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In response to customer specific service time guarantee requirements, service providers can offer differentiated

services. However, conventional customer differentiation models based on fill rate constraints do not take full

advantage of the stock reduction that can be achieved by differentiating customers based on agreed response

times. In this paper we focus on the (S − 1, S,K) model with two customer classes, in which low priority

customers are served only if the inventory level is above K. We employ lattice paths combinatorics to derive

the exact distribution of the response time (within leadtime) for the lower priority class and provide a simple

and accurate approximation for the response time of the high priority class. We show that the stock levels

chosen based on agreed response times can be significantly lower than the ones chosen based on fillrates.

This indicates that response time guarantees are an efficient tool in negotiating after-sale contracts, as they

improve customer satisfaction and reduce investment costs.
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1. Introduction

Due to high down time costs, operators of capital intensive equipment such as aircrafts, electron-

ics and trucks, increasingly focus on the time needed to fix a failure and require response time

guarantees. For example, Thales Netherlands, a supplier of naval radar and combat management

systems, is required to provide a service level quantified as the maximum response time in case of a
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failure (van der Heijden et al. 2012). Unlike the fill rate, time based service levels enable providers

to engage customers in customer-focused performance metrics, as they relate directly to down time

costs (Cohen et al. 2006).

Even when they own the same product, different customers may require different time based

service levels. (Cohen et al. 2006). For example, when a mainframe computer in a stock exchange

fails, the financial impact will be more severe than when a mainframe in a library goes down.

In such situations, service providers often categorize their customers in different priority classes,

depending on the duration of the requested response time (Cohen et al. 2006) or the requested

level of the fill rate (Arslan et al. 2007). Short response times and high fill rates correspond to high

priority customers, while longer response times and lower fill rates correspond to the low priority

customers.

The challenge to service providers is to find a way to comply with the service contracts for

differentiated customers while having a minimal capital investment in service parts inventory. There

are several ways to deal with inventory for differentiated customers. One way is to use separate

pools of stocks for each demand class, which is less efficient than pooling stocks in one pool (Cohen

et al. 2006). While pooling service parts without differentiation is more efficient, one has to deal

with the free-rider problem: low priority customers may receive the same service level as high

priority customers. In order to take advantage of the economies of scale of pooling while delivering

differentiated services, researchers proposed to use critical level policies, that reserve a part of

inventory for high priority customers and pool the rest of the resources (Veinott (1965), Nahmias

and Demmy (1981), Dekker et al. (1998), Deshpande et al. (2003), Vicil and Jackson (2016), Arslan

et al. (2007)). Most of the literature in the field focuses on minimizing expected on-hand inventory,

while imposing a desired level on the fillrate. One drawback of critical level policies is that low

priority customers may encounter long response times. One way to alleviate this problem would be

to design contracts with response time guarantees in terms of probabilities, instead of, or additional

to the fillrates. As response time guarantees are less strict than fillrate constraints, optimizing the

stock levels based on them also leads to a decrease in stock levels.
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In this paper we focus on the impact of response time constraints on the stock levels in a

continuous-review (S − 1, S,K) inventory model, with two demand classes (Gold and Silver) and

constant leadtime L. All the unsatisfied demands are backordered. Low priority (Silver) customers

are served only when the on hand inventory is greater than K and replenishments are used to first

clear Gold backorders, then to increase the reservation stock back to K, and finally to clear the

Silver backorders. Such a policy is appropriate for differentiated spare parts services, characterized

by low demand and items with high holding and shortage costs relative to the ordering costs (Dekker

et al. 1998, Sherbrooke 1968, Alfredsson and Verrijdt 1999). Approximations for the fillrates in this

system have been previously proposed in Deshpande et al. (2003) and Arslan et al. (2007), while

recursive relations for approximating the steady state distributions of the number of customers of

each type have been proposed by Vicil and Jackson (2016) and Fadıloğlu and Bulut (2010). To the

best of our knowledge, the response time distributions for the two customer classes in this inventory

model have not been previously characterized and the impact of response time constraints on stock

levels has not been studied. Our contribution can be summarized as follows:

(i) We offer an exact derivation of the distribution of the response time (within leadtime) for the

lower priority customers. Note that this distribution cannot be derived directly from the steady

state distribution of the number of customers in the system, as it is the case in systems without

priorities. The reason is that the waiting time of Silver customers depends not only on the total

number of customers in the system seen upon arrival, but also on subsequent arrivals of Gold

customers. To overcome this difficulty, we use elementary lattice paths counting, a technique that

has often been used in the field of queuing theory by Champernowne (1956), Takács (1967), Böhm

(2010). The advantage of this technique is that it leads to expressions that link naturally to the

evolution of the system, as compared to the more analytical technique of Laplace Transforms, that

is more common in the study of queues with priorities.

(ii) We propose a simple approximation for the response time distribution for Gold customers,

based on a serial system similar to the one proposed by Arslan et al. (2007). This approximation also

leads to a simple alternative method for calculating the fillrates in an (S−1, S,K) inventory model.
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As indicated in Vicil and Jackson (2016), the best performing approximations for the fillrates are

the ones proposed by Vicil and Jackson (2016) and Fadıloğlu and Bulut (2010). In Section 7, we

show that our simple approximation method gives very close results to those previously known,

which are based on more complex recursive relations.

(iii) Via numerical experiments, we show that by using response time constraints instead of

fillrates, a considerable reduction in stock levels can be achieved. This indicates that response time

constraints can be an efficient tool in negotiating after sale contracts, as they lead to both customer

satisfaction and low costs.

The paper is organized as follows. In Section 2, we review the literature on customer differenti-

ation policies. In Section 3, we present our model and revise basic properties of the (S − 1, S,K)

model. In Section 4, we use basic lattice path combinatorics to derive an explicit expression of

the response time constraint for Silver customers and discuss an approximations for the response

time distribution of Gold customers in Section 5. Al agorithm for deciding stock levels based on

response time constraints is described in Section 6. In Section 7, we validate our approximation

method for high priority customers via extensive numerical experiments and we discuss the impact

of incorporating response time constraints on the stock levels. Conclusions and further reasearch

directions are outlined in Section 8.

2. Literature review

Our paper relates at most to continuous review critical level inventory models with several demand

classes and backordering. Critical level policies have been first proposed in Veinott (1965). Topkis

(1968) analyzed this policy for a periodic system with zero leadtime and multiple demand classes,

each with a different shortage cost. Each review period is divided into a finite number of subperiods,

at the end of which the inventory manager allocates inventory to the demand realized so far. Topkis

proves that within a review interval, there exist optimal, nonnegative, rationing levels for each

demand class. Similar models have been analysed in Kaplan (1969) and Frank et al. (2003).

Ha (1997a,b) consider a make-to-stock single machine production system with several demand

classes. For a Markovian model with Poisson demand and exponential production times, where
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the manager at the production facility has three possible actions (do not produce, produce one

item to replenish or to satisfy a high priority backorder, and produce one item to fill a low priority

backorder), he shows that a base stock policy for the production decision and a dynamic rationing

policy for inventory are optimal.

