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Abstract
Background: Diagnostic and prognostic literature is overwhelmed with studies reporting univariable
predictor-outcome associations. Currently, methods to incorporate such information in the construction of a
prediction model are underdeveloped and unfamiliar to many researchers.

Methods: This article aims to improve upon an adaptation method originally proposed by Greenland (1987) and
Steyerberg (2000) to incorporate previously published univariable associations in the construction of a novel
prediction model. The proposed method improves upon the variance estimation component by reconfiguring the
adaptation process in established theory and making it more robust. Different variants of the proposed method were
tested in a simulation study, where performance was measured by comparing estimated associations with their
predefined values according to the Mean Squared Error and coverage of the 90% confidence intervals.

Results: Results demonstrate that performance of estimated multivariable associations considerably improves for
small datasets where external evidence is included. Although the error of estimated associations decreases with
increasing amount of individual participant data, it does not disappear completely, even in very large datasets.

Conclusions: The proposed method to aggregate previously published univariable associations with individual
participant data in the construction of a novel prediction models outperforms established approaches and is
especially worthwhile when relatively limited individual participant data are available.

Background
Recent medical literature has shown an increasing
interest in clinical prediction models obtained from
cross-sectional studies (diagnostic models) as well as case-
control, cohort and randomized controlled data (prog-
nostic models) [1-5]. Such models combine multiple
predictors or markers that are independently associated
with the presence (in case of diagnosis) or future occur-
rence (in case of prognosis) of a particular outcome.
Typically, logistic regression is used to model these binary
outcomes. Alternatively, Cox proportional hazards regres-
sion may be applied to account for the time-to-event.
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The development of a novel prediction model requires
a dataset with a sufficient amount of participants to
obtain accurate associations and to make reliable predic-
tions. Also, larger numbers of participants increase the
statistical power when selecting predictive subject char-
acteristics to be included in predictive models. Although
numerous prediction models are constructed from a sin-
gle dataset, it is possible to increase the amount of evi-
dence available by incorporating information from the
literature.
The availability of individual participant data (IPD) is

commonly recommended as gold standard for combining
existing information with newly collected data [6,7]. How-
ever, this situation is often unfeasible due to practical con-
straints [8,9], for instance when studies were conducted
several years ago. Fortunately, numerous papers con-
tain baseline population characteristics from which uni-
variable predictor-outcome associations can be derived.
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Consequently, these associations represent an appealing
source of evidence when developing a novel prediction
model [5,10-17].
Greenland and Steyerberg have recently proposed adap-

tation methods to incorporate previously published uni-
variable predictor-outcome associations as prior evidence
in a regression analysis [18,19]. These methods combine
the result of a univariable meta-analysis with the results of
a univariable and multivariable logistic regression analysis
on the IPD. Although these quantitative approaches may
considerably improve the quality of a model’s regression
coefficients and its resulting performance, they are not yet
frequently used in practice [20,21].
Here we present an improved alternative to the meth-

ods proposed by Greenland and Steyerberg that aims to
further increase the accuracy and precision of the mul-
tivariable associations estimated using external evidence.
This method improves upon the variance estimation com-
ponent by reconfiguring the adaptation process in estab-
lished theory and making it more robust. We present
two variants of our method and test their performance in
a simulation study. We illustrate the proposed methods’
application in a clinical example involving the prediction
of peri-operative mortality after elective abdominal aortic
aneurysm surgery [22].

Methods
This method is intended to address the specific situa-
tion where IPD have been collected to evaluate the effect
of a number of predictors on a dichotomous outcome
using logistic regression analysis. Here, univariable and
multivariable associations (logistic regression coefficients)
are estimated and denoted as βu and βm. Particularly,
two sources of associations are assumed to be available,
namely the IPD of the study at hand ( I ) and aggregated
data from the literature ( L ). The univariable and multi-
variable associations estimated in the derivation data are
denoted as β̂u|I and β̂m|I. For the literature, only univari-
able associations are available ( β̂u|L ). It is assumed that
the study at hand and the studies forming the literature are
both random samples from a common underlying patient
population.
Previously, Greenland proposed a method to incorpo-

rate univariable associations reported in the literature
when developing a novel multivariable prediction model
from newly collected data [18]. This method attempts to
approximate a situation where the individual participant
data from all the previously published datasets was avail-
able for all the candidate covariates. It uses the calculated
change from univariable to multivariable association in
the newly collected data and uses this difference to esti-
mate the multivariable association that would have been
reported in the previous literature using the IPD from the
previous studies:

