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It is the behavior we all do every day and we tend to like it, at least if everything goes 

well: sleeping. If we make it up to 90 age of years, we spend over 30 years doing it; we can 

simply not resist this crucial behavior, not being able to sleep can even result in death.1 

However, it is still not clear why sleeping is so crucial to us. It has been suggested that sleep 

is needed for energy conservation, but for energy conservation the loss of consciousness 

would not be necessary. Also, sleeping during the night versus not sleeping during the night 

only saves us 134 kilocalories,2 which makes it unlikely that energy conservation is the 

function of sleep. Another suggestion is that sleep is needed for restoration purposes, it 

gives the body the time to repair and rejuvenate itself. This idea is supported by the 

detrimental effects of sleep deprivation on the immune system.3 More recently, it has been 

suggested that sleep is crucial for brain function, this theory is supported by research on 

the effects of sleep on increased brain plasticity and decreased memory performance,4 and 

the effects of sleep deprivation on several cognitive functions in laboratory studies.5

But what is sleep? One of the most common behavioral definitions describes sleep 

as ‘a reversible behavioral state of perceptual disengagement from and unresponsiveness 

to the environment’.6 The most influential model explaining the mechanisms behind sleep 

is the two-process model, first described in the 1980s. According to this model sleep 

consists of two processes.7 Process ‘S’ entails the sleep pressure or sleep propensity. The 

sleep propensity rises during waking and declines during sleep. Process ‘S’ interacts with 

process ‘C’ which is the circadian component. The circadian component reflects a clocklike 

mechanism that is basically independent of prior sleep and waking and determines the 

approximately 24-hour rhythm of the sleep-wake pattern. These 24-hour, or circadian, 

rhythms are found in behavior and in physiological processes throughout the body8 and are 

regulated by the suprachiasmatic nucleus (SCN). This brain structure accommodates the 

central timekeeping mechanism,9 it integrates internal rhythms with external time cues, 

such as light and exercise.10

Sleep and rhythmicity can be measured in multiple ways. Polysomnography (PSG) is 

the ‘gold standard’ of sleep research. PSG consists of different electrophysiologic measures, 

most important are the electroencephalography (EEG) channels which allow the assessment 

of brain activity during sleep. But not only the brain is active during sleep, PSG also includes 

bilateral electrooculography (EOG) to measure eye movements, electromyography (EMG) 

to measure muscle tone, and electrocardiography (ECG) to assess heart function. Further, 

respiratory belts on the chest and abdomen, oximetry, a nasal pressure transducer and an 

oronasal thermocouple measure breathing patterns. The Rotterdam Study11 is one of the 

few cohorts in the world to have implemented in home, or ambulant, PSG. However, while 

PSG is very well suited to study sleep, a single night of PSG is not informative about the 24-

hour organization of the sleep-wake rhythm. Wearing PSG equipment for multiple days 

during normal live is simply not feasible. To study 24-hour rhythms we used an accelerometer, 
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this watch-like-device measures the movement of the wrist. As movement is strongly 

related to periods of rest and wake, this device allows us to examine the sleep-wake rhythm. 

Wearing a watch is not considered invasive by most people, therefore actigraphy can be 

used to study 24-hour rhythms over longer periods of time. 

But why would we study sleep and rhythms? As we all know from personal 

experience, a night of poor sleep can seriously mess up our day. And nights of poor sleep 

are not uncommon, about 33% of the general population report difficulties in initiating and 

maintaining sleep.12 Next to sleep complaints, around 6% of the populations fulfills the 

criteria for a clinical diagnosis of insomnia.12 The difference between the large number of 

persons with sleep complaints versus a relatively small number with clinical insomnia may 

be explained by the non-chronic nature or severity of the sleep complaints but insomnia 

might also be underdiagnosed. Sleep apnea is the other colloquial sleep disorder, in men 

the prevalence is estimated as high as 31% and in women as high as 21%.13

Sleep problems can occur as a single problem, but can also co-occur with other 

disorders. Sleep disorders, specifically insomnia, are frequently comorbid with psychiatric 

disorders. Persons complaining of sleep difficulties are 3-4 times more likely to be 

depressed.14 Vice versa, up to 90% of depressed patients report difficulty falling asleep, 

staying asleep or early morning awakenings.15 Sleep disturbances are also seen in persons 

with panic disorder, generalized anxiety disorder and post-traumatic stress disorder.16,17 

Not only complaints of insomnia are related to depression, an association between sleep 

apnea and depression has also been reported .18 Cognitive functions are also strongly 

related to sleep and rhythms. This is most dramatically reflected by disasters such as the 

Challenger and Chernobyl accidents in which cognitive errors due to sleep loss are thought 

to play a role.19 From sleep deprivation studies we learned that not sleeping severely 

disrupts cognitive performance.20 Recent population-based studies have shown an 

association of disturbed sleep and rhythms with worse cognitive functioning in the general 

population also. 

The goal of this thesis is to assess the variation of sleep and the 24-hour activity 

rhythm in middle-aged and elderly persons of the general population and to study how this 

variation is related to psychological and psychiatric problems. The thesis starts with a 

description of correlates of the 24-hour activity rhythm. In the first chapter the influence of 

demographics, lifestyle and sleep on the 24-hour activity rhythm are studied (Chapter 2.1). 

Disturbed rhythms can have detrimental effects independent of sleep, and can even 

shorten your life (Chapter 2.2). However, it is not just physical health that relates to sleep 

and 24-hour rhythms; psychiatric and psychological symptoms and diseases are even more 

intertwined with sleep and rhythms. In the next chapter, it is assessed how 24-hour activity 

rhythms and sleep are related with cognitive performance (Chapter 3.1), how 24-hour 

activity rhythms and sleep are associated with depression and anxiety (Chapter 3.2), and 
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whether 24-hour activity rhythms and sleep relate to how we respond to stress. This stress 

response was assessed with the biomarker cortisol after the intake of a very low-dose of 

dexamethasone (Chapter 3.3). As discussed above sleep is best assessed with PSG and 

implementing ambulant PSG in the Rotterdam Study was the core of this PhD-project. The 

fourth chapter discusses the first results of this PSG sleep research in the Rotterdam Study, 

we assessed how the microstructure of REM-sleep is related with depressive 

symptomatology (Chapter 4.1). Additionally, we tried to entangle the relation between 

sleep apnea, depressive symptoms and fatigue (Chapter 4.2). Chapter 5 comprises a general 

discussion of the work summarized in this thesis. In this chapter, I discuss methodological 

considerations and future directions for clinical practice and scientific research. Last, 

chapter 6 gives a short summary of this thesis.
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Abstract 

The rhythms of activity across the 24-hour sleep-wake cycle, determined in part by 

the circadian clock, change with aging. Few large-scale studies measured the activity rhythm 

objectively in the general population. The present population-based study in middle-aged 

and elderly persons evaluated how activity rhythms change with age, and additionally 

investigated socio-demographics, mental health, lifestyle and sleep characteristics as 

determinants of rhythms of activity. Activity rhythms were measured objectively with 

actigraphy. Recordings of at least 96 hours (138 ± 14 hours, mean ± SD) were collected from 

1734 people (age 62 ± 9.4 years) participating in the Rotterdam Study. Activity rhythms were 

quantified by calculating interdaily stability, i.e. the stability of the rhythm over days, and 

intradaily variability, i.e. the fragmentation of the rhythm relative to its 24-hour amplitude. 

We assessed age, gender, presence of a partner, employment, cognitive functioning, 

depressive symptoms, Body Mass Index, coffee use, alcohol use and smoking as determinants. 

The results indicate that older age is associated with a more stable 24-activity profile (β=.07, 

p=.02), but also with a more fragmented distribution of periods of activity and inactivity 

(β=.20, p<.001). Having more depressive symptoms was related to less stable (β=−.07, 

p=.003) and more fragmented rhythms (β=.10, p<.001). A high Body Mass Index and smoking 

were also associated with less stable rhythms (BMI: β=−.11, p<.001, smoking: β=−.12, 

p<.001) and more fragmented rhythms (BMI: β=.09, p<.001, smoking: β=.11, p<.001). We 

conclude that with older age the 24-hour activity rhythm becomes more rigid, while the 

ability to maintain either an active or inactive state for a longer period of time is compromised. 

Both characteristics appear important for major health issues in old age.
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Introduction

Circadian rhythm changes are commonly observed in middle-aged and elderly 

persons and have been attributed to functional changes in the suprachiasmatic nucleus, the 

biological clock of the brain.1 Observed age-related changes typically include alterations in 

the 24-hour cycle of sleep and wakefulness. Previous studies have demonstrated several 

changes with increasing age: more frequent and longer napping,2 a higher fragmentation of 

the rest and activity pattern,3 a tendency to fall asleep earlier,4 and a tendency to wake up 

earlier.5 While large population-based studies have objectively assessed nocturnal sleep, 

objective assessment of the circadian organization of the sleep-wake cycle in the elderly is 

scarce. The studies available have mostly focused on rhythm alterations in relation to 

disease,6,7 determinants of circadian alterations and variations in the sleep-wake cycle in the 

general population have remained largely unclear.