Nahmias and Demmy (1981) are the first to propose approximations for the expected backorders

and fillrates in an continous review (Q,R,K) inventory system with two demand classes and

deterministic lead times. In this system, a (Q,R) policy is combined with a priority clearing policy,

in which orders for the low priority customers are only satisfied when the inventory on hand is

greater than K. Their approximation relies on the assumption that there is at most one outstanding

order at any time, which implies that whenever a reorder quantity is received, the inventory position

and inventory level are identical. This model is extended to multiple demand classes and compound

Poisson demand in Moon and Kang (1998).

Dekker et al. (1998) give approximations for the fillrates in an (S − 1, S,K) model with deter-

ministic lead times. They explore several ways of allocating the incoming replenishment items in

case of stock out. They show that the allocation method has little influence on the fill rates, but

impacts significantly the duration of the stock out for the lower priority class.

Deshpande et al. (2003) consider the continuous review (Q,R,K) inventory system with two

customer classes discussed in Nahmias and Demmy (1981). They propose to approximate the

system parameters with the optimal parameters in a threshold clearing mechanism that is easier

to analyse. The authors show that this policy closely approximates the optimal priority clearing

policy. Deshpande and Cohen (2005) extends the analysis of this model to multiple classes.

Arslan et al. (2007) show that the threshold clearing policy is equivalent to a pipeline allocation

policy in which backorders for the higher priority class, orders to replenish the stock reserved

for higher priority demand and backorders for lower priority demand are served according to a

FCFS discipline. They show also that the inventory system using these policies can be analysed

by mapping it to a serial inventory system and propose an efficient heuristic to find the policy

parameters.
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Vicil and Jackson (2016) analyse the (S − 1, S,K) inventory system with two demand classes,

under the priority clearing policy. For exponential lead times, they propose an efficient recursive

method for finding the steady state distribution of the on hand inventory and of the number

of backorders of each class. They show that the same balance equations hold in case of general

leadtimes, assuming that, for small h, the probability of a replenishment in (t, t+h), is independent

of the number of low priority backorders in the system. For constant lead times and assuming that

the same independence condition holds, Fadıloğlu and Bulut (2010) propose a different recursive

procedure to calculate the steady state probabilities, based on an embedded Markov chain. While

the system we study is the same as the one in Vicil and Jackson (2016) and Fadıloğlu and Bulut

(2010), the focus of our paper is on deriving the distribution of the response times for the two

classes and studying the impact of using response times instead of fillrates on the stock levels.

Customer differentiation has also been studied in the context of queueing theory, however, mainly

for single server systems or systems with a finite number of servers. The Laplace Stieltjes Transforms

(LST) of the waiting times in a non-preemptive M/M/c queue with equal service rates have been

derived by Davis (1966) and Kella and Yechiali (1985), while Kesten and Runnenburg (1957) and

Miller Jr (1960) have derived the LST of the waiting time for the non-preemptive M/M/1 queue

with different service rates. For c = 1,2 the generating function of the number of low priority

customers in a preemptive M/M/c system has been recently derived in Wang et al. (2015). It is

well known that the (S − 1, S) system can be modeled by an M/G/∞ queue, in which arrivals

coincide with order placements and service time coincides with the leadtime. Unlike in queuing

theory, where priority concerns the order in which customers enter service, in an (S − 1, S,K)

system, priority concerns the order in which arriving replenishments are given to customers. To

the best of our knowledge, such a system has not been studied in the context of queuing theory.

3. Model description and preliminaries

We consider a service parts inventory system with two demand classes, i.e., high priority, or Gold

customers, and low priority, or Silver customers. We will use indices G and Z to indicate the Gold
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and Silver priority classes. We assume that the arrival processes corresponding to the two customer

classes are independent Poisson processes, with rates λG for Gold customers and λZ for Silver

customers. The inventory system is controlled by a continuous review (S − 1, S,K) policy, that

is, a base stock policy with a critical level K, that is characterized by the following rules: every

time a demand from either a Gold or a Silver customer occurs, a replenishment order is placed

with the producer; when the on-hand inventory is above the critical level K, both customer classes

are served according to a first come, first served rule; when the inventory level is below K, all

Silver orders are backlogged; when the on-hand inventory is depleted, all demand is backlogged. We

assume S ≥ 1. We define the shortfall for Gold customers as the amount needed to clear all Gold

backorders and to restore the on-hand inventory to the critical level K. We assume that shortfalls

for Gold customers have priority upon backorders of Silver customer, that is, pipeline items are

used to satisfy first Gold backorders, then to increase the inventory level to K and finally to satisfy

Silver back orders. The lead times are assumed to be non-negative and deterministic, denoted by

L. Customers are differentiated by two service requirements: the response time τi, i∈ {G,Z}, and

the service level within the response time βi, i∈ {G,Z}, i.e., the proportion of customers satisfied

within the response time. We assume that both response times are lower than the lead time, which

is realistic for service providers.

We are interested in finding the minimal base stock level S for which there exists a reservation

stock K, that ensures for each class i of customers, i∈ {G,Z}, a response time τi with probability

βi. Note that minimal stock levels imply minimal expected stock on-hand and that the service level

is guaranteed by the response time constraints. More precisely, our goal is to solve the following

optimization problem

Min S

s.t. Pr(RK
G ≤ τG)≥ βG (1)

Pr(RK
Z ≤ τZ)≥ βZ

S,K ∈Z+.
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Below we present a list of parameters and notations that will be used throughout the paper.

S = base stock

L = lead time

K = critical level for Gold customers

λi = arrival rate of class i customers, i∈ {G,Z}

λ = arrival rate of arbitrary customers

IL = inventory level

τi= reponse time for the class i customers, i∈ {G,Z}

βi= percentage of customers of priority class i, i∈ {G,Z} that will be served within τi

Ri = waiting time of a customer of priority class i, i∈ {G,Z} when K = 0

RK
i = waiting time of a customer of priority class i, i∈ {G,Z} when K > 0

po(·;β) - the probability mass function of a Poisson random variable with rate β

Po(·;β) - the cumulative distribution function of a Poisson random variable with rate β

bin(·;n,p) - the probability mass function of a Binomial distribution with parameters n and

p

Beta(·;α,γ) - the cumulative distribution function of a Beta variable with parameters α and

γ

Erl(·;n,λ)- the cumulative distribution function of an Erlang distribution with parameters n

and λ

3.1. Preliminaries

The equivalent serial stage inventory model Our analysis relies on the equivalence between the

(S − 1, S,K) inventory system and a serial stage inventory system (SSS). A similar serial system

was used in Arslan et al. (2007) to analyse an (S − 1, S,K) inventory model where shortfalls for

Gold and backorders for Silver are served in first come first served order.