β̂m|L = β̂u|L +
(
β̂m|I − β̂u|I

)
(1)

The proposed estimate for the variance of β̂m|L is given
as follows [18,23].

V̂ar
(
β̂m|L

)
= V̂ar

(
β̂u|L

)
+

[
V̂ar

(
β̂m|I

)
− V̂ar

(
β̂u|I

)]
(2)

Here, β̂u|L can be obtained through a meta-analysis
involving fixed or random effects, and β̂m|L is the (asymp-
totically) unbiased estimate of the multivariable associ-
ation β̂m. Subsequently, Steyerberg et al. extended this
method by defining a weight c to reflect inconsistencies
and variability in previous research [19]:

β̂m|L = β̂m|I + c
(
β̂u|L − β̂u|I

)
(3)

Previous simulations have however shown that the orig-
inal unweighted method (c = 1 in expression 3) has a
similar performance.

Concerns and proposed solutions
Although aforementioned formulas are relatively simple
to apply, the calculation of V̂ar(β̂m|L) in expression 2
clearly contrasts with the theoretical variance component:

Var
(
β̂m|L

)
=Var

(
β̂u|L

)
+ Var

(
β̂m|I

)
+ Var

(
β̂u|I

)
+ 2Cov

(
β̂u|L, β̂m|I

)
− 2Cov

(
β̂m|I, β̂u|I

)
− 2Cov

(
β̂u|L, β̂u|I

)
(4)

Although it is possible to assume that estimated associa-
tions from the literature and IPD at hand are independent,
i.e. Cov(β̂u|L, β̂m|I) = Cov(β̂u|L, β̂u|I) = 0, the remain-
ing assumption that Cov(β̂m|I, β̂u|I) = Var(β̂u|I) seems
unrealistic. Particularly, this assumption requires that the
univariable and multivariable association in the IPD at
hand are strongly correlated and neglects Var(β̂m|I), as
Cov(β̂m|I, β̂u|I) = ρ(β̂m|I, β̂u|I)Var(β̂m|I)Var(β̂u|I). Con-
sequently, expression 2 may yield biased variance esti-
mates of adapted multivariable associations. Although it
is even possible that V̂ar(β̂m|L) becomes negative when
V̂ar(β̂m|I) < V̂ar(β̂u|I), this is unlikely to happen because
adjustment of logistic regression coefficients is expected
to result in a loss of precision [24].
In order to obtain asymptotically unbiased estimates for

Var(β̂m|L), we incorporate the distribution of estimated
associations. A pragmatic parametric family for the dis-
tribution of associations is the normal distribution, where
we assume that β̂u|I ∼ N (μu|I, σ 2

u|I), β̂m|I ∼ N (μm|I, σ 2
m|I)
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and β̂u|L ∼ N (μu|L, σ 2
u|L). Then, the adaptation from uni-

variable to multivariable association, i.e. β̂m|I − β̂u|I in
expression 1, is also normally distributed. The distribution
of this adaptation is further denoted as N (

μδ , σ 2
δ

)
, such

that β̂m|L can be estimated by:

μ̂u|L + μ̂δ (5)

with a standard error estimate of√
σ̂ 2
u|L + σ̂ 2

δ (6)

The probabilistic adaptation from univariable to mul-
tivariable association N (μδ , σ 2

