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ABSTRACT. Objective. In mechanically ventilated patients the
expiratory time constant provides information about respira-
tory mechanics. In the present study a new method, fuzzy
clustering, is proposed to determine expiratory time con-
stants. Fuzzy clustering di¡ers from other methods since it
neither interferes with expiration nor presumes any func-
tional relationship between the variables analysed. Further-
more, time constant behaviour during expiration can be
assessed, instead of an average time constant. The time con-
stants obtained with fuzzy clustering are compared to time
constants conventionally calculated from the same expirations.
Methods. 20 mechanically ventilated patients, including 10
patients with COPD, were studied. The data of £ow, volume
and pressure were sampled. From these data, four local linear
models were detected by fuzzy clustering. The time constants
(�) of the local linear models (clusters) were calculated by a
least-squares technique. Time constant behaviour was ana-
lysed. Time constants obtained with fuzzy clustering were
compared to time constants calculated from £ow-volume
curves using a conventional method. Results. Fuzzy cluster-
ing revealed two patterns of expiratory time constant behav-
iour. In the patients with COPD an initial low time constant
was found (mean �1: 0.33 s, SD 0.21) followed by higher time
constants; mean �2: 2.00 s (SD 0.91s), mean �3: 3.45 s (SD
1.44) and mean �4: 5.47 s (SD 2.93). In the other patients only
minor changes in time constants were found; mean �1: 0.74 s
(SD 0.30), mean �2: 0.90 s (SD 0.23), mean �3: 1.04 s (SD
0.42) and mean �4: 1.74 s (SD 0.78). Both the pattern of
expiratory time constants, as well as the time constants calcu-
lated from the separate clusters, were signi¢cantly di¡erent
between the patients with and without COPD. Time con-
stants obtained with fuzzy clustering for cluster 2, 3 and 4
correlated well with time constants obtained from the £ow-
volume curves. Conclusions. In mechanically ventilated
patients, expiratory time constant behaviour can be accurately
assessed by fuzzy clustering. A good correlation was found
between time constants obtained with fuzzy clustering and
time constants obtained by conventional analysis. On the
basis of the time constants obtained with fuzzy clustering, a
clear distinction was made between patients with and without
COPD.

KEY WORDS. Expiratory time constants, mechanical ventilation,
respiratory mechanics, COPD, fuzzy clustering, monitoring,
expiration.

INTRODUCTION

The importance of monitoring respiratory mechanics
in patients on ventilatory support is generally accepted.
Respiratory variables can be used to assess patients’
pulmonary condition, to detect poor patient-ventilator
interaction and consequently to optimise ventilator set-
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tings. This applies in particular to patients with COPD
in whom the determination of the degree of bronchial
obstruction is essential to adjust medical treatment and
ventilator settings and to prognosticate weaning out-
come.
For the analysis of lung emptying the expiratory

time constant is an important parameter.The expiratory
time constant provides information on the mechanical
properties of the respiratory system and can be used to
predict the minimal time needed for complete expira-
tion [1, 2]. Several methods have been proposed to
determine the expiratory time constant [2^6]. How-
ever, these methods all have disadvantages, with respect
to either measurement technique or analysis. One meth-
od interferes with the expiration; thereby altering the
respiratory mechanics [4, 5]. Other methods are based
on qualitative and subjective pattern recognition. Again
other methods assume a linear relationship between
£ow and volume for the whole expiration; in patients
with COPD, this has to be questioned in view of the
presence of ventilatory inhomogeinity and expiratory
£ow-limitation [3, 6]. The latter problem has been
avoided by analysing only the last 75% of expiration
[2]. Although that method is applicable in the majority
of patients, in many patients the time constant deter-
mined over 75% of expiration is not representative of
expiratory lung mechanics.
In this study, a new method based on fuzzy clustering

is proposed to determine expiratory time constants.
Fuzzy clustering di¡ers from other methods since it
does not interfere with expiration, nor does the method
presume any functional relationship between the varia-
bles analysed or rely upon subjective pattern recogni-
tion [7]. Furthermore, by fuzzy clustering the time
constant behaviour over the whole expiratory phase
can be estimated. Therefore, fuzzy clustering could be
a valuable addition to the conventional methods de-
scribing lung emptying in mechanically ventilated pa-
tients. In this study, time constants are assessed with
fuzzy clustering and compared to time constants ob-
tained with a conventional method.