The (SSS) inventory system divides the on hand inventory into 2 stockpiles (stages), each cor-

responding to one demand class. Let ILi, i= 1,2 be the inventory on hand at each stockpile and
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ILSSS = IL1 + IL2. Both stockpiles use a continuous review base stock policy, the first one with

base stock level K and the second with level S−K. We call the stock at the first pile the reservation

stock. The replenishment leadtime between the two stockpiles is assumed to be zero.

When a Gold customer arrives, if IL1 > 0, he will be served from the first stockpile and a

replenishment order is sent to the second stockpile. If IL2 > 0, an item is sent to the first stock

pile, thus restoring the inventory level. If IL2 = 0, a reservation Gold backorder is registered at

the first stockpile. If IL1 = IL2 = 0, a real Gold backorder is registered at the first stockpile. In

both cases, a replenishment order is sent to the outside supplier. Observe that after this operation,

IL1 = 0 only when IL2 = 0.

When a Silver customer arrives, he is directed to the second stockpile. If IL2 > 0, he will be

served, otherwise a Silver backorder at the second stockpile will be registered. In both cases, a

replenishment order is placed with the outside supplier.

At the arrival of a replenishment item, two situations may occur. If there is a Gold backorder

at the first stockpile, the item will fulfill a real Gold backorder, and if none is present a Gold

reservation backorder. If no Gold backorder is registered at the first stockpile, the replenishment

item will be given to a Silver backorder if one is registered, otherwise it will be used to replenish

the stock at the second stockpile.

Figure 1 contains a schematic despription of the (SSS) system.

S-K 

K 

backorders 

Gold  backorders 

λG 

λZ 

Supplier 

Replenishment orders  

Lead time = L 

Silver  backorders 

Figure 1 The equivalent serial system (SSS)

To show the equivalence between (S − 1, S,K) and (SSS) also holds in the case with pipeline
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priority, we follow the same approach as in Arslan et al. (2007). We assume that both systems

start with full stock and argue that the on hand inventory and number of backorders of each class

are the same every time a change in the system’s state takes place: (i) when a demand occurs and

(ii) when a replenishment arrives.

(i) When a customer arrives. If in the (S−1, S,K) system, the inventory on hand is larger than

K, it is decreased by one and a replenishment order is placed with the outside supplier. In the

(SSS), ILSSS > K corresponds to IL2 > 0 and IL1 = K. Hence, when a demand from a Silver

customer arrives, IL2 is decreased by one. If the demand is placed by a Gold customer, IL1 is first

decreased by one, then immediately replenished, and IL2 is decreased by one. In both cases, ILSSS

is decreased by one and a replenishment order is placed with the outside supplier.

If in the (S − 1, S,K) system, 0 < IL ≤ K, a demand from a Gold customer will be served,

while a demand from a Silver customer will be backordered. The inventory level is decreased by

one and a shortfall for Gold is registered. In the (SSS), this situation corresponds to IL2 = 0,

while 0< IL1 ≤K. A demand from a Silver customer, that arives at the second stockpile, will be

backordered, while a demand from a Gold customer will be served and a reservation Gold backorder

will be registered at the first stockpile. In both cases, a replenishment order is placed with the

outside supplier.

Finally, if there is no stock in the (S − 1, S,K) system, any incoming demand is backordered

and a replenishment order is placed. In the (SSS), any Silver demand is backordered and any Gold

demand triggers a real Gold backorder at the first stage. A replacement order is placed in both

cases.

To sum up, when a demand arrives, on- hand inventory level in the two systems is the same,

the number of Silver backorders in the (S − 1, S,K) system coincides with the number of Silver

backorders at the second stage in the (SSS) system and the Gold shortfall in the (S − 1, S,K)

system equals the Gold backorders (reservation and real) at the first stage.

(ii) When a replenishment arrives In the (S−1, S,K) system, a replenishment will be first used

to clear any shortfall for Gold (backorders and replenishment of reservation stock), and if the
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inventory on-hand is larger than K, it will be used for Silver backorders if any are present, or put

in stock. It can be easily seen that in the SSS, a replenishment is used in a similar way.

As the (S − 1, S,K) and (SSS) systems are equivalent, we can use the second one to derive

the waiting time distributions of the Gold and Silver customers. The response time distribution

of Gold customers will be characterized based on the first stage of the (SSS) system, while the

response time of Silver is based on the second stage. Observe that since at every Gold arrival a

replenishment order is asked from the second stage, at the second stockpile, demand arrives at

rate λG +λZ . Since when a replenishment item arrives, Gold backorders are fulfilled before Silver

backorders, the second stage is equivalent to an (S−K−1, S−K,0) inventory model, with arrival

rate λG +λZ .

Throughout the paper, we will be using the following Lemma to characterize the number of

replenishment items in pipeline and the time till a certain replenishment will arrive in stock.

Lemma 1. In an (S − 1, S,K) inventory system with Poisson arrivals and constant leadtime,

the probability that a customer sees at arrival n items in pipeline is equal to po(n,λL).

Proof The proof relies on the well known equivalence between a (S−1, S) (base-stock) inventory

system with Poisson demands and an M/G/∞ queue. The arrivals in the M/G/∞ queue are the

orders placed when customers arrive in the (S−1, S) inventory system with Poisson demands. The

service time is equivalent to the lead time. By Palm’s theorem, the probability that a customer

sees at arrival n items in pipeline is po(n,λL). As priority only changes the order replenishment

items are given to customers after they arrived in stock, the same holds in an (S−1, S,K) system.

�

4. Response time distribution for Silver customers

In the previous section we have argued that the waiting time of Silver customers in an (S−1, S,K)

inventory model can be calculated based on the second stage of an (SSS) model, which behaves as

a (S−K− 1, S−K,0) model. In this model, both classes of customers are served as long as there

is stock on hand, and Gold backorders have priority upon Silver backorders.
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For the ease of the notation, consider a (S− 1, S,0) inventory system. Tag a Silver customer at

his arrival, say time t. We take the arrival of the Silver customer as time reference. Assume that

replenishment items in pipeline are numbered in increasing order of the residual lead time, that is,

in the order they arrive to stock.

The Silver customer does not have to wait, if, at his arrival, there are items in stock, or equiva-

lently, at most S− 1 items in pipeline. Based on Lemma 1, we conclude that

P (RZ = 0) = Po(S− 1, λL). (2)

Let N(u) be the number of replenishments that arrive in stock in [t, t+ u]. Note that N(u) is

equal to the number of customer arrivals in [t− L, t+ u− L]. Morover, let NG(u) represent the

number of Gold arrivals in [t, t+u]. As for u∈ [0,L), the intervals [t−L, t+u−L] and [t, t+u] are

disjoint, the variables N(u) and NG(u) are independent. Thus, the process (Y (u))u∈[0,L), defined

by Y (u) = N(u) +NG(u) can be seen as the restriction to [0,L) of a Poisson process with rate

λ+λG. Note that the process (Y (u))u∈[0,L) contains all the events (arrival of replenishment items

and arrival of Gold customers) that impact the response time of Silver customers on [0,L).

