 0 and c of constant sign. If A is eventually monotone, then
(2.6), (2.7), and (2.8) hold.

Proof. (a) See de Haan and Resnick [4, Theorem 2.1].

(b) Suppose (2.10) holds with a positive function ¢ (a similar proof
applies for negative c¢). Since the derivative of log f'(¢) — (y — Dlog ¢ is
t~'A(¢) and since A has constant sign, we find that =7 *!f'(¢) is eventually
monotone. Suppose ¢ Y*!'f'(¢) is non-decreasing (if non-increasing, a
similar proof applies). Now

v (15) 7T (8s) — 1 a(0) -
j; t77c(t) *
_ () = f() a7 = D/
c(t)

(¢t = ). For x > 1 the left-hand side is bounded below by

ds

H(x)

Y (E) =t a(t) fxs7_1 s,
1

t77c(t)

Hence

YT (e) =t a(t x
lim lim sup f(_) () < lim H(x) f s¥"lds = 0.
XUl Lo t77c(t) X1l 1
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The corresponding inequality for lim inf follows by taking 0 < x < 1 and
letting x 7 1. It follows that

lim tf(tz(—;)a(t) - 0. (2.11)

Hence (cf. (2.10)) we have

i f(e) = f(1) —C(tlz)(f)(xy —D/y _ _ H(x).

We also know now that /" € RV,_,.
Next we continue in the same fashion:

f() = () =" () (x" = 1) /vy

c(1)
_ flx if'(1s) :(t{)’(r)s“ “
_ flx(rsf 'f f{ii[fl O
_flxsy ]/st(ru)l f () :(f)lt_yy)(m) A1

duds

_ /stflfs - tuf”(tu)/f (tw) —y+1 f'(tu)
1 c(1)/(4f'(1)) f(1)
x s A(tu) f’(tu)
= vl iR duds.
S T ey
Since the left-hand side converges to H(x), A is monotone, f' € RV,_,;
and c(¢) € RV, , we find as before
lim AW =1
e () /(' (1)
hence |A| € RV,. Since c¢ is of constant sign and since c(t) = o(a(t))

(t = ) in (2.10), we also find that A has constant sign and lim, _, , A(z) =
0.

Remark. Note that (2.4) and (2.11) imply
i /1) —x i
im =x" —
e /) Ty

for x > 0.
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Remark. For regularly varying functions f the following simpler result
holds.
Suppose [ is differentiable. Write B(¢) == #f'(¢) /f(t) — .

(a). Suppose

sgn( B(t)) is constant for large ¢. (2.12)
lim B(¢) =0 (2.13)
t— >
and
|B| € RV, for some p < 0. (2.14)
Then
x t) —x? X
lim f(#) /5(1) =fo u?~'du  forall x >0
1= q(1) 1

holds for g = B.

(b). Conversely, suppose (2.15) holds for some function ¢ # 0 and B
is eventually monotone, then (2.12), (2.13), and (2.14) hold.

THEOREM 2. Suppose

. f(e) —f(1) —a()(x” = 1) /vy

lim 0 = H(x). (2.16)

Then there exists a twice differentiable function f, with
lim (f(1) = £(1))/e(1) =0, (2.17)
lim (a() = 1fi(1)) /e(1) = 0, (2.18)
lim a(1) Ay(1) /e(1) = 1 (2.19)

and such that, with

Ay(1) = ff((tt)) —y+1, (2.20)
sgn(A,(t)) is constant eventually, (2.21)
,li_>nolc A(t) =0, (2.22)

|4,] € RV, (2.23)
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Proof. For the case vy = p = 0 the proof is given in [1, Appendix]. For
other values of y and p separate proofs apply. As an example we give the
proof for p = 0,y > 0. Assume that the function c is positive (for negative
¢ a similar proof applies). Then (2.16) implies [5, Theorem 2]

() () ()
m =

t— o t77¢y(1)

log x (2.24)

for all x > 0, hence (2.16) holds with a(t) = yf(¢) + v !c(¢) and c(¢) =
ye o).

Now (2.24) says that the function ¢~ ?f(¢) is in the class II, hence by
Proposition 3 there is a function g, with

N O O N (G B O N
. t7c(t) e c(1) -
and such that
gi(t)

im = —1. 2.26
Combining (2.24), (2.25), and
. &) —gi(2)
lim ——————— =log x,
1= 1g(1)
we find
- g1(t)
1= 17 7cy(t) ’
ie.,
ty+1 ’ t
lim y—gl() =1. (2.27)
t— o C(t)

We take f,(¢) == t”g,(¢). Then (2.17) holds by (2.25). Further,
a(t) —ffi(1)  vf(1) + v le(r) — tfi(1)

c(t) c(t)
f(t) — g,(1) . yi7gi(t) — 1(17g,(1))’'
«n 7 (1)
f(t) —17g,(1) g

-0

o 7 o()
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(¢ = ) by (2.25) and (2.27). Hence (6) holds. Finally by (2.18), (2.26), and
2.27),

a(t)Ay(t) ~tfi(t) A (1)
= 2f1(t) — (v — Dtfi(¢)
= (v + D7 gi(0) + 177 (1)

1g1(1)
— ty+1 ’ t
il ){ gi(1)
~ oyt g (1) ~e(t) (1 ).
Hence (2.21), (2.22), (2.23), and (2.19) hold.