Changes in sleep and their determinants have been studied extensively. For example, 

lifestyle and dietary habits are known to affect sleep. In particular, alcohol consumption 

initially improves sleep, but more awakenings and lighter sleep are seen during the latter 

part of the night.8 Smokers report greater difficulty initiating and maintaining sleep and             

a lower sleep quality. Research on objective sleep data confirms these results in a clinical 

study.9 In a cross-sectional, population-based study, regular daily caffeine intake was also, 

albeit less clearly associated with disturbed sleep and daytime sleepiness.10 However, it is 

not known how these habits are related to the circadian organization of the sleep-wake 

cycle in middle-aged and elderly persons in the general population.

Mental health is intimately related to sleep and circadian rhythms. Depressive 

symptoms have been related repeatedly to sleep, the available literature suggests depressive 

symptoms to be associated with disturbed circadian rhythms as well.11 Disturbances in the 

sleep-wake rhythm are also more common in persons with poor cognitive functioning. The 

sleep-wake rhythm has been found to relate to cognitive functioning, even independent of 

age12 and as well in demented elderly people.13

In this study, we examined the circadian organization of the sleep-wake cycle in a 

large population-based study of middle-aged and elderly persons with actigraphy. Activity 

rhythms can be considered as an indicator of the circadian organization of the sleep-wake 

cycle14,15 and allows assessment of the rhythm over longer periods of time. Participants in 

the present study were asked to wear the actigraph for one week. We assessed whether 

age, lifestyle factors and mental health indicators were related to objectively assessed 

activity rhythms. In addition, we studied whether self-reported sleep characteristics and 

sleep quality were associated with the activity rhythm across the sleep-wake cycle.
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Materials and methods

Study population

The current study was embedded in the Rotterdam Study, a population-based cohort 

of older persons which started in 1990 in the district of Ommoord, Rotterdam, The 

Netherlands. The Rotterdam Study targets cardiovascular, endocrine, hepatic, neurological, 

ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. In 2000, the 

study population was extended with a second cohort by inviting inhabitants of the same 

district aged 55 and over. In 2006, a new cohort with inhabitants aged 45 and over was 

added. No health-related exclusion criteria were used. A more detailed description of the 

study can be found elsewhere.16 The Medical Ethics Committee of the Erasmus University 

Rotterdam approved the Rotterdam Study and written informed consent was obtained from 

all participants. All procedures were conform international standards.17

From December 2004 until April 2007, in total 2632 consecutive participants were 

invited to enter the actigraphy study; 2063 (78%) agreed. The actigraphy study comprised 

participants of the second cohort (second examination, December 2004 - December 2005), 

and the new cohort (baseline examination, January 2006 - April 2007). No exclusion criteria 

were used; participants only had to be able to understand the instructions for participation. 

Due to technical problems and the requirement that the recording must be a minimum of 4 

consecutive days and nights, the recordings of 1734 participants (84%) were available for 

further analyses.

Assessment of the activity rhythm

All participants were asked to wear an actigraph around the non-dominant wrist 

(Actiwatch model AW4, Cambridge Technology Ltd, Cambridge, United Kingdom) 

continuously for 7 consecutive days and nights. The actigraph had to be removed from the 

wrist while bathing only. Actigraphs were measured in 30-second epochs. 24-hour periods 

with more than 3 continuous hours missing were excluded to prevent a time-of-day effect. 

Recordings of less than 4 complete days and nights were also excluded from the analyses.

Activity rhythms were quantified using non-parametric indicators.18 This allows us to 

describe the rhythm without making untenable assumptions about the shape of the rhythm. 

We calculated three variables, the interdaily stability, the intradaily variability and amplitude 

of the rhythm. The interdaily stability (IS) indicates the stability of the rhythm, i.e. the extent 

to which the profiles of individual days resemble each other. Intradaily variability (IV) 

quantifies how fragmented the rhythm is relative to its 24-hour amplitude; more frequent 

alterations between an active and an inactive state lead to a higher intradaily variability. The 

amplitude is calculated as the normalized difference between the most active 10 hours and 

the least active 5 hours. We do not report data using the amplitude as it correlated highly 



20 ● Neuropsychiatric studies of sleep and 24-hour activity rhythms

with interdaily stability (r=.68 p<.01) and intradaily variability (r=−.69 p<.01) and was less 

specific than interdaily stability and intradaily variability. Data are available upon request. 

Interdaily stability and intradaily variability were moderately and inversely correlated 

(r=−.49, p<.01).

Assessment of sleep parameters

Sleep parameters were assessed subjectively with a sleep diary and objectively by 

actigraphy on the same days. The sleep diary included questions about sleep characteristics, 

sleep medication, sleep quality and dietary habits for each day. To evaluate use of sleep 

medication, participants filled out whether they had used sleep medication and which 

medication they used. Sleep onset latency was assessed by asking participants how long it 

took them to fall asleep. For total sleep time participants estimated how long they slept 

during the night. Participants also filled out if they had been awake during the night, and if 

so, how often. Daily values were generally averaged over the week; only napping indicates 

how many days per week participants had taken a nap during the day. We also used 

actigraphy to estimate total sleep time, sleep onset latency and wake after sleep onset 

objectively. To distinguish sleep from waking, a previously described Actiwatch algorithm19,20 

with a low threshold of 20 was used.21 Total sleep time was calculated as the total time of 

the epochs classified as sleep between sleep end and sleep start, sleep onset latency is the 

time between lights out and sleep start and wake after sleep onset is the total time of the 

epochs scored as wake between sleep start and sleep end.22 Sleep end and sleep start were 

defined according to the Actiwatch manual.19 Possible sleep apnea was assessed with two 

questions from the Pittsburgh Sleep Quality Index.23 We considered apnea possible when 

participants reported (1) loud snoring at least two nights per week and at least occasional 

respiratory pauses or (2) respiratory pauses during sleep with a frequency of at least 1–2 

nights weekly.24

Assessment of sleep quality

Sleep quality was assessed with the sleep diary. Participants answered the 

dichotomous questions, “Did you sleep well this night?”, “Do you feel well rested after 

getting out of bed?” and “Do you have the feeling that the amount of sleep was too little?”. 

Perceived sleep quality indicates the average of these three questions (range 0-7). Perceived 

impairment indicates how many days of the week participants felt so tired that it impaired 

activities during the day.

Assessment of demographics, mental health and lifestyle

Partnership, employment status, cognitive functioning, depressive symptoms and 

Body Mass Index (BMI) were routinely collected in the Rotterdam Study. During a home 

interview all participants were asked about partnership and employment status. Cognitive 
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functioning was measured using the Mini Mental State Exam (MMSE)25 during one the visits 

to our center. Depressive mood was assessed using the Center for Epidemiologic Studies 

Depression (CES-D) scale26 as part of a home interview. Height and weight were measured 

without shoes and heavy clothing during a center visit to calculate the Body Mass Index (kg/

m2). Coffee use was defined as the number of days coffee was consumed after 18:00 h per 

week. Alcohol use indicated how many units of alcohol were used after 18:00 h summed up 

over the week. Current smoking assessed whether the participant smoked cigarettes, cigars 

or pipe at the time of the interview.

Assessment of confounders

Education and general health were studied to control for confounding. Education 

was assessed routinely in the home interview and subdivided in low, intermediate and high 

education. As an indicator of general health we assessed the ability to perform activities of 

daily living (ADL) with the Stanford Health Assessment Questionnaire,27 questions were 

answered in a 0 to 3 range.

Analyses

All parameters were assessed quantitatively, except the use of sleep medication, 

possible apnea, employment and education. Sleep medication was dichotomized as no use 

of sleep medication versus any use of sleep medication during the week of actigraphy. As 

the number of missing values per parameter never exceeded 5%, missing values in 

quantitative predictors were replaced by the median. For qualitative predictors a separate 

missing category was used. Interdaily stability, intradaily variability and the actigraphically 

assessed sleep parameters were winsorized at 4 standard deviations from the mean. Box-

Cox transformation28,29 was applied to obtain normally distributed values for interdaily 

stability (λ=7.0), intradaily variability (λ=-3.9), actigraphic sleep onset latency (λ=-0.1) and 

actigraphic wake after sleep onset (λ=0.4). Continuous dependent variables were 

standardized to facilitate comparison. 

Correlations between the activity rhythm, sleep parameters and sleep quality 

parameters were computed using a Pearson Correlation coefficient. A point-biserial 

correlation was computed to assess the correlation between quantitative and binomial 

data.

We assessed the relation of the demographic, mental health and lifestyle with 

interdaily stability and intradaily variability using multivariate linear regression analyses. 

Analyses included all demographic, mental health and lifestyle parameters and were thus 

mutually adjusted. The relation between sleep characteristics and interdaily stability and 

intradaily variability were assessed in a separate model adjusted for demographic, mental 

health and lifestyle parameters. In addition, we controlled for education and ADL in all 

models. Analyses were performed using SPSS Statistics (version 20).
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Results

The population characteristics are described in Table 1. Of the total sample of 1734 

participants, 53% was female and the mean age was 62.3 years ± 9.4 years. Participants 

were generally in good health as indicated by the low average ADL-score (0.29 ± 0.42) and 

the low prevalence of disease as reported in medical records; 2.6% of participants had had 

a cardiovascular accident, 2.0% had had a myocardial infarction and 12.9% was diabetic. 