Assume that N(L−) = n, where u− denotes the time moment just before time u. That is, the

tagged customer sees n items in pipeline upon arrival or, equivalently, n− S customers waiting

in front of him. In a system without priorities, the Silver customer would get the n− S + 1-th

replenishment item. However, in a system with priorities, the Silver customer may get the n−S+j-

th replenishment with j ≥ 1, due to Gold customers who are served before him based on the priority

rule. Note that since the item ordered uppon the arrival of the tagged customer at t, will arrive in

stock at t+L and has label n+ 1, j ≤ S if the tagged customer is served in less than L time units.

If the tagged customer gets the item ordered upon his arrival, j = S+ 1.

Let Ej be the event that the tagged customer gets the n−S+j-th replenishment item and define

pj,m,n = P (Ej|N(L−) = n,NG(L−) =m), for n≥ S and 1≤ j ≤ S.

By conditioning on Ej, N(L−) = n and NG(L−) = m, and taking into account that N(u) and

NG(u) are independent on [0,L), we obtain that for a∈ (0,L),
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P (0<RZ ≤ a) =
∞∑
n=S

S∑
j=1

∞∑
m=j−1

P (0<RZ ≤ a|Ej,N(L−) = n,NG(L−) =m)pj,m,npo(n,λL)po(m,λGL).

(3)

Assume that event Ej takes place. The Silver customer gets the n − S + j-th replenishment

item if n − S + j replenishments and j − 1 arrivals of Gold customers take place in [t, t + L).

Hence, m≥ j− 1. Moreover, RZ = Tn−S+2j−1, where Tn−S+2j−1 is the time when the n−S+ 2j− 1

event takes place in the process (Y (u))u∈[0,L). Given that Y (L−) = n+m, and Y is the restriction

of a Poisson process on [0,L), Tn−S+2j−1 is distributed as the n− S + 2j − 1-th order statistics

of n+m uniformly distributed random variables on (0,L). In other words, Tn−S+2j−1 follows a

Beta( ·
L
, n−S+ 2j− 1,m+S− 2j+ 2) distribution.

The quantities pj,n,m are calculated in Lemma’s 2 - 6 below. Let t+Ak be the arrival time of k-th

replenishment item and NG(Ak) denote the number of Gold customers that arrive in [t, t+Ak].

Lemma 2. Given that N(L−) = n, event Ej occurs if and only if the following three conditions

hold:

(a) If k≤ n−S+ j− 1, then k≤ n−S+NG(Ak)

(b) NG(An−S+j−1) = j− 1

(c) no Gold customer arrives in [t+An−S+j−1, t+An−S+j].

Condition (a) states that at the arrival of k-th replenishment item, with k ≤ n − S + j − 1,

the number of replenishments could not cover the demand of the n− S waiting customers and

the number of Golds that arrived in the meantime. Condition (b) states that at the arrival of

n−S+ j− 1-th replenishment item, all the n−S customers that were in queue at time t and the

Gold customers that arived during [t, t+An−S+j] have been served. The tagged customer will get

item n−S + j if and only if no Gold customer arrives between the arr (condition (c)). The proof

of the Lemma 2 follows directly from these observations.

Definition 1. Let (a, b) and (p, q), with a ≤ p, b ≤ q and a, b, p, q ∈ Z, be two points in the

euclidian plane. We call a path between (a, b) and (p, q) a lattice path if it starts in (a, b) and
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reaches (p, q) via unit length segments from left to right or upwards unit length segments. A lattice

path with all the points on or below the line y= x is called subdiagonal.

An example of a subdiagonal lattice path between (a, b) and (p, q) is given in Figure 2.

b

a

q

p

Figure 2 Subdigonal lattice path

(n−S, 0)

R G

R G

(n−S+j−1, n−S+j−1)

(n−S+j−1, n−S+j)

(n−S+m,n)

G = arrival of a Gold priority customer
R = arrival of a replenishment in stock

Figure 3 Example of a path in Lm,n

Lemma 3. (Brualdi (2004) Theorem 8.5.1) The number of lattice paths from (a, b) to (p, q), with

a≤ p and b≤ q is equal to
(
p+q−a−b
q−b

)
.

Lemma 4. (Brualdi (2004) Theorem 8.5.3) Let p and q be integers with p≥ q. The number of

subdiagonal lattice paths from (0,0) to (p, q) is equal to p−q+1
p+1

(
p+q
q

)
.

Assume that N(L−) = n and NG(L−) = m. Let the arrival of replenishment items to stock be

labelled by R and the arrival of Gold items by G. Denote by Sm,n = {(e1, ..., em+n)|ei ∈ {R,G}}.

Each vector in Sm,n corresponds to a possible sequence of arrivals of replenishment items to stock

and Gold customers during [t, t+L]. Let Lm,n be the set of lattice paths between (n− S,0) and

(n− S +m,n) in the euclidian plane. Note that there exists a bijection between Sm,n and Lm,n.

To each element in Sm,n we associate a lattice path as follows: Start in (n − S,0). Every time

a replenishment arrives, draw an upwards vertical segment of unit length. Every time a Gold

customer arrives, draw an horizontal segment of unit length from left to right. It is easy to see that

each lattice path constructed in this way ends in (n−S +m,n). Figure 3 shows an example of a

path in Lm,n.
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Lemma 5. For 1≤ j ≤ S ≤ n and j ≤m+ 1, the probability pj,m,n is given by

pj,m,n =
1(

m+n
m

) n−S+ 1

n−S+ j

(
n−S+ 2(j− 1)

j− 1

)(
m+S− 2j+ 1

S− j

)
.

Proof Recall that pj,m,n = P (Ej|N(L) = n,NG(L) = m). According to Lemma 3, the number

of lattice paths from (n− S,0) to (n− S +m,n) is equal to
(
m+n
n

)
, and since there is a bijection

between Sm,n and Lm,n, |Sm,n| =
(
m+n
n

)
. Since the arrival of Gold customers and the arrival of

replenishment items are independent on [0,L), the probability that a sequence of events in Sm,n

occurs is equal to 1

(m+n
m )

. To obtain P (Ej|N(L) = n,NG(L) = m) we thus only have to calculate

the number of lattice paths in Lm,n that correspond to the event Ej.

Consider element (x, y)∈Z×Z on a lattice path from (n−S,0) to (n−S+m,n). Element (x, y)

corresponds to the arrival of x− (n− S) Gold customers and y replenishments, measured from

the moment the tagged Silver customer arrived. Based on Lemma 2 a), y ≤ n− S + j − 1 implies

y ≤ x, or in other words, all the points (x, y) on the lattice path, with for y ≤ n− S + j − 1, are

subdiagonal. Condition (b) in Lemma 2 implies that the path touches the diagonal for the first time

in (n−S+ j−1, n−S+ j−1), while condition (c) implies that after the path crosses the diagonal,

the next segment should be vertical. The lattice path then goes from point (n−S+ j−1, n−S+ j)

to point (n,n−S+m).