THEOREM 3. Suppose f satisfies (2.1) for v = p = 0 and some choice of
the functions a and c. Then for all x > 0,

f(e'?) = (')

log x

+y+l}

lim

t— ®

- a(t))/c(t)) =0, (2.28)

and for all x and 'y > 0,

_ f(oy) = f(x) = f(y) + f(2)
Jim c(1) - Y

(2.29)

So both a and c can be expressed in a simple way as functionals of f.

Proof. Relation (2.29) has been proved by Omey and Willekens [7].
Relations (2.28) and (2.29) are easily verified.

Remark. Similar statements can be made for y # 0 and/or p # 0,
based on Theorem 2 [5]. They differ from case to case, so they are omitted.

THEOREM 4.  Suppose f satisfies (2.1) for y = p = 0. Suppose the function
f, satisfies the following property: for each x > 0,a > 1 there exists t, such
that for t >t

f(x/a) = f(t/a) <f(wx) = fi(t) <[f(tax) = f(1a),
then
fi —f=o(c) (t = =),

so that f, satisfies (2.1) with the same functions a and c as the function f and
with v = p = 0.
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Remark. Relation (2.30) means that for all x > 0 the functions
g (1) = fi(tx) = fi(2)

and g (1) = f(xx) — f(t) are inversely asymptotic (g" ~ g,; see Geluk
and de Haan [6, p. 32]).

Proof.
fi(ex) = fi(t) — a(t)log x
c(?)
f(rax) = f(1) —a(t)log(ax)  f(1a) — (1) — a(?)loga
< —
c(1) c(1)
_ (logax)” — (log a)*
2

(t > =) and the right-hand side tends to (log x)*/2 as a 1. A similar
lower inequality is easily obtained.

Remark. Similar statements can be made for y # 0 and/or p # 0,
based on Theorem 2 [5]. They differ from case to case and are rather
complicated so they are omitted.

Inverses
Property 5. Suppose f is nondecreasing, lim, ., f(t) =t f(») < «and g

is its right-continuous or left-continuous inverse function. Then (2.11) is
equivalent to

lim ((—g(t +ra(s) (1+ YX)I”)/B(t))

(1 f) g(t)

— _(1 + ,yx)(l/v)—lH((l + ,yx)l/'}’)

= —(1+ yx)(l/y)_lfxfs(l + yu)”" " duds
0 7o

—(U )7 [ ys) [ (1 yu)” duds, (231)
0 0

locally uniformly for x € (—1/max(0, y), —1/max(0, —y)) with «a(¢) ==
a(g(t)) and B() = c(g()).
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Proof. This is Theorem 3 of de Haan and Stadtmiller [5]. The last
equality can be checked by applying the operator

d | , d

—_ + —_

o Ty
to both sides.

THEOREM 5.  Suppose the function g is twice differentiable and let g’ > 0.
Set

- £
81 = g
Suppose further that
lim gi(t) =y (2.32)
11 f()
and
im 2SI (0) (1 + yx)*” (2.33)

11 f(e2) y —&i(t)

locally uniformly on (—1/max(0, vy), 1/max(0, —y)) for some y € R, p < 0.
Then

i g(t +xg,(1))/g(t) — (1 + yx)/”
m
11 f2) y — gi(1)

= (L y0)7 [0+ y9) 7 [ (14 yw)”” duds. (2.34)
0 0
Conversely, suppose (2.31) holds for some a, B, y, and p; lim, ; ;.., B(t) = 0;
and the function g, is monotone, then (2.17) and (2.18) hold.

Proof. In de Haan and Resnick [4, Prop. 2.2] it is proved that the
conditions on g, are fulfilled if and only if the conditions on A4, in
Theorem 1 are fulfilled. What remains is to show the specifics of (2.34). So
suppose the conditions on g, are fulfilled. Now lim, ; (., gi(¢) = vy implies

g(t +xgy(1))
im —— =
e g(1)
locally uniformly. Hence

g(t +xgl(t))
g(1)

(1+ yx)"” (2.35)

— (14 yx)"7" ~ (1 + yx)""{log g(t + xh (1))

—log g(t) — v~ ' log(1 + yx)}
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(¢ 1 f()). Write S = logg. Then g,(¢) = 1/5'(¢) and

1y 8(t +xgi(1)) /g (1) = (1 + yx)'”

(1+7x) y —gi()
St xgi(1) = S(2) — v log(1 + yx)
y — gi(t)
x [ S'(t + s Wt
=f0 ( ( s'(f)( ) _ T s ds/(y—g\(1))

duds

fx S'(1 + sg(1)) fs Y — gi(t + ugy(1))
0 S'(1)(1 + vs) o y — &i(1)

S [+ ) [ (L + yw)” duds.
0 0
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