11.8% reported having had cancer in the past. The mean interdaily variability was .80 ± .10, 

the mean intradaily variability was .42 ± .14. Interdaily stability and intradaily variability 

were moderately negatively correlated (r=−.49, p<.01), see table 2 for correlations of 

interdaily stability, intradaily variability and sleep characteristics. This negative correlation is 

also reflected in the mostly inverse association patterns of several demographic, mental 

health, lifestyle and sleep parameters with intradaily variability and interdaily stability. 

Table 3 shows the association of demographics, mental health and lifestyle with the 

stability and fragmentation of the activity rhythm. All analyses were fully adjusted, thus the 

different possible determinants were mutually corrected for the other risk factors. Older age 

was associated with a high interdaily stability (β=.07, p=.020), i.e. more stable rhythms. 

Male gender (β=.11, p<.001) and being employed (β=−.11, p=.001) were related to a low 

interdaily stability. Persons with better cognitive functioning (β=.08, p=.001) and less 

depressive symptoms (β=−.07, p=.003) were more likely to have a high interdaily stability. A 

high Body Mass Index (β=−.11, p<.001) and smoking (β=−.12, p<.001) were associated with 

less interdaily stability. Individuals who had a high coffee intake (β=.09, p<.001) had a more 

stable rhythm, reflected in a high interdaily stability. Additional adjustment for possible 

apnea did not change the results for Body Mass Index and the stability (β=−.10, p<.001) of 

the activity rhythm.

Next, we studied the associations of demographics, lifestyle and mental health 

indicators with the intradaily variability, i.e. the fragmentation of the rhythm (see also table 

3). Older age (β=.20, p<.001) was associated with more intradaily variability, thus a high 

interdaily stability was accompanied by high intradaily variability for older age. In contrast, 

female gender (β=−.13, p<.001) and being employed (β=−.07, p=.010) were associated with 

a low intradaily variability. Persons with depressive symptoms (β=.10, p<.001) were more 

likely to have a high intradaily variability. A high Body Mass Index (β=.09 p<.001) and smoking 

(β=.11 p=.001) were also related to a high intradaily variability. Additional adjustment for 

possible apnea did not change the effects of Body Mass Index on intradaily variability (β=.08, 

p<.001). In summary, findings for intradaily variability corresponded to those observed for 

the interdaily stability (i.e. reversed direction of association), except for age and employment.

Several indicators of poor sleep were consistently associated with less interdaily 

stability and more intradaily variability (see table 4). More daytime napping (β=−.25 p<.001), 
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use of sleep medication (β=−.09, p<.001), and less subjective total sleep time (β=.07, p=.003) 

were all associated with less interdaily stability in the analyses fully adjusted for demographic, 

Table 1. Population characteristics*, N=1734

Demographics
Female, % 53.4
Age (years) 62.25 ± 9.35
Partner, % 77.3
Employment, % 33.1
Education, %

Low 15.2
Intermediate 63.3
High 19.7

ADL (score) 0.29 ± 0.42
Health indicators

Cognitive functioning (score) 27.98 ± 1.75
Depressive symptoms (score) 5.49 ± 7.13
Stroke, % 2.6
Myocardial infarction, % 2.0
Cancer, % 11.8
Diabetes Mellitus, % 12.9

Lifestyle
BMI (score) 27.86 ± 4.16
Coffee (days per week) 4.36 ± 2.91
Alcohol (units per week) 9.47 ± 9.34
Current smoking, % 20.6

Subjectively assessed sleep†

Sleep medication, % 14.5
Possible apnea, % 29.7
Sleep onset latency (minutes) 17.72 ± 11.74
Total sleep time (hours) 6.85 ± .95
Awakenings after sleep onset† (number) 1.51 ± 1.10
Napping (days per week) 1.66 ± 2.05

Objectively assessed sleep‡

Sleep onset latency (minutes) 14.56 ± 12.39
Total sleep time (hours) 6.38 ± 0.87
Wake after sleep onset (minutes) 69.46 ± 25.88

Sleep quality†

Perceived sleep quality (average per week) 5.54 ± 1.61
Perceived impairment (days per week) .75 ± 1.44

Activity rhythm‡

Interdaily stability (score) .80 ± .10
Intradaily variability (score) .42 ± .13

*Mean ± SD, unless stated otherwise. †Assessed on daily basis within one week of actigraphy through self-report. 

‡Assessed by one week of actigraphy
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Table 2. Correlations* between the activity rhythm, sleep disorders, subjectively assessed sleep, objec-
tively assessed sleep and sleep quality.

1 2 3 4 5 6 7 8 9 10 11 12
Activity rhythm†

1 Interdaily stability -
2 Intradaily variability −.50 -

Sleep disorders‡

3 Sleep medication −.10 .10 -
4 Possible apnea −.06 .11 -.00 -

Subjectively assessed sleep
5 Sleep onset latency .02 .03 .14 -.02 -
6 Total sleep time .09 −.10 −.12 -.02 −.29 -
7 Awakenings after sleep onset .04 .07 .11 -.01 .17 −.20 -
8 Napping −.26 .46 .06 .07 .03 −.10 .02 -

Objectively assessed sleep
9 Sleep onset latency −.05 .26 .09 .10 .12 .02 .06 .13 -
10 Total sleep time .30 −.24 .05 −.04 .11 .39 .08 −.14 −.12 -
11 Wake after sleep onset −.16 .22 .09 .00 .13 .09 .26 .05 .33 −.19 -

Sleep quality‡

12 Perceived sleep quality .11 −.09 −.27 -.03 −.27 .44 −.31 −.10 .04 .00 −.09 -
13 Perceived impairment −.15 .16 .19 .05 .15 −.15 .16 .22 .04 .01 .08 −.53

*Pearson correlation coefficients are presented for correlations between quantitative data; correlations between 
quantitative and binomial data are represented by point-biserial correlation coefficients. Significant correlations 
are printed in bold script.
†Assessed by one week of actigraphy
‡Assessed on daily basis within one week of actigraphy through self report 

mental health and lifestyle parameters. Sleep parameters assessed by actigraphy had 

stronger associations with the stability of the rhythm; less objective total sleep time (β=−.15 

p<.001), longer objective sleep onset latency (β=.25 p<.001) and more objective wake after 

sleep onset (β=−.15 p<.001) were all related to less stable rhythms. Persons who perceived 

their sleep as good (β=.08, p<.001) and who experienced less impairment due to tiredness 

(β=−.11, p<.001) had a high interdaily stability. In line with these results, associations of the 

determinants with intradaily variability mostly showed a reverse pattern (see table 3). 

Possible apnea was neither related to interdaily stability (β=−.02 p=.37) or intradaily 

variability (β=.03, p=.21) after full adjustment including BMI.

Discussion

In a large population-based sample of middle aged and elderly persons, we assessed 

activity rhythms across the sleep-wake cycle. Older age was related to a more stable, but 

also to a more fragmented activity rhythm. Several demographic and lifestyle factors were 

associated with less stability and more fragmentation of the rhythm. The relation of a high 



2.1 Stability and fragmentation of the activity rhythm across the sleep-wake cycle ● 25

Table 3. Associations of demographics, mental health and lifestyle with interdaily stability and intra-
daily variability*

Interdaily Stability Intradaily Variability
B SE β p-value B SE β p-value

Demographic
Age .01 .00 .07 .019 .02 .00 .20 <.001
Sex (ref=men) .21 .05 .11 <.001 −.27 .05 −.14 <.001
Partner (ref=no) .19 .06 .08 .002 −.13 .06 −.06 .024
Employment (ref=no) −.23 .06 -.11 <.001 −.15 .06 −.07 .011

Mental Health
Cognitive functioning .05 .01 .08 .001 −.02 .01 −.04 .08
Depressive symptoms −.01 .00 −.07 .005 .01 .00 .10 <.001

Lifestyle
BMI −.03 .01 −.11 <.001 .02 .01 .09 <.001
Coffee (days/week) .03 .01 .09 <.001 −.02 .01 −.04 .07
Alcohol (units/week) −.01 .00 −.05 .06 −.00 .00 −.03 .25
Current smoking (ref=no) −.27 .06 −.11 <.001 .26 .06 .11 <.001

*Multivariate linear regression analyses mutually adjusted for sex, age, partner, employment, education, ADL, 
cognitive functioning, depressive symptoms, BMI, coffee use, alcohol use and current smoking.

Table 4. Associations of sleep characteristics and sleep quality with interdaily stability and intradaily 
variability*

Interdaily Stability Intradaily Variability
B SE β p-value B SE β p-value

Sleep disorders
Sleep medication (ref=no) −.26 .07 −.09 <.001 .16 .07 .06 .014
Possible apnea (ref=no) −.04 .06 −.02 .51 .07 .05 .03 .21

Subjectively assessed sleep
Sleep onset latency .00 .00 .01 .34 .00 .00 .00 .96
Total sleep time .07 .03 .07 .003 −.11 .02 −.10 <.001
Awakenings after sleep onset .02 .02 .02 .34 .05 .02 .05 .024
Napping −.12 .01 −.25 <.001 .19 .01 .39 <.001

Objectively assessed sleep
Sleep onset latency −.22 .04 −.15 <.001 .12 .04 .08 .003
Total sleep time .29 .03 .25 <.001 −.33 .03 −.28 <.001
Wake after sleep onset −.06 .01 −.15 <.001 .08 .01 .18 <.001

Sleep quality
Perceived sleep quality .05 .02 .08 .001 −.04 .02 −.07 .006
Perceived impairment −.08 .02 −.11 <.001 .07 .02 .10 <.001

*Multivariate linear regression analyses adjusted for sex, age, partner, employment, education, ADL, cognitive 
functioning, depressive symptoms, BMI, coffee use, alcohol use and current smoking.