Note further that by a mirroring argument, the number of subdiagonal lattice paths between

(n−S,0) and (n−S+j−1, n−S+j−1) is equal to the number of subdiagonal lattice paths between

(0,0) and (n− S + j − 1, j − 1). According to Lemma 4, this number equals n−S+1
n−S+j

(
n−S+2(j−1)

j−1

)
.

Based on Lemma 3, the number of lattice paths from (n−S + j − 1, n−S + j) to (n,n−S +m),

for m≥ S, is equal to
(
m+S−2j+1

S−j

)
. Since each sequence of events corresponding to elements of Sn,m

has the same probability of occuring, namely 1

(m+n
m )

, we obtain that:

pj,m,n =
1(

m+n
m

) n−S+ 1

n−S+ k

(
n−S+ 2(j− 1)

j− 1

)(
m+S− 2j+ 1

S− j+ 1

)
.

�
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Finally, P (RZ =L) can be obtained by conditioning again on the event that the Silver customer

sees n items in pipeline upon arrival and he gets n+ 1-th replenishment item in pipeline:

P (RZ =L) =
∞∑
n=S

pn,S+1po(n,λL), (4)

with pn,S+1 calculated in Lemma 6.

Lemma 6. For n≥ S,

pn,S+1 =
n−S+ 1

n+ 1
po(S,λGL).

Proof To obtain pn,S+1, note that the tagged Silver customer will get item n+ 1 if m= S Gold

customers have arrived in [t, t+ L]. The set LS,n has
(
n+S
n

)
elements, hence the probability that

an event in SS,n takes place is 1

(n+Sn )
. Following the same reasoning as in Lemma 5, one can show

that a sequence of events that leads to ES+1 can be represented as a subdiagonal lattice path from

(n− S,0) to (n,n). The number of subdiagonal lattice paths from (n− S,0) to (n,n) is equal to

the number of subdiagonal paths between (0,0) and (S,n−S), and by Lemma 4 is further equal

to n−S+1
n+1

(
n+S
n

)
. Hence,

P (ES+1|N(L) = n,NG(L) = S) =
n−S+ 1

n+ 1

and pn,S+1 = n−S+1
n+1

po(S;λGL).

�

To summarize, the distribution of RZ , the response time of a Silver customer on [0,L], is given

by

Proposition 1. In an (S−1, S,0) inventory model, the distribution of the response time RZ of

a Silver customer is given by

P (RZ = 0) =Po(S− 1, λL),

P (RZ ≤ a) =Po(S−1, λL) +
∞∑
n=S

po(n,λL)
S∑
j=1

∞∑
m=j−1

pj,m,nBeta(
a

L
;n−S+ 2j−1,m+S−2j+ 2),

(5)
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for a∈ (0,L), where

pj,m,n =
n−S+ 1

n−S+ j

(
n−S+ 2(j− 1)

j− 1

)
1(

m+n
m

)(m+S− 2j+ 1

S− j

)
po(m,λGL)

and

P (RZ =L) = po(S,λGL)
∞∑
n=S

n−S+ 1

n+ 1
po(n,λL).

Despite the infinite sums and the combinatorial coefficients, the distribution of RZ can be calcu-

lated very fast. In the numerical experiements discussed in Sections 7 and 7.3, we have evaluated

P (RZ ≤ a) for different values of a and n=m= 500 in a few milliseconds.

5. Response time distribution for Gold customers

In order to approximate the response time distribution for Gold customers, we return to the (SSS)

serial stage inventory model. In this system, a Gold customer is served directly if the reservation

stock at the first stage is not depleted. We distinguish two situations: when there is stock at the

second stage and when there is not.

As the second stage works as a (S−K−1, S−K,0) system, the probability that a Gold customer

sees upon arrival stock at the second stage is equal to the probability of seeing less than S −K

items in pipeline in the (S−K− 1, S−K,0) system. Based on Lemma 1, this probability is equal

to Po(S−K − 1, λL).

We focus now on the Gold customers who see upon arrival no stock at the second stage. They

arrive according to a Poisson process with rate λGρ2, with ρ2 = 1−Po(S−K−1, λL). To approxi-

mate the distribution of their response time, we approximate the first stage by an inventory model

with base stock level K, where at the arrival of a Gold customer, a production order is placed with

a supplier who has one exponential server with rate λ. The choice of the service rate is justified

by the fact that the return process of replenishment is the arrival process of customers, shifted by

a leadtime L. If a customer finds stock on hand upon his arrival, he will be immediately served,

otherwise he will join the waitingline.

The production system at the supplier can thus be modelled by an M/M/1 queue with arrival

rate λGρ2 and service rate λ. The stability of this M/M/1 queue is ensured by λG <λ. Note that



18 Enabling customer satisfaction and stock reduction through service differentiation with response time guarantees

the first K orders in the M/M/1 queue were placed by Gold customers who were actually served

from the reservation stock .

Let RK
G be the response time of a Gold customer in an (S − 1, S,K) system and let πk =(

1− λGρ2
λ

) (
λGρ2
λ

)k
, k ∈N be the steady state probabilities in the M/M/1 queue with arrival rate

λGρ2 and service rate λ.

For K > 0, a Gold customer will immediately be served if he either finds on hand inventory at

the second stage or if he finds less than K − 1 waiting orders in the M/M/1 queue. Thus,

P (RK
G = 0)≈ 1− ρ2 + ρ2

K−1∑
i=0

πk.

= 1− ρ2 + ρ2(1−
(
λGρ2
λ

)

)K
)

= 1− ρ2
(
λGρ2
λ

)K
.

For K = 0, P (RK
G = 0) = Po(S − 1, λL), which is the probability that in an (S − 1, S,0) system

there are items on stock.

A Gold customer will have to wait only if he sees k ≥K waiting orders in the M/M/1 queue.

In this case, as the first K orders are meant to restore the reservation stock at the first stage,

the Gold customer will actually get the k −K + 1-th replenishment item (where replenishment

items are numbered in the order they arrive to stock). Thus, his response time is Erl(k−K+ 1, λ)

distributed and

P (RK
G <a)≈ P (RK

G = 0) + ρ2

∞∑
k=K

πkErl(k−K + 1, λ)

= 1− ρ2 + ρ2

K−1∑
i=0

πk + ρ2

∞∑
k=K

πk(1−Po(k−K,λa)

= 1− ρ2
∞∑
k=K

πkPo(k−K,λa)

= 1− ρ2
∞∑
n=0

πn+KPo(n,λa),

where for the first equality we have used the well known identity Erl(a; i+ 1, λ) = 1−Po(i, λa)

and we assumed that
∑K−1

i=0 πk = 0 for K = 0.