δ ) can be estimated from
the IPD at hand using bootstrap sampling [25]. This pro-
cedure applies repeated sampling with replacement of
subjects from the derivation dataset. Hence, it allows gen-
erating numerous datasets (bootstrap samples) where the
adaptation can be estimated. Unfortunately, the bootstrap
procedure may become unstable when the effective sam-
ple size is small, and yield regression coefficients with
extreme values [26-28]. This, in turn, may strongly affect
the quality of estimated adaptations and result in poor
estimates of βm|L. For this reason, we propose to shrink
the adaptation by implementing a Bayesian prior for the
univariable and multivariable associations of the IPD at
hand. Recently, Gelman et al. proposed a weakly default
prior distribution that is based on the Cauchy distribu-
tion and assumes a probability of 70.48% for associations
between -5 and 5. This distribution is less conserva-
tive than the uniform prior distribution (which assumes
higher probabilities for extreme associations), and yields
estimates that make more sense and have predictive per-
formance better than maximum likelihood estimates [29].
The weakly informative prior distribution for generalized
linear modeling was recently implemented in R, and is
available in the package arm.
Finally, the summary of univariable associations from

the literature N (μu|L, σ 2
u|L) is originally estimated by

applying a fixed effects meta-analysis [30,31]. Because this
estimate may be unstable when few studies are available,
Steyerberg et al. proposed using the univariable associa-
tions from the literature (published as β̂u|L ) and the IPD
at hand (estimated as β̂u|I) [19]. When the homogeneity
assumptions made by the adaptation method are violated,
it is possible to assume random effects to further improve
the robustness of estimated associations.
Given aforementioned concerns, we propose two vari-

ants (Table 1) of the adaptation method which we further
denote as the Improved AdaptationMethod. The first vari-
ant (no prior) decreases the bias of V̂ar(β̂m|L) by effectively
removing the unrealistic assumptions about the covari-
ance between univariable and multivariable associations

in the IPD at hand. This variant also attempts to reduce
the impact of heterogeneity by allowing random effects
in the pooling of literature associations. The second vari-
ant (weakly informative prior) aims to further improve the
quality of estimated multivariable associations by imple-
menting a weakly informative prior distribution for esti-
mating the univariable and multivariable associations in
the IPD at hand. For this purpose, its logistic regres-
sion analyses use independent Cauchy distributions on all
regression coefficients, each centered at 0 and with scale
parameter 10 for the constant term and 2.5 for all other
coefficients. In this manner, estimates for the adapta-
tion from univariable to multivariable association become
more robust.

Simulation study
We performed a simulation study to assess the quality of
estimated multivariable associations. Hereto, we consid-
ered the situation in which IPD and literature data are
described by two predictors and a dichotomous outcome.
Arbitrary values were predefined for the independent
association between these predictors and their respective
outcome, with b0 = −3.43, b1 = 1.45 and b2 = 1.18
(where we chose x1, x2 ∼ N (0, 1) and ρ (x1, x2) = 0, i.e.
x1 and x2 are not correlated) which we further refer to
as the reference model. The outcome y for each subject
i = 1, . . . ,N is generated as follows, and corresponds to
an average incidence of 9%.

y =
{
1, if u < logit−1(−3.43 + 1.45 x1 + 1.18 x2)
0, if u ≥ logit−1(−3.43 + 1.45 x1 + 1.18 x2)

where u ∼ U(0, 1). We applied aforementioned meth-
ods (Table 1) to update only the multivariable association
of the first predictor b1. In each scenario, data for four
literature studies as well as an IPD are generated with
different degrees of comparability. For this purpose, we
used the reference model (fixed effects) to generate the
IPD and source datasets of the univariable associations
from the literature. We investigated the impact of sample
size by evaluating different choices for NI (100, 200, 500
and 1000) and NL (500 and 2000). Note that NI = 100
violates the rule of thumb that logistic models should be
used with a minimum of 10 outcome events per predictor
variable [28]. We also evaluated the performance for the
scenario in which the key assumption of study exchange-
ability is violated. Hereto, we introduced random variation
in b1 of the reference model when generating data for the
literature studies:

y =
{
1, if u < logit−1(−3.43 + (b1|L)j x1 + 1.18 x2)
0, if u ≥ logit−1(−3.43 + (b1|L)j x1 + 1.18 x2)
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Table 1 Overview of approaches