Body Mass Index and smoking with less stable and more fragmented rhythms was most 

pronounced. In addition, sleep estimates derived from actigraphy had a consistent 

association with the stability and fragmentation of the rhythm. 
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Older age was associated with more stable rhythms, yet with more fragmented 

rhythms in middle aged and elderly persons, independent of several demographic, mental 

health and lifestyle factors. More fragmented rhythms in older participants can possibly 

explained by morbidity. For example, disrupted circadian organization of activity rhythms 

have been related to cerebral changes30 cardiovascular disease,6 and mortality.31 The 

fragmentation of the rhythm may be a nonspecific health-indicator and reflects the presence 

of different clinical and subclinical diseases. In contrast, the positive association between 

older age and more stable rhythms can better be explained by health-related behavior – as 

non-optimal health cannot easily be expected to stabilize the circadian rhythm. Non-optimal 

health might underlie a stable rhythm in old age as disease necessitates certain routines. 

Moreover, adjustment for indicators of disease did not attenuate the association of age with 

the stability of the activity rhythm. Secondly, the observed changes in circadian rhythms 

with age could be due to changes in behavior. For example, older age is most likely 

accompanied by lower activity levels. Lower levels of activity can lead to more fragmentation 

due to more awakenings during the night and naps during the day. In addition, the elderly 

are more stringent in their daily structure, as they adhere to more stable routines than 

younger persons, who tend to be more flexible with bedtimes. Lastly, more fragmented 

rhythms with older age could be due to biological aging. The aging process is known to be 

accompanied by biological changes which can disturb the circadian rhythm. The 

suprachiasmatic nucleus, which represents the biological clock of the brain, shows functional 

changes with age1 which have been related to more fragmented rhythms in a postmortem 

study on demented elderly people.32 Importantly, the relation between aging and the 

circadian organization of the sleep-wake cycle is assumed to be bidirectional. Factors 

associated with the sleep-wake cycle can lead to more disturbed circadian rhythms, but a 

disturbed circadian rhythm can also increase changes in mental health and lifestyle. 

Our study also suggests that lifestyle is important for rhythm disturbances. A high 

Body Mass Index was associated with a less stable and a more fragmented activity rhythm, 

which indicates a disturbed circadian organization of the sleep-wake cycle. As a cross-

sectional design does not allow assessment of the direction of the effect, we can only infer 

carefully that Body Mass Index influences the activity rhythm. This association might be due 

to breath-related diseases such as apnea, which is known to be more prevalent in persons 

with a high Body Mass Index and can disturb sleep severely. In our study, possible apnea did 

not explain the association between Body Mass Index and the activity rhythm. Smokers 

were less likely to have more stable and less fragmented rhythms. Since smoking in elderly 

persons is mostly a longstanding addictive behavior, it is more likely to be a cause of poor 

sleep than to be induced by poor sleep in middle and old age. Pressure to smoke accumulates 

during sleep as the hours of not smoking lead to withdrawal effects which can disturb the 

sleep-wake cycle. Smoking might be an amenable determinant of rhythm disturbances if 
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this behavior can be lastingly changed. Coffee use after 18:00 h was related to less 

fragmentation of the rhythm. Earlier population-based studies found the opposite; high 

daily caffeine intake was related to poor sleep.10 This could be due to the different assessed 

times of intake, but can also reflect behavioral adaptations. Participants with a poor circadian 

rhythm probably have reduced their caffeine intake, since caffeine is widely known as a 

wake promoting agent. Only persons resilient to the effects of coffee on sleep may uphold 

the habit to drink coffee in the evening.

Cognitive status was associated with the stability of the activity rhythm, but not with 

the fragmentation. Stable activity rhythms and good global cognitive functioning may be 

indicators of a healthy brain. A previous study found that cognitive functioning was not 

related to the stability of the rhythm, while it was related to the fragmentation of the sleep-

wake cycle.12 However, this study focused specifically on executive functioning, while in our 

study we assessed a global indicator of cognition. Depressive symptoms were related with 

both the stability and the fragmentation of the rhythm, which is as expected since disturbed 

sleep is one of the DSM-IV criteria for depression. In addition, in several studies depression 

has been linked to disturbed circadian rhythms11,13 and even more extensively to sleep 

characteristics.33

Sleep characteristics were consistently related to circadian rhythm in our study. Of 

the subjectively assessed sleep-related behaviors, napping had a particularly strong 

association with stability and fragmentation. Napping is inherently related to intradaily 

variability, but not necessarily to the stability of the rhythm. Actigraphically assessed shorter 

sleep onset latency, more total sleep time and less wake after sleep onset were associated 

with more stable and less fragmented rhythms. This confirmed the strong relation between 

sleep and the circadian organization of the activity rhythm. 

The current study was embedded in an existing population-based study; this allowed 

us to asses a large number of variables and makes our results generalizable. We used non-

parametric measures of the activity rhythm, instead of more commonly used parametric 

indicators. The main advantage of a non-parametric indicator is that it does not make 

assumptions about the nature of the rhythm, which is problematic in elderly populations 

with less pronounced circadian rhythms. There are also some limitations that should be 

considered. Collection of sleep-related data was limited on sleep disorders, such as apnea or 

restless legs, which could have been possible confounders in our study. In addition, our 

study was cross-sectional, therefore we can only carefully infer temporal effects. Lastly, 

effects sizes were, although significant, sometimes small in this large population-based 

study. However, effect sizes in population-based samples tend to be smaller than in case-

control or clinical studies which typically compare more extreme groups.

We conclude that with older age the circadian organization of the sleep-wake cycle is 

more fragmented, but also more stable. The fragmentation of the rhythm is more related to 
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health and biological processes, whereas the stability of the rhythm seems to be driven by 

behavior. In addition, mental health and lifestyle factors, in particular smoking and a high 

Body Mass Index, are important for the circadian rhythm. Known risk factors for common 

disease in middle aged and elderly persons were associated with disturbances in the 

circadian organization of the sleep-wake cycle. This strengthens the hypothesis that 

disturbances in circadian rhythms, more specifically disturbances in the activity rhythm, can 

be seen as sensitive markers of the effects of general aging 34. Future studies must show if 

changing our lifestyle is a way to reduce circadian disturbances across the sleep-wake cycle; 

this needs to be assessed longitudinally. 
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Abstract 

Circadian rhythms and sleep change during aging. Little is known about the 

associations between circadian rhythms and mortality. We investigated whether 24-hour 

activity rhythms and sleep characteristics predict mortality independently. In 1,734 persons 

(aged 45-98 years) of the Rotterdam Study (2004 – 2013), actigraphy was used to obtain 

stability and fragmentation of the 24-hour activity rhythm. Sleep was assessed objectively 

with actigraphy and subjectively by sleep diary to estimate sleep duration, sleep onset 

latency and wake after sleep onset. The mean follow-up time was 7.3 years; in total 154 

participants (8.9%) died. Sleep measures were not related to mortality after adjustment for 

health parameters. In contrast, a more stable 24-hour activity rhythm was associated with a 

lower mortality risk (hazard ratio=0.83 per standard deviation, 95% confidence interval: 

0.71, 0.96) and a more fragmented rhythm with a higher mortality risk (hazard ratio=1.22 

per standard deviation, 95% confidence interval: 1.04, 1.44). To conclude, low stability and 

high fragmentation of the 24-hour activity rhythm predicted all-cause mortality, while 

actigraphic and subjective sleep estimates did not. Disturbed circadian activity rhythms 

reflect age-related alterations in the biological clock and could be an indicator of disease. 
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Introduction

Most physiological processes, including body temperature, hormone secretion and 

sleep-wake timing, are regulated in rhythms of approximately 24 hours, called circadian 

rhythms. Circadian rhythms and sleep change during aging.1 Elderly people sleep less during 

the night, have more fragmented nights, have more difficulty in falling asleep, tend to fall 

asleep and wake up earlier, take more naps and report a lower sleep quality.2-6 The 

longitudinal associations of these changes with adverse health consequences and mortality 

are not well understood. Previous studies found that short sleepers (≤6 hours) with poor 

sleep quality have a higher risk of diabetes and cardiovascular diseases.7,8 Studies 

investigating sleep and mortality mainly focused on sleep duration. They suggest that the 

association between sleep duration and mortality is U-shaped; both subjective short and 

long sleep durations are predictors of all-cause mortality.9,10 

Few studies have investigated the associations of circadian rhythms with mortality. In 

the elderly, the amplitude of several physiological circadian rhythms is reduced compared to 

younger people and the stability of the day-night rhythm declines.1,4,11 This could be 

explained by an age-related decline in circadian organization. The aging process affects 

central and peripheral oscillators differently, possibly leading to suboptimal peripheral 

physiological functioning.12 The circadian rhythm in physical activity in elderly is better 

characterized by two nonparametric variables, that do not assume the 24-hour cosine-like 

shape that is present in, for example, core body temperature and hormones. Two 

nonparametric variables quantify stability and fragmentation. A stable activity rhythm is 

characterized by a 24-hour profile that remains very similar from day to day. This gives an 

indication of the strength of synchronization between the activity rhythm and zeitgebers, 

which are environmental cues with a 24-hour pattern. Fragmentation gives an indication of 

the frequency of alterations between rest and activity relative to its 24-hour amplitude. 