PATIENTS AND METHODS

Parameter estimation based on fuzzy clustering

The method is based on a straightforward extension of
the classical linear single compartment model [8, 9].
This model describes the dynamic relation between the
pressure P (cm H2O), the air £ow-rate V0 (l/s) and the
volumeV (l) of the lungs:

P ¼ Ers VþRrsV0 þ P0 ð1Þ

P is the airway opening pressure, Ers is respiratory
system elastance, Rrs is the respiratory system resistance
and P0 is the o¡set pressure, which represents the end-
expiratory pressure. During expiration V0 is considered
a negative value. Ers, Rrs and P0 are parameters to be
estimated from data. It is well known that this linear
model may yield too coarse an approximation of the
given data, especially for patients with pulmonary dis-
orders. Therefore, various modi¢cations of Equation (1)
have been proposed. Amongst these are the use of
di¡erent variables for inspiration and expiration and the
introduction of nonlinearities by considering E and R
as functions of volume or £ow [8, 9].
The method used in this paper is based on an auto-

matic detection (localisation) of multiple local linear
models [7]. Hence, no assumptions are made about
the mathematical form or parameterisation of the non-
linearity. By observing the dependence of the local
respiratory parameters on the location of the model in
the £ow^volume^pressure space, information on the
condition of the respiratory system can be obtained.
The two main techniques used to obtain parameters of

multiple models are fuzzy clustering and linear least-squares
estimation [7, 10^13].When using fuzzy clustering, the
available data set is partitioned into fuzzy subsets that
can be approximated by local linear regression models.
Parameters of these models are then estimated by least-
squares techniques.
Clustering techniques have the advantage of reveal-

ing structures in data without relying on assumptions
common to conventional statistical methods, such as
the underlying statistical distribution [14].
Clustering has been successfully used in a variety of

¢elds, including classi¢cation, image processing, pat-
tern recognition, modelling and identi¢cation. In the
medical ¢eld an increasing number of applications can
be found, such as; image processing for computer-aided
diagnosis [15^17], signal processing in evoked poten-
tials estimation [18] and analysis of time series for imag-
ing [19].

Patients

Twenty patients admitted to a medical intensive care
unit were studied. Patients were included if they ful-
¢lled the following criteria: mechanical ventilation via
an endotracheal or tracheostomy tube and absence of air
leaks. Ten patients had a history of severe chronic
obstructive pulmonary disease (COPD) according to
the European Respiratory Society consensus; a clinical
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diagnosis of COPD and previous lung function data
showing an forced expiratory volume in one second
(FEV1) <50% of predicted (mean 29% of predicted,
range 21%^37%) [20]. These 10 patients were ventilated
because of respiratory failure due to an exacerbation of
their COPD. In the other 10 patients, underlying dis-
eases included a variety of medical conditions all com-
plicated by respiratory failure and ventilator depend-
ency. Patient characteristics are shown inTable 1.
All patients were mechanically ventilated with a

Siemens Servo 300 ventilator (Siemens-Elema, Solna,
Sweden). Ventilator settings were set by the primary
physician and remained unchanged during the study,
except that if ventilator positive end expiratory pressure
(PEEP) was present, it was set to 0 cm H2O. All patients
were ventilated in the volume controlled mode with an
average minute volume of 8.5 l/min (range 6.5^15.0
l/min). The average respiratory rate was 12 breaths per
minute (range 8^20). The ratio between inspiratory and
expiratory time was 35 : 65 in all patients. During the
study the patients were sedated with midazolam (Roche
Nederland B.V., Mijdrecht,The Netherlands). Informed
consent was obtained from the patients or their next of
kin. The measurements for this study were approved of
by the local ethics committee.