Nometa-analysis Greenland/Steyerberg Improved adaptation method

adaptation method Variant 1 Variant 2

Step 1 Estimate associations in IPD

Implemented Yes Yes Yes Yes

Association type m u+m u+m u+m

Prior distribution none none none weakly informative

Step 2 Summarize univariable associations

Implemented No Yes Yes Yes

Source - I+L I+L I+L

Pooling Method - random effects random effects random effects

Step 3 Estimate adaptation from univariable to multivariable association

Implemented No Yes Yes Yes

Assumptions - (1)+(2) (1) (1)

Estimation procedure - analytic bootstrap bootstrap

Prior distributions - none none weakly informative

Step 4 Apply adaptation to summary estimate from the literature and estimate βm|L
Implemented No Yes Yes Yes

This overview illustrates the characteristics of the approaches discussed and used in the simulation study. In the first step, univariable (u) and multivariable (m)
associations are estimated in the IPD. In the second step, the univariable associations from the literature (L) and data at hand (I) are summarized. Afterwards, the
adaptation from univariable to multivariable association is estimated in step 3. The assumptions about the variance component here are as follows: (1) estimated
associations in the individual participant data (IPD) are independent from estimated associations in the literature, and (2) Cov(β̂m|I , β̂u|I) = Var(β̂u|I). Finally, step 4
estimates a multivariable association by applying the adaptation to the univariable summary estimate from the literature.

where u ∼ U(0, 1) and (b1|L)j ∼ N (
1.45, σ 2

h
)
with

j = 1, . . . , 4. Consequently, differences in multivariable
associations from the literature appear due to sampling
variance and heterogeneity across study populations orig-
inated from one source of variability (e.g. due to a focus
of studies on primary versus secondary care, younger ver-
sus older patients etc). Multivariable associations from the
IPD at hand remain homogeneous with the study popula-
tion (b1|I = 1.45). The scenarios are illustrated in Figure 1,
which also demonstrates that the sampling process sub-
stantially affects the bias and variance of the univariable
and multivariable associations.
Finally, the updated multivariable association β̂1

obtained with each method is compared with the pre-
defined association b1 from the reference model. We
evaluate the frequentist properties of the estimated asso-
ciations in terms of the percentage bias (PB) and the
Mean Squared Error (MSE) [32], where

PB
(
β̂1

)
= β̂1 − b1

b1
× 100% (7)

and

MSE
(
β̂1

)
=

(
β̂1 − b1

)2 +
(
ŜE

(
β̂1

))2
(8)

In addition, we calculate the coverage of the 90% confi-
dence intervals (90% CI coverage) and quantify how often
invalid variance estimates are obtained (i.e. V̂ar(β̂1) < 0)
for the Greenland/Steyerberg adaptation method. We
simulated different degrees of available evidence and het-
erogeneity, and repeated each scenario 500 times. The
corresponding results are presented in Table 2. An imple-
mentation in R of aforementioned methods is available on
request.

Nometa-analysis (classical approach)
Results demonstrate that the classical approach to logis-
tic regression, ignoring published univariable evidence
from previous studies, considerably overestimates multi-
variable associations, particularly when the IPD at hand
is very small. Although the percentage bias and MSE of
β̂1 decreases in larger datasets, it does not completely dis-
appear. Similar to previous research, we found that the
bias of estimated regression coefficients increases when
collinearity occurs and effective sample sizes are small
[33]. The coverage of the 90% confidence interval was
adequate for all scenarios considered.

Greenland/Steyerberg adaptation method
The multivariable associations estimated with the Green-
land/Steyerberg Adaptation method were far more
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σh = 0.00 and n = 150

σh = 0.20 and n = 150

σh = 0.00 and n = 500

σh = 0.20 and n = 500

σh = 0.00 and n = 1000

σh = 0.20 and n = 1000

Estimated univariable b1

σh = 0.00 and n = 150

σh = 0.20 and n = 150

σh = 0.00 and n = 500

σh = 0.20 and n = 500

σh = 0.00 and n = 1000

σh = 0.20 and n = 1000

95% range of estimated associations

Figure 1 Comparison of estimated associations. Graphic presentation of multivariable (with true value 1.45) and corresponding univariable (with
true value 1.25) associations estimated in an IPD of size n. This dataset is generated according to x1, x2 ∼ N (0, 1) with
Pr(y = 1) = logit−1(−3.43 + b1x1 + 1.18x2) and b1 ∼ N (1.45, σ 2

h ). Each interval is based on 10 000 repetitions.