Two previous studies which analyzed 24-hour activity rhythms parametrically, found 

that the least robust 24-hour activity rhythms had a 1.5 to 2 times increased all-cause 

mortality risk in older men and women.13,14 In addition, abnormal sleep-wake cycles were 

associated with a three times increased mortality rate in elderly persons above 85 years of 

age.15 These studies assessed 24-hour activity rhythms in very old persons with a relatively 

short follow-up period (on average 4.1, 3.5 and 2 years of follow-up, respectively). In these 

activity rhythm and mortality studies, a few subjective sleep parameters were taken into 

account. One study considered sleep medication and disturbed sleep due to pain as potential 

confounders.14 Another study assessed the sleep quality with the Pittsburgh Sleep Quality 

Index (PSQI) and daytime sleepiness with the Epworth Sleepiness Scale as determinants of 

mortality, but found that these parameters were not associated with mortality.15 However, 

none of these studies took objectively assessed sleep characteristics such as sleep duration, 



2.2 Fragmentation and stability of circadian activity rhythms predict mortality ● 35

sleep onset latency and wake after sleep onset into account. In a large population-based 

study we aimed to evaluate the association between nonparametric measures of the 24-

hour activity rhythm, stability and fragmentation, and mortality in middle-aged and elderly 

people with a longer follow-up period. We also ran analyses excluding mortality in the first 

two years as this minimizes the risk of reversed causality. Furthermore, actigraphic and 

subjective sleep diary estimates of sleep duration, sleep onset latency, wake after sleep 

onset and sleep quality are studied in relation to mortality, to investigate whether circadian 

rhythm and sleep characteristics predict mortality independently.

Materials and methods

Participants

This study was conducted within the Rotterdam Study, a prospective study of persons 

aged ≥45 years living in Rotterdam, The Netherlands that started in 1990. It examines the 

incidence and risk factors of neurological, cardiovascular, psychiatric, and other chronic 

diseases. More details about the Rotterdam Study can be found elsewhere.16 The Rotterdam 

Study was approved by the medical ethics committee according to the Wet 

Bevolkingsonderzoek ERGO (Population Study Act Rotterdam Study), executed by the 

Ministry of Health, Welfare and Sports of the Netherlands and conforms to the Declaration 

of Helsinki. All participants provided written informed consent.

From December 2004 to April 2007, 2,632 successive participants were invited to 

participate in the actigraphy study; of these 2,063 (78%) agreed. There were no exclusion 

criteria besides being able to understand the instructions for this study. After exclusion of 

recordings that failed due to technical problems or that contained less than 4 consecutive 

days and nights, 1,734 (84%) recordings (mean recording duration 138 (standard deviation 

(SD), 14) hours) were available for analyses.17 No participants were lost to follow-up.

Actigraphy

We measured the 24-hour activity rhythm with an actigraph (Actiwatch model AW4, 

Cambridge Technology Ltd, Cambridge, United Kingdom) worn on the non-dominant wrist, 

as described previously.18 In brief, participants were asked to wear the actigraph for seven 

consecutive days and nights, and to remove it only before bathing. Recordings were obtained 

in 30-second epochs. Because elderly can have less distinct circadian rhythms, the 24-hour 

activity rhythm was analyzed nonparametrically, thus no assumptions were made about the 

underlying shape of the circadian rhythm. The actigraph was used to calculate two 24-hour 

activity rhythm variables: interdaily stability and intradaily variability19 and three sleep 

variables: sleep duration, sleep onset latency and wake after sleep onset20 Interdaily stability 

indicates how stable the rhythm is over days, i.e. how similar the individual day-night 

patterns are over days. It is calculated as the ratio of the variance of the average activity 
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patterns around the mean and the overall variance.21 Intradaily variability reflects the 

fragmentation of the rhythm, i.e. the rate of shifting between rest and activity. It is calculated 

as the ratio between the mean squares of the difference between all successive hours (first 

derivative) and the mean squares around the grand mean.21 The variables have shown 

sensitivity in observational and experimental studies on aging.22,23 Examples of activity 

rhythms characterized by a high or low stability and fragmentation are given in figure 1.

Sleep diary

During the week of actigraphy assessment, participants kept a sleep diary comprising 

questions about sleep characteristics, sleep quality, sleep medication, napping and alcohol 

use. To assess subjective sleep duration and sleep onset latency, participants were requested 

to answer the questions “In total, how many hours did you sleep last night?” and “How long 

did it take you to fall asleep?”. In our analyses, daily values of these questions were averaged 

over the week. Sleep quality was measured by three dichotomous questions “Do you think 

you slept well last night?”, “Do you think the amount of sleep was not enough?” and “Did 

you feel rested after getting out of bed?”. The score of sleep quality was created by summing 

the three dichotomous questions assessed each day (range 0-3), taking the daily average of 

this score (range 0-1), summing these scores over the days of participation, and taking into 

account the total number of days a person participated (range 0-7). Higher scores represent 

a better sleep quality. Every day the participants specified sleep medications used, if any. In 

all analyses, use of sleep medication was dichotomized into no use of sleep medication or 

any use of sleep medication during the week of actigraphy. Napping was evaluated by asking 

whether the participant had taken one or more naps. The total number of days with a nap, 

taking into account the total number of days for which the participant contributed data, was 

used in analyses. Alcohol use was evaluated as the sum of units of alcohol after 18.00 hours 

in the week of actigraphy. 

Pittsburgh Sleep Quality Index

The PSQI was used to measure subjective sleep quality (global PSQI score) and 

possible sleep apnea.24 Higher scores represent poorer sleep. We considered presence of 

sleep apnea if participants reported that they snored loudly at least two nights per week 

and if they reported occasional respiratory pauses, or respiratory pauses during sleep at 

least 1–2 nights per week.25

Vital status

Records of general practitioners and hospitals were used to continuously assess 

death from any cause. In addition, information on vital status was acquired bimonthly from 

death certificates from the municipality. The number of person-years was calculated from 

the date of actigraphy start to the date of death or end of follow-up at 27 September 2013. 

The mean follow-up time was 7.3 years.
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Figure 1 Four examples of activity plots, Rotterdam Study, the Netherlands, 2004-2007. Plots show 
activity rhythms of participants from the Rotterdam Study. The x-axis represents time (0:00, midnight; 
12:00 noon), the y-axis represents activity counts per 30 seconds. Participants started wearing the 
actigraph at 18:00 hours on day one. Note that these activity counts are scaled relative to the individual 
mean and cannot be compared easily across individuals. (A) A man aged 73 years, activity rhythm with 
high stability and low fragmentation, (B) a woman aged 84 years , activity rhythm with high 
fragmentation (C) a man aged 47 years, activity rhythm with low stability, and (D) a man aged 62 years, 
activity rhythm with low stability and high fragmentation.  

Figure 1. Four examples of activity plots, Rotterdam Study, the Netherlands, 2004-2007. Plots show 
activity rhythms of participants from the Rotterdam Study. The x-axis represents time (0:00, midnight; 
12:00 noon), the y-axis represents activity counts per 30 seconds. Participants started wearing the 
actigraph at 18:00 hours on day one. Note that these activity counts are scaled relative to the individual 
mean and cannot be compared easily across individuals. (A) A man aged 73 years, activity rhythm with 
high stability and low fragmentation, (B) a woman aged 84 years , activity rhythm with high 
fragmentation (C) a man aged 47 years, activity rhythm with low stability, and (D) a man aged 62 
years, activity rhythm with low stability and high fragmentation. 
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Table 1 Baseline Characteristics by Status at End of Follow-up in 1,734 Men and Women, Rotterdam 
Study, the Netherlands, 2004-2007

Status at end of follow-up
Total (n=1734) Alive (n = 1580) Dead (n = 154)

Mean ± SD
N (%)

Mean ± SD
N (%)

Mean ± SD
N (%)

Test 
Statistica

Demographics
Age (years) 62.2 ± 9.3 61.2 ± 8.6 72.6 ± 10.4 -13.1d

Gender (male) 808 (46.6) 723 (45.8) 85 (55.2) 5.0b

Employment (yes) 574 (33.1) 558 (35.3) 16 (10.4) 39.9d

Education
low 264 (15.2) 227 (14.4) 37 (24.0)
intermediate 1097 (63.3) 1000 (63.3) 97 (63.0) 14.5c

high 341 (19.7) 322 (20.4) 19 (12.3)
Health status
Activities of daily living (score) 0.29 ± 0.4 0.25 ± 0.4 0.66 ± 0.6 -8.3d