Respiratory measurements

A heated pneumotachometer (Lilly, Jaeger, Wurzburg,
Germany) was connected to the endotracheal tube to
measure £ow (V0). Volume (V) was obtained by inte-
grating the £ow signal. Airway opening pressure (P)
was measured proximal to the pneumotachometer using
a pressure transducer (Validyne, Validyne Co., North-
ridge, U.S.A.). A 12-bit AD converter was used to
convert signals to digital data at a sample frequency of
100 Hz. Data were stored and analysed using a personal
computer. On average, 3000 samples were collected
from each patient.
A minimal drift in the volume signal was observed,

which was mainly caused by leakage and by the di¡er-
ence in temperature and relative humidity between
inspiration and expiration. This drift was corrected by
adding an o¡set signal obtained by ¢tting a line or a
low order polynomial through the volume minima in
the individual cycles.

Conventional determination of the time constant

The time constant (�fv) was obtained by calculating the
quotient of exhaled volume and the corresponding
change in £ow for the last 75% of exhaled volume [2].

Table 1. Patient characteristics

Patient Age
(years)

Sex Diagnosis FEV1
(% pred)

COPD1 60 F COPD 21
COPD2 80 F COPD, pneumonia
COPD3 37 M COPD 37
COPD4 71 M COPD, pneumonia 25
COPD5 41 M COPD 10
COPD6 70 M COPD, cerebral bleeding
COPD7 76 F COPD
COPD8 74 M COPD 33
COPD9 80 M COPD, pneumonia
COPD10 55 F COPD 32
Other11 77 M Weaning problem
Other12 46 F Non-Hodgkin, stomatitis
Other13 69 F Guillain-Barre¤ syndrome
Other14 61 M Dystrophia Myotonica 73
Other15 66 M Drug induced lung injury
Other16 42 M Porphyria acuta 56
Other17 44 M Pleural empyema, mild COPD 60
Other18 65 M Mild COPD 55
Other19 71 F Muscle weakness, mild COPD 56
Other20 47 M Complications bone marrow transplantation

FEV1 = forced expired volume in 1 s (% of predicted).
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In terms of an equation:
�fv = (0.75*Vt)/(V075,ex -V0end,ex)
0.75*Vt = 75% of expiratory tidal volume (l)
V075,ex = £ow at 75% of exhaled volume (l/s)
V0end,ex = £ow at end-expiration (l/s)

Time constant estimation through fuzzy clustering

A detailed description of the underlying mathematics
has been presented in a previous paper [7]. In our appli-
cation the data set consists of the samples of pressure,
£ow and volume. Taking a sample frequency of 100 Hz
and an average expiratory time of 3 s, for each patient
10 sets of 300 samples (i.e. 10 expirations) are obtained.
From these samples a data set (Z) is constructed for each
patient.
The objective of clustering is to partition a data set Z

into a number of clusters. The number of clusters
depends on the number of phenomena to look for. In
this study, we are searching for several local linear
relations within the data set. The fuzzy clustering tech-
nique searches for an optimal partitioning of the data-
set into the local linear sub-models. The clustering
algorithm assigns to each individual sample a set of
membership values for each cluster. The membership
value represents the degree to which the given sample
belongs to each of the clusters. The sum of the member-
ship values of each sample must be one. Subsequently,
if the clusters are known, the algorithm calculates the
parameters of the individual lines for each cluster. To
this end, a threshold is de¢ned for the membership
degrees. A given point is assigned to a cluster if its
membership degree exceeds the threshold. Standard
least-squares estimation is used to compute the model
parameters (the time constant).
As an example, consider a data set Z = {Z1,†Z7}

consisting of 7 data-points given in Figure 1. This data
set can be approximated by two local linear models
(clusters). The membership degree, ranging from 0^1
denotes the membership of a data point to either of the
two models. The corresponding membership values for
each cluster of the individual points are e.g.:

