

Migraine therapy and 5-HT receptor activity

5-HT in migraine – an introduction

P.R. Saxena

Department of Pharmacology, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, Post Box 1738, 3000 DR Rotterdam, The Netherlands

Introduction

Of the many factors that have been implicated from time to time in the pathophysiology of migraine, none seems to have a better claim than 5-hydroxytryptamine (5-HT; serotonin). Advances in the understanding of the role of 5-HT in migraine and in the pharmacology of this amine have now resulted in the development of the drug, sumatriptan, for the treatment of migraine. Since this drug is a selective agonist at a particular type of 5-HT₁-like receptors [5], it is desirable to sketch the current views on the classification and nomenclature of 5-HT receptors.

5-HT receptor classification

More than three decades ago Gaddum and Picarelli [3] reported that 5-HT stimulates two different types of receptor – "D" [phenoxybenzamine (dibenzyline)-sensitive] and "M" (morphine-sensitive) – which are present on the intestinal smooth muscle and intramural neurons,

respectively. Already in the early 70's, it was, however, recognized that some pharmacological effects of 5-HT, for example vasoconstriction in the canine common carotid bed [6], are mediated by "atypical" receptors. Subsequently, it was demonstrated that two different binding sites, 5-HT₁ and 5-HT₂, exist in the rat brain membranes [4]. In 1986, Bradley et al. [1] proposed a new classification where the receptors for 5-HT were categorized into three main types, 5-HT₁-like (previously referred to as "atypical"), 5-HT₂ (previously referred to as "D") and 5-HT₃ (previously referred to as been described [2].

Table 1 lists the agonists and antagonists at and the functional responses mediated by the different 5-HT receptors. It has to be emphasized that only 5-HT₂ and 5-HT₃ receptors have so far been well characterized using selective antagonists. No such substances are yet available for 5-HT₁-like and 5-HT₄ receptors. The 5-HT₁-like receptors, having a nanomolar affinity for 5-HT, are heterogeneous in nature but the exact association with the 5-HT₁ binding site subtypes is still unclear since suffi-

Table 1. Agonists and antagonists and some functional responses mediated by 5-HT receptors

Receptor type	Agonists	Antagonists	Binding site	Second messenger	Some functional responses
5-HT ₁ -like	5-HT 5-CT	Methiothepin ^a , methysergide ^a	5-HT1	See Table 2	
5-HT ₂	5-HT, α-methyl-5HT	Ketanserin, cyproheptadine, methysergide, methiothepin	5-HT ₂	PIte-specific PLA-C	Contraction of various vascular, gastrointestinal and bronchial smooth muscles, platelet aggregation, head twitch
5-HT ₃	5-HT, 2-methyl-5HT	MDL 72222, ICS 205930, granisetron, ondansetron	5-HT ₃	Κ,	Membrane depolarization, dermal pain and flare response
5-HT ₄	5-HT, renzapride, 5-CH3O-T	ICS 205930 (high concen- trations)	Not yet found	Positive coupling to AC	Gastrokinetic action, cholinergically- mediated guinea-pig ileum contraction, myocardial stimulation in the pig

^a Non-selective antagonist (also blocks 5-HT₂ receptors)

AC, adenylyl cyclase; K⁺, potassium channel; ICS 205930; $(3\alpha$ -tropanyl)-1*H*-indole-3-carboxylic acid ester; 5-CH₃O-T, 5-methoxytryptamine; MDL7222, $1\alpha H$, 3α , $5\alpha H$ -tropan-3yl-3,5-dichlorobenzoate; PIte, phosphoinositide; PLA-C, phospholipase C; 5-CT, 5-carboxamidotryptamine Table 2. Putative subdivisions of the 5-HT1-like receptors: agonists and antagonists and some functional responses

Subtype	Agonists	Antagonists	Binding site	Second messenger	Some functional responses
5-HT _{1A}	5-HT, 8-OH- DPAT, 5-HT, RU 24969	Cyanopindolol, methysergide, methiothepin	5-HT _{1A}	Negative coupling to AC, K ⁺	Behavioural changes, centrally evoked hypotensive response
5-HT _{1B}	RU 24969, 5-CT, 5-HT	Cyanopindolol, methiothepin, methysergide	$5-HT_{1B}$	Negative coupling to AC	Autoreceptor in the rat brain
5-HT _{1C} ^a	5-HT	Mesulergine, methiothepin, methysergide	5-HT _{1C}	PIte-specific PLA-C	Not yet convincingly demonstrated
5-HT _{1D}	5-CT, 5-HT, sumatriptan	Methiothepin	5-HT _{1D}	Negative coupling to AC	Not yet convincingly demonstrated
5-HT _{1x} ^b	5-CT, 5-HT, AH25086°, sumatriptan, 8-OH-DPAT, RU 24969	Methiothepin, methysergide ^d	Not yet found ^e	Not yet known	Contraction of cephalic arteries (basilar, pial) and arteriovenous anastomoses in the carotid region, decrease of neuronal noradrenaline release
$5-HT_{1y}^{b}$	5-CT, 5-HT	Methiothepin, methysergide	Not yet found ^e	Not yet known	Vascular smooth muscle relaxation, hypotension, tachycardia in the cat

^a Shows little difference from the 5-HT₂ receptor

^b The receptor subtype is as yet unnamed and this name has been used for convenience to distinguish between the two unnamed 5-HT₁-like receptors

^c Ligand binding profile is not yet reported

^d Partial agonist

^e Does not correlate with 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1C} or 5-HT_{1D} binding sites

AC, adenylyl cyclase; AH25086, 3-aminoethyl-*N*-methyl-1*H*-indole-5-methane carboxamide; 5-CT, 5-carboxamidotryptamine; K⁺, potassium channel; 8-OH-DPAT, 8-hydroxy-2-(di-n-propylamino)tetralin; PIte, phosphoinositide; PLA-C, phospholipase C; RU 24969, 5methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1*H*-indole

ciently selective drugs are not yet available, except for the 5-HT_{1A} site (Table 2; [5]).

References

- Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson B, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25:563–575
- 2. Dumuis A, Sebben M, Bockaert J (1989) The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT₄) positively coupled to adenylate cy-

clase in neurons. Naunyn Schmiedebergs Arch Pharmacol 340: 403-410

- 3. Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptors. Br J Pharmacol 12:323-328
- Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors differential binding of [³H]-5-hydroxytryptamine, [³H]-lysergic acid diethylamide and [³H]-spiroperidol. Mol Pharmacol 16: 687–699
- 5. Saxena PR, Ferrari MD (1989) 5-HT₁-like receptor agonists and the pathophysiology of migraine. Trends Pharmacol Sci 10: 200-204
- Saxena PR, van Houwelingen P, Bonta IL (1971) The effect of mianserin hydrochloride on the vascular responses to 5-hydroxytryptamine and related substances. Eur J Pharmacol 13:295– 305