Cognitive functioning (score) 28.0 ± 1.8 28.0 ± 1.7 27.3 ± 1.9 5.0d

Depressive symptoms (score) 5.5 ± 7.) 5.4 ± 7.0 6.6 ± 7.9 -2.1b

Myocardial infarction (yes) 67 (3.9) 52 (3.3) 15 (9.7) 15.7d

Diabetes (yes) 205 (11.8) 167 (10.6) 38 (24.7) 26.8d

Stroke (yes) 45 (2.6) 30 (1.9) 15 (9.7) 34.1d

Body mass index (kg/m2) 27.9 ± 4.2 27.9 ± 4.1 27.6 ± 4.1 0.82
Current smoking (yes) 358 (20.6) 328 (20.8) 30 (19.5) 0.29
Alcohol (cups per week) 5.7 ± 1.3 5.8 ± 7.3 5.3 ± 6.9 0.80

Circadian activity rhythm
Interdaily stability (score) 0.80 ± 0.1 0.80 ± 0.1 0.77 ± 0.1 3.2c

Intradaily variability (score) 0.43 ± 0.1 0.42 ± 0.1 0.52 ± 0.2 -7.7d

Sleep
Sleep duration (hours) 6.4 ± 0.9 6.4 ± 0.9 6.4 ± 1.0 -0.58
Sleep duration

<6 hours 523 (30.2) 480 (30.4) 43 (27.9)
6-7.5 hours 1069 (61.6) 977 (61.8) 92 (59.7) 3.9
>7.5 hours 142 (8.2) 123 (7.8) 19 (12.3)

Sleep onset latency (minutes) 14.6 ± 12.4 13.8 ± 11.8 22.6 ± 14.7 -8.6d

Wake after sleep onset (minutes) 69.5 ± 25.9 68.9 ± 25.2 74.5 ± 30.4 -2.6b

PSQI, Pittsburgh Sleep Quality Index; SD, standard deviation.a Statistical comparison of vital status at end of 
follow-up; t-test for continuous, Χ2 for categorical variables, b P <0.05, c P <0.01, d P <0.001.

Covariates

We assessed the following variables as possible confounders based on previous 

literature:14,17 gender, age, sleep medication, possible sleep apnea, napping, activities of 

daily living (ADL), education, cognitive functioning, depressive symptoms, body mass index, 

employment, current smoking, alcohol use, myocardial infarction, diabetes and stroke. 

Sleep medication, napping and alcohol use were estimated using the sleep diary. Information 

on possible sleep apnea, ADL, education, depressive symptoms, employment and current 
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Table 1 Baseline Characteristics by Status at End of Follow-up in 1,734 Men and Women, Rotterdam 
Study, the Netherlands, 2004-2007 (continued).

Status at end of follow-up
Total (n=1734) Alive (n = 1580) Dead (n = 154)

Mean ± SD
N (%)

Mean ± SD
N (%)

Mean ± SD
N (%)

Test 
Statistica

Self-rated sleep
Sleep medication (yes) 252 (14.5) 218 (13.8) 34 (22.1) 8.6b

Sleep apnea (yes) 507 (29.2) 448 (28.4) 59 (38.3) 6.8b

Napping (days per week) 1.7 ± 2.0) 1.6 ± 2.0) 2.7 ± 2.4) -5.6d

Sleep duration
<6 hours 277 (16.0) 244 (15.4) 33 (21.4) 4.1
6-7.5 hours 1048 (60.4) 964 (61.0) 84 (54.5)
>7.5 hours 409 (23.6) 372 (23.5) 37 (24.0)

Sleep onset latency (minutes) 17.7 ± 11.7 17.7 ± 11.7 17.8 ± 11.7 -0.09
Sleep quality sleep diary (score) 5.5 ± 1.6 5.6 ± 1.6 5.5 ± 1.6 0.74
Global PSQI score§ 3.7 ± 3.5 3.6 ± 3.5 3.9 ± 3.7 -0.78

PSQI, Pittsburgh Sleep Quality Index; SD, standard deviation.a Statistical comparison of vital status at end of 
follow-up; t-test for continuous, Χ2 for categorical variables, b P <0.05, c P <0.01, d P <0.001.

smoking (cigarettes, cigars or pipe) was obtained by a home interview. ADL was measured 

with the Stanford Health Assessment Questionnaire and was used to indicate general 

health.26 Depressive symptoms were measured using the Center for Epidemiologic Studies 

Depression (CES-D) scale.27 During a visit to our research center, cognitive functioning was 

measured by the Mini Mental State Exam;28 length and weight were measured with light 

clothing and without shoes to calculate the body mass index (kg/m2). Myocardial infarction, 

diabetes and stroke were determined by medical records.

Statistical analyses

The number of missing values of a variable never exceeded 5% (maximal amount of 

missing data 4.2% for ADL). Missing values of continuous variables were replaced by the 

median, and missing values of categorical variables were put into a separate missing 

category. Interdaily stability and intradaily variability were standardized and Winsorized at  

4 standard deviations from the mean. We analyzed the curvilinear association between 

sleep duration and mortality by adding a squared term of sleep duration to the model. In 

addition, we tested a non-linear association by defining three categories (<6, 6-7.5 (reference 

group) and >7.5 hours). 

Cox proportional hazards models were used to determine the hazard ratios (HR) and 

95% confidence intervals (CI) of circadian rhythm and sleep parameters, and mortality. We 

included a covariate in the model if it changed the estimate of the main determinants by 

more than 10%, if the covariate predicted mortality (P <0.05) or if it was an important

 a priori confounder. Based on these criteria, education, employment and alcohol use were 



40 ● Neuropsychiatric studies of sleep and 24-hour activity rhythms

not included in the full model. We tested two different models. Model 1 was adjusted for 

age and gender. Model 2 was adjusted for age, gender, ADL, current smoking, diabetes, 

myocardial infarction, stroke, cognitive functioning, depressive symptoms, body mass index, 

sleep medication, possible sleep apnea and napping. All statistical tests were two-sided and 

a P value <0.05 was considered statistically significant. We tested the proportional hazards 

assumption using Schoenfeld residuals.29 The residuals did not significantly deviate from 

zero slope. Analyses were performed in SPSS version 20 (IBM Corp. Released 2011. IBM SPSS 

Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.).

Results

The average follow-up time of the 1,734 participants (mean age 62.2 (SD, 9.3) years; 

47% male) was 7.3 (SD, 1.3) years. In total, there were 154 deaths (8.9%) during the follow-

up period. The baseline characteristics stratified by ‘alive’ and ‘dead at end of follow-up’ are 

summarized in Table 1. 

Interdaily stability and intradaily variability were moderately correlated (r=-0.49, 

 P <0.001). The global PSQI score was moderately correlated to sleep quality obtained with 

a sleep diary (r=-0.45, P <0.001). Circadian rhythm and sleep variables were only weakly to 

mildly correlated, with the highest correlation between interdaily stability and objective 

sleep duration (r=0.31, P <0.001). All correlations between 24-hour activity rhythm and 

sleep parameters can be found in the table 2. 

Both circadian rhythm variables were significantly related to mortality (Table 3). After 

full adjustment, interdaily stability was associated with a lower mortality risk (HR=0.83 per 

SD, 95% CI: 0.71, 0.96) and intradaily variability (i.e. fragmentation) with a higher mortality 

risk (HR=1.22 per SD, 95% CI: 1.04, 1.44). To show the cumulative survival graphically, 

interdaily stability and intradaily variability were divided into 25% quartiles (Figure 2). 

Table 2. Correlations between 24-hour activity rhythm and sleep parameters in 1,734 men and wom-
en, Rotterdam Study, the Netherlands, 2004-2007

1 2 3 4 5 6 7 8
1 Interdaily stability -
2 Intradaily variability -0.49 -
3 Objective sleep duration 0.31 -0.26 -
4 Objective sleep onset latency -0.09 0.22 -0.11 -
5 Wake after sleep onset -0.19 0.28 -0.23 0.26 -
6 Subjective sleep duration 0.09 -0.08 0.39 0.01 0.07 -
7 Subjective sleep onset latency 0.01 0.03 0.11 0.14 0.13 -0.29 -
8 Sleep quality sleep diary 0.11 -0.08 0.01 -0.01 -0.10 0.44 -0.27 -
9 Global PSQI score -0.07 0.08 0.01 0.12 0.12 -0.41 0.37 -0.45

Bold indicates p<0.05.
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Because interdaily stability and intradaily variability are moderately correlated, we also 

analyzed an age and gender adjusted model including both 24-hour activity rhythm variables 

(intradaily variability, HR=1.25 per SD, 95% CI: 1.07, 1.47; interdaily stability, HR=0.84 per SD, 

95% CI: 0.71, 1.00). 

Actigraphically measured sleep onset latency and wake after sleep onset were 

marginally related to mortality in an age and gender adjusted model, but these associations 

were non-significant in the fully adjusted analysis (HR=1.01 per minute, 95% CI: 1.00, 1.02; 

HR=1.01 per minute, 95% CI: 100, 1.01, respectively). The actigraphic estimates of sleep 

duration, both continuous and categorical, were not related to mortality. Subjective sleep 

duration was quadratically associated with mortality in the age and gender adjusted model. 