The quality of this approximation will be tested in Section 7.1.
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6. Stock optimization algorithm

Next we describe a simple algorihm to find the optimal solution of the optimization problem (1).

Let S∗ and K∗ be the minimal base stock and reservation level for which both the Gold and Silver

response constraints are satisfied. Note that since the service level of a Silver customer is found

based on an (S −K − 1, S −K,0) system, a lower bound on S∗−K∗ is given by the the minimal

base stock level for which P (RZ ≤ τZ) ≥ βZ in an (S − 1, S,0) system. Denote by LB this lower

bound. We further find the minimal positive U such that the Gold response constraint is satisfied

in an (LB+U −1,LB+U,U) system. Let S∗ =LB+U . Clearly, S∗ is the minimal base stock level

for which both constraints are satisfied. However, as LB is a lower bound on S∗ −K∗, the same

service levels could be attained for reservation levels smaller than S∗−LB. We choose as K∗ the

minimal reservation level for which both response constraints are satisfied in the (S∗− 1, S∗,K∗).

Remark that K∗ ≤ S∗ − LB. This algorithm will be used in Section 7.3 to study the impact of

incorporating response time constraints on the stock levels.

7. Numerical experiments

In this section, we first validate the approximation of the response time distribution for Gold

customers proposed in Section 5 and then we discuss the impact of response time constraints on

the policy parameters.

7.1. Validation of the approximate response time distribution for Gold customers

The testbed of our experiments is similar to the one used in Arslan et al. (2007). The lead time is

fixed to L= 1/4 year = 3 months.

To study the quality of the approximation proposed in Section 5, we evaluate the service level

of Gold customers, SLG = P (RK
G ≤ τG), for different combinations of S, K and τG as reported in

Table 1 and Table 2. The upper part of Table 1 contains the results for λG = λZ = 0.75, while

the lower part for λG = λZ = 1.5. The second column contains the values of the base stock levels

S ∈ {4,6,8,10,12} and the third column the values of the reservation stock K ∈ {0,2,4}. Columns

4-15 contain SLG = P (RK
G ≤ τG) and the error made by the approximation, i.e., the difference
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between SLG and the simulation, for τG ∈ {0,0.1,0.25,0.6,0.75,1}. For example, for S = 4, K = 0,

the SLG = P (RK
G ≤ 0.1) = 0.413 and the error is 0.79%. Table 2 contains similar information for

the cases λG = 0.75, λZ = 1.5 (in the upper part) and λG = 1.5, λZ = 0.75 (in the lower part).

As the results show, in the cases we studied, the approximation is quite accurate, the maximum

absolute error being 0.098. For equal arrival rates (see Table 1), the results are less accurate when

the stock levels are low, i.e., S ∈ {4,6} for λG = λZ = 0.75 and S ∈ {4,6,8} for λG = λZ = 1.5.

However, the average error is around 1.35% in both cases, with a maximum error of 7.38% attained

for for S = 4, K = 0, τG = 1 and SLG = 0.83. The lowest average error, of 0.9%, is obtained for the

case λG = 0.75, λZ = 1.5, (see Table 2). In this case, the maximum error is 5%, obtained for S = 6,

K = 0, τG = 0.75 and SLG = 0.87. The average error is the highest for the case λG = 1.5, λZ = 0.75,

when it reaches a value of 3.1%. In this case, the maximum error is 9.85% and is obtained for

S = 4, K = 2, τG = 1 and SLG = 0.90. In all cases, the highest error is obtained in cases where the

service level is at most 0.90, which is unlikely to be desirable for the highest priority.

7.2. Comparison of fillrates with the fillrates obtained by other methods

As the numerical comparison in Vicil and Jackson (2016) shows, the best performing approxima-

tions for the fillrates for the two customer types in an (S− 1, S,K) system are the ones proposed

by Vicil and Jackson (2016) and Fadıloğlu and Bulut (2010). The first one is based on solving

recursively the balance equations of an approximate Cotinuous Markov Chain Model, (CTMC

approach) while the second on solving the balance equations of an embedded Discrete Time Markov

Chain model (DTMC approach). In both procedures, the transition probabilities are calculated via

recursive procedures and one needs to truncate the systems of balance equations to find numerical

solutions.

In Table 3 we compare our approximation with these two methods, by using the parameters used

in Fadıloğlu and Bulut (2010). In all 18 experiments, S = 4 and K ∈ {1,2}. The average number of

arrivals during the leadtime λL ∈ {1,3,6}. In our case, we chose L= 3 and λ ∈ { 1
3
,1,2}. Further,

we chose the percentage of Gold customers such that λG
λ
∈ {0.25,0.5,0.75}. The information on
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Table 1 Performance of the approximation method for the service level of Gold customers for equal Gold and

Silver load

Case Inputs τG = 0 τG = 0.1 τG = 0.25 τG = 0.6 τG = 0.75 τG = 1
S K SLG Errora SLG

a Err.b SLG
a Err.b SLG

a Err.b SLG
a Err.b SLG

a Err.b

λG = 0.75 4 0 0.34 -0.08% 0.41 0.79% 0.51 2.17% 0.69 5.06% 0.75 6.04% 0.83 7.38%
λZ = 0.75 4 2 0.84 4.79% 0.86 4.95% 0.88 5.23% 0.93 5.56% 0.94 5.59% 0.96 5.51%

4 4 0.97 3.43% 0.98 3.32% 0.98 3.19% 0.99 2.83% 0.99 2.67% 1.00 2.40%
6 0 0.70 -0.07% 0.75 0.88% 0.81 2.09% 0.90 3.89% 0.93 4.22% 0.96 4.34%
6 2 0.93 -0.33% 0.94 0.12% 0.95 0.66% 0.98 1.41% 0.98 1.56% 0.99 1.63%
6 4 0.98 2.84% 0.99 2.75% 0.99 2.63% 0.99 2.26% 1.00 2.11% 1.00 1.84%
8 0 0.91 0.01% 0.93 0.58% 0.95 1.18% 0.98 1.71% 0.99 1.69% 0.99 1.50%
8 2 0.98 -1.49% 0.98 -1.14% 0.99 -0.73% 1.00 -0.18% 1.00 -0.05% 1.00 0.05%
8 4 1.00 0.25% 1.00 0.27% 1.00 0.30% 1.00 0.30% 1.00 0.28% 1.00 0.25%

10 0 0.98 0.00% 0.99 0.19% 0.99 0.37% 1.00 0.44% 1.00 0.41% 1.00 0.33%
10 2 1.00 -0.41% 1.00 -0.30% 1.00 -0.19% 1.00 -0.06% 1.00 -0.03% 1.00 -0.01%
10 4 1.00 -0.08% 1.00 -0.06% 1.00 -0.04% 1.00 -0.01% 1.00 -0.00% 1.00 0.00%
12 0 1.00 0.01% 1.00 0.04% 1.00 0.07% 1.00 0.08% 1.00 0.07% 1.00 0.05%
12 2 1.00 -0.06% 1.00 -0.04% 1.00 -0.02% 1.00 -0.00% 1.00 -0.00% 1.00 -0.00%
12 4 1.00 -0.01% 1.00 -0.01% 1.00 -0.01% 1.00 -0.00% 1.00 -0.00% 1.00 -0.00%