Z1 Z2 Z3 Z4 Z5 Z6 Z7

Membership value
of cluster 1 1.0 1.0 1.0 0.5 0.0 0.0 0.0

Membership value
of cluster 2 0.0 0.0 0.0 0.5 1.0 1.0 1.0

The ¢rst row shows the membership values of each
individual sample for the ¢rst cluster, the second row

the membership values for the second cluster. Member-
ship value of Z4 re£ects the fuzziness of the partition.
The sum of all membership values for each point must
be one. If e.g., the threshold is 0.8 then the lines are
calculated through the points {Z1 ^ Z3} and {Z5 ^ Z7}.
If the threshold below 0.5 then the lines are calculated
through the points {Z1 ^ Z4} and {Z4 ^ Z7}.
Fuzzy clustering can be applied either to the entire

respiratory cycle (or several cycles) or to the inspiration
and expiration separately. In this study we have re-
stricted the analysis to the expiration phase, to focus on
the expiratory time constant behaviour.
Assuming a local linear model (1), any least-squares

estimation method can then be applied to estimate the
local E, R and Po for each cluster. During expiration in
the absence of PEEP, pressure is zero, and Equation (1)
becomes a ¢rst order di¡erential equation [3], in which
� is de¢ned as RC.

0 ¼ 1=C � VþR � V0; thus Vþ �V0 ¼ 0 ð2Þ

In the present study, we have chosen to partition the
data set Z for the expiration phase into 4 clusters. The
data samples, belonging to the chosen clusters (thresh-
old = 0.8) are used for the analysis of � , assuming a local
linear model given by Equation (3). In the results
section, examples are given of clustering in the expira-
tion phase. It has to be underlined that in this analysis
the non-linear behaviour in parts of expiration is cap-
tured in the trend of � . Furthermore, this analysis
enables the description of the volume dependent be-
haviour of � .

Fig. 1. An example of a data set Z = {Z1,†,Z7}.This data set can
be approximated by two local linear models (clusters). A threshold of
0.8 is applied.
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Statistical analysis

To assess the di¡erence in time constants between pa-
tients with and without COPD, a Mann Whitney test
was performed. A p-value < 0.05 was considered sig-
ni¢cant.
The time constants (�1, �2, �3, and �4) obtained with

fuzzy clustering were compared to time constants ob-

tained from £ow volume curves (�fv) using Pearson
correlation. A p-value < 0.05 was considered signi¢-
cant. Mean di¡erences between the time constants
found from £ow-volume curves and fuzzy clustering
were calculated.

RESULTS

Figure 2 compares the clustering results for a patient
with COPD and a patient with other pathology. For all
patients, the time constants of each cluster and of the
£ow volume curve are shown in Table 2. In the patients
with COPD, in cluster 1 low time constants are ob-
served with subsequently an increase in time constants
in the following clusters; mean �1 0.33 s (SD 0.21 s),
mean �2 2.00 s (SD 0.91s), mean �3 3.45 s (SD 1.44) and
mean �4 5.47 s (SD 2.93). In the other patients only a
minor change in time constants is found for cluster 2
and 3, with subsequently a slight increase in time con-
stants in cluster 4 found; mean �1 0.74 s (SD 0.30), mean
�2 0.90 s (SD 0.23), mean �3 1.04 s (SD 0.42) and mean
�4 1.74 s (SD 0.78). In Figure 3, time constants for each
cluster are shown for the patients with COPD and the
patients with other pathology.
For all clusters the time constants were signi¢cantly

di¡erent between the patients with and without

Fig. 2. a) Patient with other pathology. b) Patient with COPD.
Top: £ow-volume data partitioned into four clusters. Middle:
membership degrees of the four clusters plotted against volume.
” ”” indicates the membership threshold value. Bottom: the time
constants of the four local models plotted against the volume coordi-
nate of cluster centres.