Table 3. Associations of 24-Hour Activity Rhythm and Sleep Parameters With All-Cause Mortality in 
1,734 Men and Women, Rotterdam Study, the Netherlands, 2004-2013

All-Cause Mortality
Age & gender adjusted Fully adjusteda

HR 95% CI HR 95% CI

Activity rhythm
Interdaily stability (score) 0.75c 0.65, 0.86 0.83b 0.71, 0.96
Intradaily variability (score) 1.37c 1.20, 1.57 1.22b 1.04, 1.44

Objectively assessed sleep
Continuous sleep duration

Sleep duration (hours) 0.42 0.11, 1.57 0.69 0.19, 2.53
Sleep duration squared (hours2) 1.06 0.95, 1.18 1.02 0.92, 1.13

Categorical sleep duration
<6 hours 1.29 0.89, 1.87 1.12 0.77, 1.65
6-7.5 hours (reference) 0.00 0.00
>7.5 hours 1.33 0.81, 2.18 1.18 0.70, 1.98

Sleep onset latency (minutes) 1.01b 1.00, 1.02 1.01 1.00, 1.02
Wake after sleep onset (minutes) 1.01b 1.00, 1.01 1.01 1.00, 1.01

Subjectively assessed sleep
Continuous sleep duration

Sleep duration (hours) 0.23b 0.07, 0.74 0.40 0.11, 1.39
Sleep duration squared (hours2) 1.12b 1.02, 1.22 1.07 0.97, 1.17

Categorical sleep duration
<6 hours 1.45 0.97, 2.17 1.41 0.93, 2.13
6-7.5 hours (reference) 0.00 0.00
>7.5 hours 1.13 0.77, 1.67 1.10 0.74, 1.64

Sleep onset latency (minutes) 0.99 0.98, 1.01 0.99 0.98, 1.01
Sleep quality sleep diary (score) 0.92 0.83, 1.02 0.97 0.87, 1.09
Sleep quality PSQI (score) 1.01 0.97, 1.06 0.99 0.94, 1.04
Poor sleep (PSQI score >5) 1.28 0.90, 1.83 1.13 0.76, 1.69

CI, confidence interval; HR, hazard ratio; PSQI, Pittsburgh Sleep Quality Index, a Adjusted for age, gender, activities 
of daily living, current smoking, diabetes, myocardial infarction, stroke, cognitive functioning, depressive symptoms, 
body mass index, sleep medication, napping and apnea, b P < 0.05, c P < 0.001.
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However, this association was non-significant after further adjustment (HR=1.07 per hour, 

95% CI: 0.97, 1.17). When different cut-offs were chosen to categorize objective and 

subjective sleep duration the results did not change meaningfully (results available upon 

request). Other subjective sleep parameters were not related to mortality (Table 3).
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Figure 2. Crude cumulative survival plots per quartile of (A) interdaily stability and (B) intradaily 
variability, Rotterdam Study, the Netherlands, 2004-2013. Quartile 1 represents the lowest quartile 
and 4 the highest quartile. Survival was lower in participants with a low interdaily stability or a high 
intradaily variability (fragmentation). 
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Because circadian rhythms can be influenced by undiagnosed morbidity, we also ran 

the analyses excluding deaths occurring in the first year and in the first two years after the 

week of actigraphy. These exclusions reduce the possible impact of reversed causality. In 

these analyses, 148 and 128 deaths occurred during the remaining follow-up period 

respectively. In the fully adjusted model with one year exclusion, the observed HR was 

essentially unchanged compared to the previous analyses including all participants 

(interdaily stability, HR=0.83 per SD, 95% CI: 0.71, 0.97; intradaily variability, HR=1.23 per SD, 

95% CI: 1.05, 1.45). Again, very similar results were observed when deaths occurring in the 

first 2 years were excluded (interdaily stability, HR=0.86 per SD, 95% CI: 0.73, 1.02; intradaily 

variability, HR=1.18 per SD, 95% CI: 0.98, 1.41). 

Discussion

In this prospective population-based cohort study, more fragmented and less stable 

24-hour activity rhythms were associated to a 20% increase in all-cause mortality in a 

middle-aged and elderly population. These associations remained after adjustment for 

health parameters, possible sleep apnea and napping. When adjusted for age and gender 

only, subjective sleep duration showed a U-shaped marginal association with mortality. 

However, after fully adjustment no sleep parameter, whether estimated objectively using an 

actigraph or subjectively using a sleep diary, predicted all-cause mortality. This suggests that 

although the circadian rhythm and sleep both change during aging, the circadian rhythm is 

independently related to mortality. 

Our finding that fragmentation and low stability of the 24-hour activity rhythm 

predict mortality has several possible explanations. First, the biological aging processes may 

be involved. Although our analyses were adjusted for age, age-related changes to the 

circadian organization are complex and may differ per level of circadian organization.12 For 

example, changes may occur in the suprachiasmatic nucleus, the central clock of the brain, 

in peripheral oscillators, or in the ability to drive peripheral oscillators by the suprachiasmatic 

nucleus. In humans, post-mortem studies demonstrated a reduction in the number of 

vasopressin-expressing neurons in the suprachiasmatic nucleus at old age.30 This may 

underlie a smaller amplitude of several circadian rhythms, a more fragmented 24-hour 

activity rhythm, and a temperature and melatonin phase that occur earlier than in younger 

people.12,30-35 This loss of temporal organization between different rhythms can lead to 

suboptimal physiological functioning, because physiological processes do not all take place 

at their optimal time of day.36 As a result people suffer from a higher disease susceptibility. 

Second, napping increases the fragmentation of the rhythm,17 and can also be an indicator 

of bad health.37 However, previous literature on the association of napping and mortality is 

inconsistent. It was found that people who take naps regularly might have a higher mortality 
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rate,38,39 especially those who sleep >9 hours per night.40 On the other hand, another study 

found no significant benefit or harm of napping,41 while yet another study found a protective 

association of napping on mortality for short sleepers.40 In these studies circadian rhythm 

parameters were not taken into account. In our study self-reported naps could not explain 

the association between the stability and fragmentation of the 24-hour activity rhythm and 

mortality. Third, the disturbed 24-hour activity rhythm might be an indicator of poor health. 

Occurrence of disease has been related to disrupted circadian rhythms, for example in 

persons with cardiovascular disease and Alzheimer’s disease.21,42 Also, more fragmented 

and less stable 24-hour activity rhythms have been related to sleepiness, depression, 

cognitive deficits, high body mass index, smoking, high blood pressure and obesity.17,23,43-45

Although we controlled for several health measures such as ADL, depressive 

symptoms and diabetes, residual confounding by disease might explain part of the results. 

We also ran analyses excluding mortality in the first two years to test for reversed causality. 

The observed HR was very similar to the analyses including all participants. This suggests 

that the association between the 24-hour activity rhythm and mortality is not exclusively 

driven by short term mortality.

Circadian rhythms and sleep change during aging. For example, elderly people sleep 

less during the night and tend to fall asleep and wake up earlier.2-6 Nevertheless, in our study 

the correlations between sleep and 24-hour activity rhythm parameters were weak. We 

found that more fragmented and less stable circadian activity rhythms predicted mortality, 

but that none of the sleep variables, whether measured objectively or subjectively, predicted 

mortality in the fully adjusted model. During our follow-up period 154 participants died, 

which implies we had sufficient power to detect the moderate associations of 24-hour 

activity rhythm parameters on mortality. Arguably, we may not be powered to detect mild 

associations between sleep characteristics and mortality. Yet, the findings suggest that the 

circadian rhythm, as compared to sleep, is more strongly and independently associated with 

mortality.

There are few studies on activity rhythms and mortality.13-15,46,47 Mortality was found 

to be higher in older men and women with less robust or abnormal 24-hour activity 

rhythms.13-15 In patients with metastatic colorectal cancer, a higher mortality rate was 

associated with disturbed circadian rhythms; in dementia patients it was associated with 

abnormal timing of the rhythm.46,47 To our knowledge, the association of fragmentation and 

stability of the circadian activity rhythm with all-cause mortality has not been described 

before. 

Our estimates showed a significant U-shaped relationship between continuously 

analyzed subjective sleep duration and mortality. However, these associations were non-

significant when we adjusted for health parameters. A U-shaped relationship between sleep 

duration and mortality was found in several previous studies (for two meta-analyses see 9,10). 
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In general, stronger associations between long sleep and all-cause mortality were observed 

in the more extreme categories (≥9 hours). In our study only few persons were extreme 

short or long sleepers. Consequently, in our analyses the power regarding extreme sleep 

duration was limited, which might explain the attenuation of the curvilinear relation 

between sleep duration and mortality after further adjustment. Previous studies examining 

sleep duration stratified on health status are inconsistent.48,49 One study observed an 

association between sleep duration and mortality in persons with pre-existing disease 

only,48 while another study also found this association in healthy people.49 In addition, part 

of the association of short sleep duration with mortality can be explained by sleep apnea.50 

We adjusted for possible sleep apnea, based on two questions of the PSQI.24,25 Possible 

apnea was not a significant predictor in our fully adjusted model of sleep duration and 

mortality. However, the PSQI cannot be used to diagnose sleep apnea. We cannot rule out 

that sleep apnea, if assessed more in depth, explains part of the observed associations. 