accurate than those estimated with the classical approach,
especially when little actual data were available. Estimated
associations remain, however, too extreme compared to
the associations from the reference model. The coverage
of the 90% confidence interval was good for most scenar-
ios, althoughwe observed over-coverage when collinearity
was present, and under-coverage when the literature stud-
ies were very large and heterogeneous. Unfortunately, we
also noticed that some estimates for Var(β̂m|L) were neg-
ative when IPDs were small, and particularly when the
literature studies were large (such that Var(β̂u|L) becomes
negligible). Finally, the presence of heterogeneity in the
literature associations did not influence the accuracy
of estimated associations. This finding can however be
explained by the fact that heterogeneity was only intro-
duced in the spread of the literature associations.

Improved adaptation method (no prior)
When no shrinkage was applied for the associations of
the IPD at hand, estimated multivariable associations
had the largest error, particularly when few data were

available. Regression coefficients in bootstrap samples
were often non-identifiable (results not shown), result-
ing in unstable estimates and over-coverage of multivari-
able regression coefficients. When the size of the IPD at
hand increased, this approach performed similar to the
improved adaptation method with a weakly informative
default prior and the approach proposed by Greenland
and Steyerberg.

Improved adaptation method (weakly informative prior)
Results demonstrate that estimated associations were
most accurate when a weakly informative prior was used
during estimation of the adaptation. Even when the rule
of thumb that logistic models should be used with a mini-
mumof 10 outcome events per predictor variable is clearly
violated, this approach yielded superior estimates of b1
that were very similar to estimates obtained from large
amounts of IPD. Finally, we observed over-coverage of the
90% confidence interval when collinearity was present,
and under-coverage when the literature studies were very
large and heterogeneous with the IPD at hand.
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Table 2 Results simulation study

Nometa-analysis Greenland/Steyerberg Improved adaptation method Improved adaptation method

adaptation method (no prior) (weakly informative prior)

NI NL σh ρ(x1, x2) PB MSE coverage PB MSE coverage (*) PB MSE coverage PB MSE coverage

100 500 0 0 15.07% 0.613 89.0% 8.87% 0.219 89.2% 8 1.3 e+12% 1.8 e+23 97.8% -1.98% 0.065 89.6%

200 500 0 0 6.58% 0.186 90.0% 2.34% 0.063 90.8% 1 18.13% 3.671 94.4% -1.44% 0.043 89.0%

500 500 0 0 3.65% 0.061 90.4% 1.00% 0.024 90.0% 0 2.21% 0.026 91.0% -0.54% 0.021 89.0%

1000 500 0 0 1.31% 0.028 90.2% 0.84% 0.014 91.2% 0 1.34% 0.014 90.6% -0.11% 0.013 90.0%

100 500 0 0.50 20.39% 0.888 91.2% 5.75% 0.166 94.4% 7 -80.77% 3.9 e+04 98.4% 1.41% 0.048 96.2%

200 500 0 0.50 8.22% 0.226 91.0% 1.63% 0.037 93.0% 0 4.55% 0.091 94.2% 0.32% 0.031 93.6%

500 500 0 0.50 1.89% 0.073 87.6% 0.45% 0.019 92.2% 0 0.89% 0.020 90.8% -0.32% 0.019 91.4%

1000 500 0 0.50 0.88% 0.031 92.2% 0.33% 0.011 93.8% 0 0.55% 0.012 92.8% -0.19% 0.011 93.8%

100 500 0.20 0 10.89% 0.440 92.4% 5.17% 0.140 90.4% 8 -3.7 e+02% 5.6 e+04 98.0% -4.02% 0.056 89.8%