λG = 1.5 4 0 0.02 0.02% 0.16 0.06% 0.34 0.68% 0.63 1.93% 0.71 2.43% 0.82 3.11%
λZ = 1.5 4 2 0.77 1.61% 0.80 1.65% 0.85 1.83% 0.92 1.97% 0.94 1.96% 0.96 1.88%

4 4 0.95 1.43% 0.96 1.38% 0.97 1.33% 0.99 1.12% 0.99 1.01% 0.99 0.84%
6 0 0.12 0.02% 0.26 0.34% 0.43 1.20% 0.71 3.14% 0.79 3.77% 0.88 4.41%
6 2 0.78 1.87% 0.82 2.02% 0.86 2.27% 0.93 2.49% 0.95 2.47% 0.97 2.30%
6 4 0.95 1.51% 0.96 1.46% 0.97 1.40% 0.99 1.18% 0.99 1.07% 1.00 0.88%
8 0 0.32 0.04% 0.45 0.43% 0.60 1.26% 0.83 3.07% 0.88 3.48% 0.94 3.60%
8 2 0.83 0.48% 0.86 0.95% 0.90 1.49% 0.96 2.04% 0.97 2.03% 0.99 1.85%
8 4 0.96 1.69% 0.97 1.65% 0.98 1.56% 0.99 1.28% 0.99 1.14% 1.00 0.91%

10 0 0.59 -0.03% 0.68 0.38% 0.78 1.09% 0.92 2.19% 0.95 2.24% 0.98 1.97%
10 2 0.90 -2.53% 0.92 -1.63% 0.95 -0.64% 0.98 0.46% 0.99 0.60% 1.00 0.61%
10 4 0.98 0.85% 0.98 0.90% 0.99 0.91% 1.00 0.78% 1.00 0.69% 1.00 0.53%
12 0 0.80 -0.05% 0.85 0.45% 0.91 1.02% 0.98 1.35% 0.99 1.21% 1.00 0.87%
12 2 0.95 -3.14% 0.96 -2.20% 0.98 -1.23% 0.99 -0.20% 1.00 -0.05% 1.00 0.05%
12 4 0.99 -0.30% 0.99 -0.15% 1.00 -0.00% 1.00 0.12% 1.00 0.12% 1.00 0.09%

a SLG = P (RKG < τG) service level of Gold customers obtained by simulation.
b Err.= SLG - service level of Gold customers obtained by simulation.

the input parameters is contained in columns 2, 3 and 4 in Table 3. In column 5 we report the

exact value of the fillrate for Silver customers. Column 6 contains the approximate fillrate for Gold

customers, calculated with the method proposed in Section 5 and column 7 contains the absolute

error with respect to simulation. Finally, the last two columns report the absolute errors obtained

by the CTMC and DTMC approaches.

As the procedure for calculating P (RK
Z = 0) is exact, we do not report the errors in the table.

The approximation we propose for P (RK
G = 0) behaves slightly worse than the ones proposed by

Vicil and Jackson (2016) and Fadıloğlu and Bulut (2010), however, the average error with respect
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Table 2 Performance of the approximation method for the service level of Gold customers for different Gold

and Silver loads

Case Inputs τG = 0 τG = 0.1 τG = 0.25 τG = 0.6 τG = 0.75 τG = 1
S K SLG Errora SLG

a Err.b SLG
a Err.b SLG

a Err.b SLG
a Err.b SLG

a Err.b

λG = 0.75 4 0 0.10 0.03% 0.24 0.72% 0.41 1.64% 0.68 3.27% 0.76 3.74% 0.85 4.21%
λZ = 1.5 4 2 0.90 1.03% 0.92 1.06% 0.94 1.07% 0.97 1.01% 0.98 0.98% 0.99 0.89%

4 4 0.99 0.32% 0.99 0.31% 0.99 0.28% 1.00 0.22% 1.00 0.20% 1.00 0.16%
6 0 0.33 0.07% 0.46 1.38% 0.60 2.90% 0.82 4.91% 0.87 5.15% 0.93 5.01%
6 2 0.93 0.87% 0.94 1.01% 0.96 1.13% 0.98 1.17% 0.99 1.13% 0.99 0.99%
6 4 0.99 0.41% 0.99 0.39% 1.00 0.35% 1.00 0.27% 1.00 0.24% 1.00 0.19%
8 0 0.64 -0.02% 0.72 1.37% 0.81 2.76% 0.93 3.89% 0.96 3.73% 0.98 3.13%
8 2 0.96 -0.72% 0.97 -0.37% 0.98 -0.00% 0.99 0.36% 1.00 0.39% 1.00 0.37%
8 4 1.00 0.31% 1.00 0.30% 1.00 0.28% 1.00 0.20% 1.00 0.18% 1.00 0.13%

10 0 0.86 0.01% 0.89 0.98% 0.93 1.79% 0.98 2.04% 0.99 1.81% 1.00 1.34%
10 2 0.98 -1.05% 0.99 -0.72% 0.99 -0.40% 1.00 -0.05% 1.00 0.01% 1.00 0.04%
10 4 1.00 -0.01% 1.00 0.01% 1.00 0.03% 1.00 0.03% 1.00 0.03% 1.00 0.02%
12 0 0.96 0.06% 0.97 0.50% 0.98 0.80% 1.00 0.75% 1.00 0.63% 1.00 0.42%
12 2 1.00 -0.43% 1.00 -0.30% 1.00 -0.16% 1.00 -0.03% 1.00 -0.01% 1.00 -0.00%
12 4 1.00 -0.04% 1.00 -0.03% 1.00 -0.02% 1.00 -0.00% 1.00 0.00% 1.00 0.00%

λG = 1.5 4 0 0.10 0.03% 0.18 -0.73% 0.29 0.56% 0.51 3.58% 0.59 4.99% 0.70 7.38%
λZ = 0.75 4 2 0.63 6.25% 0.67 5.71% 0.72 7.03% 0.82 8.82% 0.85 9.30% 0.90 9.85%

4 4 0.88 8.09% 0.90 7.60% 0.92 7.89% 0.95 7.77% 0.96 7.55% 0.98 7.05%
6 0 0.34 0.08% 0.41 -0.05% 0.52 0.41% 0.71 2.72% 0.78 3.79% 0.86 5.26%
6 2 0.71 4.13% 0.75 4.45% 0.79 5.58% 0.88 7.22% 0.91 7.58% 0.94 7.83%
6 4 0.89 8.29% 0.91 7.86% 0.93 8.10% 0.96 7.89% 0.97 7.63% 0.98 7.04%
8 0 0.64 0.01% 0.69 0.01% 0.77 0.39% 0.89 1.78% 0.92 2.21% 0.96 2.58%
8 2 0.84 -2.91% 0.87 -1.91% 0.90 -0.64% 0.95 1.27% 0.97 1.71% 0.98 2.02%
8 4 0.93 5.26% 0.94 5.26% 0.96 5.29% 0.98 4.99% 0.99 4.74% 0.99 4.20%