Table 2. Time constants calculated with fuzzy clustering for the
individual clusters

Patient �1 �1 �3 �3 �fv
Cluster
1

Cluster
2

Cluster
3

Cluster
4

Flow-
volume

COPD1 0.22 3.59 6.75 8.04 5.14
COPD2 0.32 1.39 3.03 6.29 2.25
COPD3 0.32 1.40 2.05 2.47 2.25
COPD4 0.14 1.55 2.21 3.01 2.48
COPD5 0.15 0.84 3.36 12.34 0.97
COPD6 0.51 2.42 3.77 4.93 2.61
COPD7 0.18 1.53 2.49 3.15 2.36
COPD8 0.14 2.11 2.95 5.15 1.66
COPD9 0.51 1.69 2.86 4.15 2.61
COPD10 0.77 3.49 4.98 5.17 4.01
Other11 0.60 0.51 0.42 1.60 0.50
Other12 0.83 0.73 0.59 0.51 0.56
Other13 1.16 0.97 0.76 1.12 0.78
Other14 1.11 0.81 0.62 3.22 0.90
Other15 1.09 0.88 1.03 1.13 0.82
Other16 0.44 1.29 1.50 2.08 1.19
Other17 0.56 0.88 1.47 2.49 0.95
Other18 0.74 1.22 1.18 1.43 1.05
Other19 0.27 0.79 1.25 1.55 1.03
Other20 0.63 0.96 1.55 2.23 1.06
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COPD; �1 was signi¢cantly lower in the patients with
COPD (p< 0.01), whereas �2, �3, �4 were signi¢cantly
higher in the patients with COPD (p� 0.001).
The correlations between the �fv and the time con-

stants of the individual clusters were r = 0.93 (p< 0.001)
for cluster 2, r= 0.92 (p< 0.001) for cluster 3 and r= 0.75
(p = 0.040) for cluster 4. Cluster 1 did not correlate
signi¢cantly with the �fv. The mean di¡erences be-
tween the �fv and the time constants of the clusters
were: 0.31 (SD 0.52) for �2, �0.48 (SD 0.70) for �3 and
�1.84 (SD 2.51) for �4.

DISCUSSION

This study shows that in mechanically ventilated pa-
tients with and without COPD, fuzzy clustering can be
applied to assess expiratory time constants. On the basis
of the expiratory time constant behaviour detected by
fuzzy clustering a clear distinction can be made between
patients with and without COPD. Time constants ob-
tained with fuzzy clustering correlated well with time
constants obtained from £ow volume curves.
The passive expiration is determined by the mechan-

ical properties of the respiratory system. The driving
pressure is provided by the elastic recoil pressure of the
total respiratory system, which is the force to overcome
the expiratory resistance. Brody has proposed to de-
scribe expiration as a single-compartment model, i.e. a

single compartment of constant compliance emptying
itself through a constant resistance [21]. However, in case
of lung inhomogeneity, a multi compartment model
will be more accurate. As a consequence, in patients
with £ow limitation the one-compartment model can-
not be applied [9]. Chelucci et al. proposed a two-
compartment model to describe the passive expiration,
however, this was not applicable in mechanically venti-
lated COPD patients [22, 23].
In previous studies we have shown that the expiratory

£ow-volume curve provides information about me-
chanical properties of the respiratory system [1, 2, 22].
The inverse of the slope of these curves can be inter-
preted as a time constant, describing lung emptying.
The time constant calculated from the last 75% of
expiratory tidal volume was found to be most represen-
tative of respiratory mechanics during relaxed expira-
tion [2]. This time constant represents e¡ective single
compartment behaviour, comprising peripheral air-
ways obstruction, visco-elastic properties and unequal
ventilation.
However, this time constant might not fully re£ect

physiological events. The 75% of exhaled volume is
an arti¢cially chosen percentage and does not always
represent the pattern of lung emptying. In Figure 5, an
example is given of an expiratory £ow-volume curve of
a patient (not from the present study), in whom a single
time constant does not adequately re£ect lung emptying.
In this study we applied a method based on automatic

detection of multiple local linear models which enables
the description of time constant behaviour during ex-
piration [7].
The advantage of this method is that it is able to

describe any shape of the £ow-volume relationship
without presuming a functional relationship (e.g., single
or two compartment model), it does not interfere with
the expiration and it does not rely on subjective visual
inspection.
The shape of the expiratory £ow-volume curve is

di¡erent between patients with and without COPD
[1, 2, 22, 24, 25]. In patients with COPD a initial peak-
£ow is observed, followed by a sudden decline in £ow,
resulting in a concave shape (Figure 4). This discontinuity
between the initial and later part of the £ow volume
curve, is caused by airway compression. In patients
without COPD the expiratory £ow-volume curve is
mostly characterised by a smooth transition between
the initial and later part of the curve. This is also
re£ected in Figure 3, which clearly shows the distinction
between the groups with and without COPD.The large
changes of the time constant from cluster 1 to the
consecutive clusters in the patients with COPD is also
apparent in Table 2. In the patients with other pathol-