200 500 0.20 0 6.54% 0.177 92.0% 3.81% 0.060 91.6% 1 -11.08% 0.801 95.6% -0.18% 0.039 91.6%

500 500 0.20 0 1.23% 0.049 93.8% 0.34% 0.024 92.2% 0 1.53% 0.026 92.2% -1.13% 0.022 90.8%

1000 500 0.20 0 0.94% 0.029 89.2% 0.89% 0.017 90.4% 0 1.42% 0.018 90.4% 0.02% 0.016 89.8%

100 2000 0 0 47.95% 4.9 e+01 93.2% 37.63% 4.3 e+01 86.2% 21 1.6 e+12% 1.5 e+23 98.2% -1.09% 0.058 89.6%

200 2000 0 0 5.60% 0.184 90.2% 3.31% 0.058 89.8% 1 54.36% 2.1 e+02 94.2% -0.12% 0.036 88.2%

500 2000 0 0 2.36% 0.064 87.2% 1.10% 0.017 89.2% 0 2.31% 0.020 91.4% -0.07% 0.015 88.8%

1000 2000 0 0 1.17% 0.027 90.0% 0.58% 0.009 90.2% 0 1.16% 0.010 89.2% -0.03% 0.009 87.4%

100 2000 0 0.50 20.05% 0.856 89.6% 5.68% 0.139 92.0% 11 3.5 e+12% 1.3 e+23 98.4% 1.67% 0.045 95.4%

200 2000 0 0.50 6.99% 0.206 90.8% 2.67% 0.035 92.2% 1 5.94% 0.120 93.8% 2.02% 0.029 92.2%

500 2000 0 0.50 2.44% 0.063 90.8% 0.75% 0.011 92.8% 0 1.18% 0.011 92.0% 0.45% 0.010 92.2%

1000 2000 0 0.50 1.62% 0.032 89.4% 0.26% 0.007 91.6% 0 0.45% 0.007 91.6% 0.02% 0.007 91.4%

100 2000 0.20 0 16.17% 0.654 92.6% 7.67% 0.201 89.8% 16 1.5 e+03% 3.9 e+04 98.2% -2.66% 0.046 91.0%

200 2000 0.20 0 6.63% 0.177 93.0% 3.74% 0.057 89.2% 1 13.89% 0.754 94.8% 0.26% 0.037 88.8%

500 2000 0.20 0 2.33% 0.056 92.8% 1.23% 0.021 89.6% 0 2.46% 0.023 89.4% -0.08% 0.019 88.6%

1000 2000 0.20 0 2.02% 0.027 92.2% 1.07% 0.014 87.4% 0 1.62% 0.015 86.6% 0.37% 0.013 85.8%

Simulation results for the situation in which an IPD of NI subjects is available and the literature associations are based on 4 studies of NL subjects each. Between-study heterogeneity of literature associations is parameterized
by σh. Correlation between the predictor variables x1 and x2 is indicated by ρ(x1, x2). The following statistics of β̂1 are presented: percentage bias (PB), Mean Squared Error (MSE) and coverage of the 90% confidence interval
(coverage). We also assessed how often the Greenland/Steyerberg adaptation method estimated a negative variance for β̂1 (*).
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Application
We applied the methods discussed above to an empiri-
cal dataset of the prediction of peri-operative mortality
(in-hospital or within 30 days) after elective abdominal
aortic aneurysm surgery [22]. The study was exempted
from ethical approval under Dutch law. Individual par-
ticipant data were available for 238 subjects (including
18 deaths) and consisted of the predictors age, gender,
cardiac co-morbidity (history of myocardial infarction,
congestive heart failure, and ischemia on the ECG),
pulmonary co-morbidity (COPD, emphysema or dys-
pnea) and renal co-morbidity (elevated preoperateive
creatinine level). Univariable literature data were avail-
able from 15 studies with 15 821 subjects including
1 153 deaths in total (see Table, Additional file 1). We
incorporated the univariable evidence from the liter-
ature data to estimate the multivariable associations
of four of these predictors. Similar to the simulation
study, we applied standard logistic regression mod-
eling (no meta-analysis), the Greenland/Steyerberg
Adaptation method and the improved adaptation
method. The corresponding results are presented in
Table 3.

