Leukotriene B_4 stimulation of macrophage cyclooxygenase metabolite synthesis

G.R. Elliott¹, A.P.M. Lauwen² and I.L. Bonta²

¹ Pharmacology Dept., M.B.L., P.O.B. 45, 2280 AA, Rijswijk, The Netherlands (present address)

² Pharmacology Dept., Erasmus University Rotterdam, P.O.B. 1738, 3000 DR, Rotterdam, The Netherlands

Introduction

The essential poly-unsaturated fatty acid, arachidonic acid (AA), is metabolised by macrophages via the cyclooxygenase (CO) and lipoxygenase (LO) pathways. In general CO metabolites, in particular prostaglandin (PG) E₂, are considered to inhibit macrophage functions while LO products, in particular leukotrienes (LTs), stimulate them. Thus, the CO: LO metabolite ratio is important in regulating macrophage activities. For example, LTC₄ stimulates the secretion of the lysosomal enzyme β -glucuronidase (β -GLU) by macrophages. This response is enhanced by indomethacin, a CO inhibitor, and inhibited by PGE₂. LTC₄ also stimulates macrophage PGE₂ synthesis indicating that LTC₄-stimulated β -GLU secretion is self-limiting [1]. We have recently shown that calcium-ionophore (A23187)-stimulated macrophage LTB_4 synthesis is enhanced by indomethacin and inhibited by PGE_2 [2]. It is possible, therefore, that LTB_4 -stimulation of macrophage functions is also modified by an associated increase in endogenous PGE₂ formation. We now report the effect of LTB_4 on the release of macrophage CO metabolites [PGE₂, thromboxane (TX) A2 (assayed as TXB₂) and prostacyclin (assayed as 6-ketoPGF_{1 α})] and β -GLU.

Materials and methods

The materials and methods used have been published previously [1]. Briefly, 4 day carrageeninelicited rat peritoneal macrophages were isolated by density gradient centrifugation over Ficoll-Isopaque and suspended at 2×10^6 cells ml⁻¹ in Dulbecco's modified Eagle's minimum essential medium (DMEM). Aliquots of the cell suspension (1 ml) were incubated for 1 h or 3 h at 37 °C in polypropylene reaction vials. The tubes were then centrifuged and the supernatant fractions stored at -70 °C for later analysis of PGE₂, 6-ketoPGF_{1α} and TXB₂ by radioimmunoassay and for β -GLU activity.

Results

The effect of LTB_4 on macrophage PGE_2 , 6-keto $PGF_{1\alpha}$ and TXB_2 synthesis

LTB₄ (10⁻¹² to 10⁻⁷ *M*) had a biphasic, stimulatory effect on the synthesis and release of PGE₂ and TXB₂ during a 1 h incubation period. A maximum stimulation of both CO metabolites was observed at 10⁻⁹ *M* LTB₄. The basal release of all three CO metabolites was greater during the 3 h incubation period. However, LTB₄ now had no effect on PGE₂ formation whereas TXB₂ synthesis was stimulated, again with a maximum effect at $10^{-9} M \text{ LTB}_4$. No effect on 6-ketoPGF_{1α} production was observed during either the 1 h or 3 h incubation periods (Table 1). LTB₄ (10⁻⁹ *M* and $10^{-8} M$) and a slight, but not significant, stimulatory effect on β-GLU secretion during the 3 h incubation (control = 100%, $10^{-9} M = 129\%$, $10^{-8} M$ = 135%). Table 1

The effect of leukotriene (LT) B_4 on macrophage prostaglandin (PG) E_2 , thromboxane (TX) B_2 and 6-keto prostaglandin $F_{1\alpha}$ (6-keto) release.

	$LTB_4(M)$					
	0	10-12	10-10	10 ⁻⁹	10-8	10-7
1 h incuba	ation					
PGE,	0.35	0.48*	0.65*	1.32*	0.71*	0.52*
TXB,	2.33	2.78	2.97	3.27*	3.21	2.61
6-keto	1.48	1.63	1.62	1.75	1.79	1,49
3 h incuba	ation					
PGE-	1.18	1.08	1.05	1.13	1.22	1.13
TXB	5.75	7.74*	11.28*	12.54*	11.50*	8.60*
6-keto	3.40	3.07	3.20	3.49	3.46	3.18

Results (ng/ 2×10^6 cells) are mean values, n=12. *p<0.05 vs control (Mann-Whitney U-test).

Discussion

 LTB_4 had a differential effect on the synthesis of PGE_2 , TXB_2 and 6-keto $PGF_{1\alpha}$ by carrageeninelicited peritoneal macrophages. Whereas TXB₂ release was stimulated by LTB₄ during 1 h and 3 h incubation, PGE₂ formation was only stimulated during the 1 h incubation period. PGE₂ synthesis appeared to reach a maximum (1 h incubation with LTB₄ or a 3 h incubation without LTB₄) after which its synthesis stopped. Release of 6-keto $PGF_{1\alpha}$ was not modified by LTB_4 (1 h and 3 h incubations) even though its production was not maximal. LTB₄ had little effect on macrophage lysosomal enzyme release, under the conditions used an it has not proved possible to relate changes in CO metabolite synthesis with this marker of macrophage activation. It is possible that CO inhibitors, such as indomethacin, could enhance LTB_4 -stimulated enzyme release as reported for LTC_4 -induced lysosomal enzyme secretion [1].

 LTB_4 has been reported to stimulate macrophage phosphatidylinositol turnover and to act as a calcium ionophore, which could result in stimulation of PLA₂ [3]. Both activities could stimulate the release of AA from phospholipid pools resulting in an increase in CO metabolite formation. We have previously shown that synthesis of 6-ketoPGF_{1 α} by granuloma macrophages is saturated at lower AA concentrations than the formation of PGE₂ or TXB_{2} [4]. Thus is could be that the basal release of AA is sufficient to maximally stimulate 6-keto $PGF_{1\alpha}$ formation. PGE_2 inhibits A23187-stimulated macrophage TXB₂ formation and LTC₄stimulated macrophage PGE₂ synthesis is associated with a reduction in TXB₂ formation [1, 2]. Thus, it could be that the apparent increase in LTB₄-stimulated TXB₂ production observed during the 3 h incubation, compared to the 1 h data, was due to the relative reduction in PGE₂ synthesis. Further experiments are necessary before we can suggest a reason for the saturation of PGE₂ synthesis.

References

- [1] E. J. Schenkelaars and I. L. Bonta, Cyclooxygenase inhibitors promote the leukotriene C_4 induced release of β -glucuronidase from rat peritoneal macrophages: prostaglandin E_2 suppresses. International Journal of Immunopharmacology 8, 305–311 (1986).
- [2] G. R. Elliott, A. P. M. Lauwen and I. L. Bonta, Prostaglandin E_2 inhibits, and indomethacin and aspirin enhance, A23187stimulated leukotriene B_4 synthesis by rat peritoneal macrophages. British Journal of Pharmacology 96, 265–270 (1989).
- [3] A. Holian, Leukotriene B_4 stimulation of phosphatidylinositol turnover in macrophages and inhibition by pertussis toxin. FEBS Letters 201, 15–19 (1986).
- [4] G. R. Elliott, M. J. P. Adolfs and I. L. Bonta, Arachidonic acid an in vivo inhibitor of carrageenin-induced granulomas in the rat. European Journal of Pharmacology 110, 367-371 (1985).