Fig. 3. Time constants for each cluster are shown for the patients
with COPD (AA) and the patients with other pathology (- - - -).
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ogy two patterns are observed: in patients 11^15 a
decrease in time constant is found after cluster 1, while
in patients 16^20 an slight increase is found. This might
be explained by the underlying diseases. Patient 10^15
have a normal or even low lung compliance. These
patients were ventilated because of muscular weakness
or hypoxemic respiratory failure. Patients 16^20 were
ventilated for various medical conditions, but 4 patients
had mild COPD (FEV1 between 50%^70% of pre-
dicted), in one patient no lung function data were
available.
In Figure 3, some overlap is found between the curves

of patients with COPD and the patients with other
pathology. This overlap is mostly found in cluster 1,
which represents the early rapid phase, which is largely
determined by extra-thoracic resistive elements. The

overlap found is therefore not clinically relevant. In
three patients a minor overlap is found at end-expira-
tion, which is mainly caused by the relatively high time
constant in cluster four of patient 14.We think that this
is due to noise in the signal at end-expiration.
Not only the time constant behaviour was found to

be discriminative for COPD, but also the individual
cluster time constants were able to discriminate between
patients with and without COPD. For cluster 1 the time
constant was signi¢cantly lower in the patients with
COPD, while for the clusters 2^4 it was signi¢cantly
higher in the patients with COPD. These ¢ndings
also represent the shape of the £ow-volume curves. As
shown in previous studies, the early rapid component
of the passive expiration predominantly re£ects the
resistive behaviour of the extrathoracic resistive ele-
ments [22]. By using fuzzy clustering this part can easily
be distinguished from the consecutive slower compo-
nent, which is more informative on the patients respira-
tory mechanics [22]. Furthermore, a large di¡erence in
time constants of cluster 1 and 2 was found to be very
indicative for the presence of COPD.
The time constants of the clusters 2 and 3 correlated

best with the time constant derived from the £ow
volume curve for the last 75% of tidal volume. How-
ever, the average �2 is slightly higher than the �fv,
whereas the average �3 is slightly lower than the �fv.
This con¢rms the idea that the �fv gives an e¡ective
time constant representing a time constant behaviour.
By using the fuzzy clustering a better approximation of
this time constant behaviour is obtained.
In this study it was chosen to use 4 clusters to describe

the expiration. This is a compromise between the accu-

Fig. 4. An expiratory £ow-volume curve of a patient without (a)
and with COPD (b).

Fig. 5. An example of an expiratory £ow-volume curve of a patient,
in whom a time constant determined from the last 75% of expired
volume would not re£ect lung emptying.
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racy of the separate time constants and the number
needed for a discriminatory time constant behaviour. A
larger number of clusters would mean less data points in
the analysis of local linear models, with consequently
less accurate time constants for those regions. Four
clusters proved to be su⁄cient to discriminate the pat-
tern of expiration of patients with COPD from patients
without COPD. Whether analyses with a larger num-
ber of clusters might have additional bene¢ts, needs to
be investigated.
In conclusion, in this study, fuzzy clustering was used

to assess expiratory time constants in mechanically ven-
tilated patients. Time constants obtained with fuzzy
clustering correlated well with time constants obtained
from the same part of the £ow-volume curves by a
conventional method. Besides making a distinction in
patients with and without COPD, fuzzy clustering
might also be useful to identify other pulmonary con-
ditions.

Supported by the Dutch Asthma Foundation (Nederlands
Astma Fonds), grant number 96.24.
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