Nometa-analysis (classical approach)
The poor quality of estimated associations can be illus-
trated by their substantial variance. The predictor ‘Female
Sex’ is a good example, since the 90% confidence inter-
val of its multivariable association was estimated as
[−1.30, 2.00].

Greenland/Steyerberg adaptation method
The Greenland/Steyerberg Adaptation method yielded
notably different multivariable associations. For instance,
whereas the classical approach estimated a multivariable
association of 0.74 (ORadj = 2.10) for the predictor ‘His-
tory ofMI’, this estimate was shrunk to 0.26 (ORadj = 1.20)
by the adaptation method. Here, the considerable differ-
ence in univariable associations between the individual
dataset and the literature is a major cause of shrink-
age. Finally, the variance of multivariable associations was
much smaller when published evidence from the literature
was incorporated.

Improved adaptation method (no prior)
We noticed a substantial increase in the variance of
estimated adaptations due to the occurrence of non-
identifiability in some of the bootstrap samples. These
findings illustrate the need for a prior distribution that
shrinks the associations of the individual dataset and
thereby robustifies the adaptation.

Improved adaptation method (weakly informative prior)
Multivariable associations were similar but not equal to
those estimated with the Greenland/Steyerberg Adapta-
tionmethod. For instance, the multivariable association of
the predictor ‘History of MI’ was shrunk to a lesser extent
by both variants of the improved adaptation method. Fur-
thermore, the variance of estimated adaptations and mul-
tivariable associations decreased considerably by imple-
menting a weakly informative prior distribution.

Table 3 Calculation of adapted associations in the application

Female sex MI CHF Ischemia

Adaptation μ̂δ ; σ̂ 2
δ

Greenland/Steyerberg Adapt. method 0.02; 0.13 -0.76; 0.07 -0.74; 0.05 -0.72; 0.08

Improved Adapt. method (no prior) 0.04; 0.39 -0.69; 0.15 -0.67; 0.16 -0.72; 0.41

Improved Adapt. method (weakly informative prior) 0.05; 0.12 -0.65; 0.07 -0.63, 0.05 -0.67; 0.11

Univariable association μ̂u; σ̂ 2
u

Greenland/Steyerberg Adapt. method 0.35; 0.03 1.02; 0.07 1.58; 0.12 1.52; 0.10

Improved Adapt. method (no prior) 0.35; 0.03 1.02; 0.07 1.58; 0.12 1.52; 0.10

Improved Adapt. method (weakly informative prior) 0.34; 0.03 1.00; 0.07 1.52; 0.11 1.48; 0.09

Multivariable association μ̂m; σ̂ 2
m

No meta-analysis 0.30; 0.75 0.74; 0.32 1.04; 0.35 0.99; 0.38

Greenland/Steyerberg Adapt. method 0.36; 0.16 0.26; 0.14 0.84; 0.17 0.80; 0.18

Improved Adapt. method (no prior) 0.38; 0.42 0.33; 0.22 0.91; 0.28 0.80; 0.51

Improved Adapt. method (weakly informative prior) 0.39; 0.15 0.35; 0.14 0.90; 0.16 0.81; 0.21

Illustration of the adaptation (Adapt.) methods for four independent associations for predicting peri-operative mortality (in-hospital or within 30 days) after elective
abdominal aortic aneurysm surgery. The following estimates are presented: adaptation from univariable to multivariable association (with mean μ̂δ and variance σ̂ 2

δ ),
summary of univariable associations from the literature and IPD (with mean μ̂u and variance σ̂ 2

u ) and adapted multivariable association (with mean μ̂m and variance
σ̂ 2
m). Multivariable estimates were obtained through independent adaptation of the corresponding univariable associations, and are adjusted for the following

variables: female sex, age in decades, history of myocardial infarction (MI), congestive heart failure (CHF), ischemia on electrocardiogram, renal co-morbidity and lung
co-morbidity.