10 0 0.86 0.03% 0.89 0.32% 0.92 0.71% 0.97 1.20% 0.98 1.24% 0.99 1.11%
10 2 0.94 -4.25% 0.95 -3.27% 0.97 -2.12% 0.99 -0.57% 0.99 -0.23% 1.00 0.05%
10 4 0.97 -0.17% 0.98 0.10% 0.99 0.37% 0.99 0.65% 1.00 0.66% 1.00 0.60%
12 0 0.96 0.06% 0.97 0.28% 0.98 0.48% 0.99 0.56% 1.00 0.50% 1.00 0.37%
12 2 0.98 -1.71% 0.99 -1.27% 0.99 -0.80% 1.00 -0.22% 1.00 -0.11% 1.00 -0.03%
12 4 0.99 -0.68% 0.99 -0.50% 1.00 -0.29% 1.00 -0.07% 1.00 -0.02% 1.00 0.00%

a SLG = P (RKG < τG) service level of Gold customers obtained by simulation.
b Err.= SLG- service level of Gold customers obtained by simulation.

to simulation is 2% and the maximum error is 9.57% . The worst errors are obtained in cases 9,

14,15,17 and 18, that are characterized by large percentage of Gold customers (0.5% and 0.75%),

very low fillrates for Silver customers (0.017, 0.062 and 0.199 ) and low fillrates for Gold customers

(between 0.376 and 0.913). For the cases with a higher fillrate for Silver customers, that are likely to

appear in practice, our approximation gives comparable results to the CTMC approach proposed

by Vicil and Jackson (2016). The advantage of our approximation of the fillrates is that it is easier

to implement and gives good results in situations relevant to practice.
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Table 3 Comparison of fillrates of Gold customers with the fillrates obtained by the

CTMC and the embedded DTMC approach for S = 4

Cases K λL λG

λ
P (RKZ = 0) P (RKG = 0) Abs.Err.a Abs.Err. CTMCb Abs.Err.DTMCc

1 1 1 0.25 0.995 0.38% 0% 0%
2 1 1 0.5 0.919 0.990 0.67% 0% 0%
3 1 1 0.75 0.985 0.98% 0% 0%
4 1 3 0.25 0.911 0.58% 0.7% 0.1%
5 1 3 0.5 0.423 0.824 0.96% 1% 0%
6 1 3 0.75 0.737 1.37% 0.9% 0%
7 1 6 0.25 0.788 0.83% 2% 0.2%
8 1 6 0.5 0.062 0.580 1.99% 3.2% 0%
9 1 6 0.75 0.376 3.57% 2.8% 0.5%
10 2 1 0.25 0.998 0.04% 0.01% 0%
11 2 1 0.5 0.735 0.995 0.06% 0.05% 0%
12 2 1 0.75 0.989 0.07% 0.03% 0.1%
13 2 3 0.25 0.978 0.98% 0.52% 0%
14 2 3 0.5 0.199 0.913 4.11% 1.58% 0.1%
15 2 3 0.75 0.807 9.57% 2.19% 0%
16 2 6 0.25 0.948 0.71% 1.35% 0.1%
17 2 6 0.5 0.017 0.799 3.59% 4.21% 0%
18 2 6 0.75 0.562 9.53% 5.50% 0.7%

aAbsErr.= absolute error for the Gold fillrate between approximation and simulation
bAbs.Err.= absolute error for the Gold fillrate reported in Vicil and Jackson (2016)
cAbs.Err.= absolute error for the Gold fillrate reported in Fadıloğlu and Bulut (2010)

7.3. Impact of response time constraints on stock optimization

Next we analyse the impact of optimizing the stock levels based on reponse time constraints In our

experiments, we use λG = 0.75, λZ = 1.5, L= 3 (months), βG = 0.99 and βZ = 0.95. For these input

parameters, we use the algorithm described in Section 6 to solve the optimization problem (1). In

Figure 4, we report the values for S∗ and K∗ for τG = 0 and τG = 0.25 months and for τZ ∈ [τG,3]

months, where τZ is increased in steps of 0.05.

As we observe in the left graph in Figure 4, if the base stock level and the reservation stock are

decided based on the fillrates (i.e., τG = τZ = 0), the optimal base stock is S∗ = 13 and the optimal

reservation stock is K∗ = 1. However, if one agrees with the Silver customers on a response time

of 0.28 months, S∗ drops to 12, while S∗ = 11 if the Silver customers are willing to wait for 0.68

months . This means a reduction of 8% and 15% in the base stock levels respectively. If one agrees

with Gold customer on a response guarantee within 0.25 months, the stock level can be further

reduced (see the right graph in Figure 4).
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Figure 4 Dependence of base stock levels on agreed response times

8. Conclusions and further research

As after sale services become more and more competitive, it is important to develop models that

incorporate customer oriented service measures into stock optimization problems. In this paper,

we focused on the use of the response time as a measure of customer satisfaction and as a tool to

reduce stock. In particular, we studied the impact of incorporating response time constraints on

stock levels in an (S− 1, S,K) inventory model with two customer classes, Gold and Silver.

Our first result is an exact expression of the distribution of the response time (within leadtime)

for Silver customers. The derivation is based on lattice path combinatorics, a technique that seems

suitable to characterize other priority queues as well. The key impediment in extending our results

beyond the leadtime is that on intervals [0, t], with t > L, the return process of replenishments

and the arrival of Gold customers are no longer independent. Although it is unlikely that Silver

customers are willing to wait longer than the leadtime, from theoretical point of view, it would be

interesting to have an analytical expression for the entire response time distribution for the low

priority customers.

The second result is an easy approximation of the response time for Gold customers, based on an

approximate two stage serial system. Via extensive experiments, we showed that this approximation

performs very well, with and average error of 1.67% and a maximum error of 9.58%. The question
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of deriving the response time distribution for Gold customers remains an open question. A key

assumption in our approximation is that waiting Gold customers are served at a constant rate

λ, the arrival rate of replenishment items to stock. It would be interesting to study whether it is

possible to circumvent this assumption without much loss in tractability.

Our numerical results show that incorporating response time constraints in optimizing an (S−

1, S,K) system can lead to significant decrease in stock levels. This indicates that response time

constraints can be an important managerial tool in negotiating service contracts. By using the dis-

tribution of the response times derived in this paper, managers can offer clients a better indication

of their waiting time than by using fillrates or expected waiting time. In our future research we

will focus on extending this analysis to more complex inventory models.
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