Debray et al. BMCMedical ResearchMethodology 2012, 12:121 Page 8 of 9
http://www.biomedcentral.com/1471-2288/12/121

Discussion
The incorporation of previously published univariable
associations from single diagnostic or prognostic test, pre-
dictor or marker studies, into the development of a novel
prediction model is both feasible and beneficial. A sim-
ple method for this purpose was proposed by Greenland
and Steyerberg using the change from univariable to mul-
tivariable association observed in the IPD to adapt the
univariable associations from the literature.We present an
improved adaptation method and demonstrate its addi-
tional value in a simulation study. Particularly when the
individual dataset is relatively small, this method esti-
mates multivariable associations with a smaller MSE, and
obtains better coverage of their 90% confidence intervals.
Major performance gain is obtained by shrinking the asso-
ciations from the individual dataset when calculating the
adaptation. When no shrinkage was applied (no prior),
non-identifiability occurred in some of the bootstrap sam-
ples and estimated adaptations were no longer normally
distributed. Since we know that extreme associations are
very rare in medical sciences, the use of a weakly infor-
mative default prior is justified [29], resulting in improved
accuracy and precision of the adaptation and hence also
the multivariable associations under study.
Several issuesmust be considered when evaluating these

findings: Firstly, performance was evaluated here through
the estimation of an association in a small prediction
model. Our method may perform better in larger models
where correlations between univariable and multivariable
associations may be less strong, but this remains untested.
Secondly, advanced Bayesian approaches for summariz-
ing the evidence from the literature were not considered.
Although these approaches might further improve the
accuracy and coverage of multivariable associations, they
are less readily compared withmeta-analytical models and
require more modeling expertise.
Third, the assumption that studies from the litera-

ture are exchangeable with the data at hand might not
always hold. Simulations showed an under-coverage of
the estimated 90% confidence interval when comparability
between the considered associations was low, indicating
that incorporating strongly heterogeneous evidence from
the literature into prediction modeling remains problem-
atic. In those scenarios, the change from univariable to
multivariable association in the IPD at handmay no longer
be representative for associations from the literature. Evi-
dently, the incorporation of strongly heterogeneous evi-
dence (for example indicated by the I2 statistic) from
the literature into the development of a novel prediction
model remains questionable [34,35]. In addition, aggregat-
ing published results may not be desirable if publication
bias is present or suspected. Fortunately, the use of ran-
dom effects when summarizing the associations from the
literature seems to counter this problem to some extent.

Fourth, we did not consider the situation in which mul-
tivariable (rather than univariable) associations are avail-
able from the literature. Although their incorporationmay
be difficult due to the diversity of considered predictors,
it could further improve the quality of estimated asso-
ciations. The synthesis process of associations from the
literature should then account for differences in model
specification and included associations. Future research
will investigate how these challenges can be assessed [36].
Finally, our simulation study only evaluated the per-

formance of estimated multivariable predictor-outcome
associations. Although Steyerberg et al. showed that
improved estimates may increase the quality of the pre-
diction model [19], this relation was not assessed here.
It is possible that all adaptation methods perform sim-
ilar in a prediction task. However, we showed that the
Improved Adaptation Method with a weakly informa-
tive prior may further reduce the bias of multivariable
associations when datasets are small. It may be clear
that for strong predictors, this improvement may have
a meaningful impact when making predictions. Addi-
tional research is needed to evaluate the extent to which
improved predictor-outcome associations result in an
improved model performance.

Conclusions
Our study demonstrates that the MSE in multivari-
able associations of a novel prediction model is largest
when external evidence, in this case previously published
univariable predictor-outcome associations, is ignored.
Although this error decreases with increasing amount of
IPD, it does not disappear completely, even in very large
datasets. Therefore, it is valuable to incorporate any exist-
ing univariable evidence from the literature unless this
evidence is strongly heterogeneous. Even when the indi-
vidual dataset is relatively large compared to the literature,
the proposed method will still result in an estimate closer
to the underlying multivariable association than the stan-
dard method ignoring the literature. The improved and
original adaptation methods are robust approaches for
this purpose. Whereas the latter method is simpler to
apply, the former is more vigorous in small datasets and
provides the most stable estimates.
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