In this study, as in previous studies, perceived sleep quality was not related to all-

cause mortality, whether measured with the sleep diary or measured with the PSQI.51 

Previously, sleep disturbances were associated with higher all-cause mortality only in men 

younger than 45 years, but not in women and men older than 45 years.52 

One strength of our study is that it is embedded in the Rotterdam Study, a prospective 

population-based cohort study. This increases our generalizability and we could adjust for 

many covariates. A second strength was our use of both subjective and objective 

measurements to estimate the sleep duration and sleep onset latency. Because subjective 

and objective sleep variables are not strongly associated,18 it is important to analyze both 

and to test whether they predict mortality independently. A third strength was the complete 

follow-up of the death date of all participants. Fourth, the 24-hour activity rhythm was 

analyzed nonparametrically, so no assumptions were made about the underlying shape of 

its circadian rhythm. This study also has some limitations. First, data collection on sleep 

disorders, such as restless legs and sleep apnea was limited. Second, in our population-

based study 154 participants died. Therefore, we may not have been able to detect the mild 

associations of sleep parameters on mortality. 

To conclude, in a representative middle-aged and elderly population, fragmentation 

and low stability of the 24-hour activity rhythm predicted all-cause mortality independent 

of and better than sleep estimates. Changes in the regulation of circadian rhythms could 

indicate disease and reflect age-related alterations in the biological clock of the brain. Future 

research must show whether improving circadian activity rhythm disturbances can improve 

health and survival.
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Abstract

Cognitive functioning changes with age, sleep and the circadian rhythm. We 

investigated whether these factors are independently associated with different cognitive 

domains assessed in middle-aged and elderly persons. In the Rotterdam Study, we collected 

actigraphy recordings of on average, 138 hours in 1723 middle-aged and elderly persons 

(age 62 ± 9.4 years, mean ± standard deviation). Actigraphy was used to quantify 24-hour 

rhythms by calculating the stability of the rhythm over days and the fragmentation of the 

rhythm. Sleep parameters including total sleep time, sleep onset latency and wake after 

sleep onset were also estimated from actigraphy. Cognitive functioning was assessed with 

the Word Learning Test (WLT), Word Fluency Test (WFT), Letter Digit Substitution Task (LDST) 

and Stroop Color Word Test (Stroop). Persons with less stable 24-hour rhythms performed 

worse on the LDST (B=0.42 per standard deviation (SD)-increase, p=0.004) and the Stroop 

interference trial (B=−1.04 per SD-increase, p=0.003) after full adjustment. Similarly, persons 

with more fragmented rhythms performed worse on the LDST (B =−0.47 per SD-increase, 

p=0.002) and the Stroop (B=1.47 per SD-increase, p<0.001). In contrast, longer observed 

sleep onset latencies were related to worse performance on the WLT delayed recall (B=−0.19 

per SD-increase, p=0.027) and the WFT (B=−0.45 per SD-increase, p=0.007). Disturbances of 

sleep and the 24-hour activity rhythm were independently related to cognition; while 

persons with longer sleep onset latencies had worse memory, persons with 24-hour rhythm 

disturbances performed less on executive functioning and perceptual speed tasks. 
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Introduction

Disturbed sleep and disturbed circadian rhythms can exacerbate cognitive 

impairment. Recent population-based studies have shown compelling evidence for an 

association of sleep cognitive functioning in the elderly. Self-rated sleep characteristics have 

been associated with worse cognitive functioning in population-based samples.1,2 Moreover, 

the association of sleep and cognition has also been assessed objectively by means of 

actigraphy in large population-based studies. Shorter total sleep time, longer sleep onset 

latencies, more wake after sleep onset, and lower sleep efficiency have been related to 

worse cognitive performance in elderly persons.3,4

Circadian rhythms have also been related to cognition. The fragmentation of the 

circadian rhythm is suggested to be particularly important for cognitive performance. For 

example, a fragmented 24-hour activity rhythm was significantly related to impaired mental 

speed and impaired executive functioning in 144 home-dwelling middle-aged and elderly 

persons.5 In a larger sample of very old persons, fragmentation of the activity rhythm was 

associated with diminished performance on multiple cognitive tasks.6 Moreover, a changes 

in the activity rhythm have been associated with an increased odds of developing mild 

cognitive impairment and dementia.7 However, it is not clear if the associations of 24-hour 

activity rhythm disturbances with cognition can be explained by the association of sleep 

with cognition, as circadian rhythms are intrinsically related to sleep.

Previous research shows that the effects of circadian rhythm and sleep may differ per 

cognitive domain. Population-based studies on rhythm disturbances mostly demonstrate 

effects on non-memory tasks.5,6 Disturbed sleep has been related to all cognitive domains,3,4,7,8 

but the relation between disturbed sleep and memory was mainly demonstrated in smaller 

populations. Experimental studies suggest that objectively measured sleep disturbance is 

also related to impaired memory, in particular to problems in memory consolidation.8 The 

association between sleep and memory has hardly been tested in population-based studies.

Recent population-based studies of sleep, circadian rhythm and cognition have 

focused mostly on elderly populations with mean ages above 70 years. Although the effect 

of sleep on cognition has shown to be independent of age in most studies,3,4,6 it is unclear 

whether these associations can already be observed at middle-age. Possibly, the aging 

process creates a vulnerability for the impact of sleep and circadian rhythm disturbances on 

cognitive performance. Detecting if these association are present in middle-aged and elderly 

persons could broaden the treatment choices for cognitive problems in this population. 

Activity rhythms and sleep are behaviors amenable to change and a possible target for 

intervention in patients with cognitive problems. Differential associations can indicate that 

manipulation of circadian rhythms and sleep both could be valuable for the treatment of 

selected cognitive problems.
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In this population-based study of middle-aged and elderly persons we assessed the 

circadian rhythm and sleep with actigraphy and cognitive functioning with multiple cognitive 

tests. This allowed us to test whether (1) the 24-hour activity rhythm is associated with 

cognitive functioning independently of sleep, (2) whether the associations of sleep and the 

24-hour activity rhythm are distinct per cognitive domain, and (3) whether the effects are 

specific to old age. We hypothesize that both the 24-hour activity rhythm and sleep have 

distinct and independent associations with cognition, as both the activity rhythm and sleep 

have been related to sleep extensively. More specifically, we posit that disturbances in the 

24-hour activity rhythm are related to performance on non-memory tasks, while poor sleep 

explains performance in all cognitive tasks. We expect these associations to be stronger in 

old age for both the 24-hour activity rhythm and sleep, and for all cognitive domains.

Materials and Methods

Study Population

This study was conducted within the Rotterdam Study, a population-based cohort of 

middle-aged and elderly inhabitants of Rotterdam, the Netherlands. The study started in 

1990 by inviting inhabitants of the district of Ommoord aged 55 years and over. In 2000, the 

study population was extended with a second cohort of inhabitants aged 55 and over. In 

2006, a new cohort with inhabitants aged 45 and over was added. A more detailed 

description of the study can be found elsewhere.9 The study is in accordance with the 

guideline proposed in the World Medical Association Declaration of Helsinki and approved 

by the Medical Ethics Committee of the Erasmus University Rotterdam. Written informed 

consent was obtained from all participants.

From December 2004 until April 2007, 2632 consecutive persons were invited to 

participate in the actigraphy study; 2063 (78%) agreed. The actigraphy study comprised 

participants of the second cohort (second examination, December 2004 - December 2005), 

and the new cohort (baseline examination, January 2006 - April 2007). The recordings of 340 

participants (16%) were excluded; of 329 participants recordings either did not consist of 

4 consecutive days and nights or had technical problems, of 11 participants there was no 

information on cognitive functioning. Recordings of 1723 participants were suitable for 

further analyses.

Assessment of the 24-hour activity rhythm and sleep

All participants were asked to wear an actigraph around the non-dominant wrist 

(Actiwatch model AW4, Cambridge Technology Ltd) continuously for 7 consecutive days and 

nights, and to remove it only while bathing. Actigraphs measured in 30-second epochs. 24-

hour periods with more than three continuous hours missing were excluded from the 
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analyses to prevent a time-of-day effect.10 Recordings had a mean duration of 138 hours 

(standard deviation, SD: 14 hours).

Activity rhythms were quantified using non-parametric indicators.10,11 This allowed us 

to describe the rhythm without making strong assumptions about the shape of the rhythm.12 

We calculated the interdaily stability and the intradaily variability to assess the 24-hour 

activity rhythm. The interdaily stability indicates the stability of the rhythm, i.e. the extent 

to which the profiles of individual days resemble each other. Intradaily variability quantifies 

the fragmentation of the rhythm; more frequent alterations between an active and an 

inactive state lead to a higher intradaily variability.

We also used the actigraphy recordings to calculate total sleep time, sleep onset 

latency and wake after sleep onset with a validated algorithm.13 Although sleep is best 

assessed with polysomnography, actigraphy is considered a reliable alternative to estimate 

sleep characteristics.14 The procedure used to calculate these measures has been described 

in more detail elsewhere.10 

Subjective sleep quality was assessed daily with a sleep diary which was kept during 

the week of actigraphy. Perceived sleep quality indicates the average of three questions 

about sleep quality (range 0-7).

Assessment of cognitive functions

Cognitive function was assessed with a neuropsychological test battery consisting of 

a 15-Word Learning Test (WLT, based on the Rey recall of words),15 a categorical Word 

Fluency Test (WFT, animal categories),16 the Letter Digit Substitution Task (LDST),17 the Stroop 

Color Word Test (Stroop),18 and the Mini Metal State Exam (MMSE, range 0-30).19 The WLT 

consisted of three immediate recall trials (range 0-45 words) and a delayed recall trial (range 

15 words). The examinations were performed by the same research team and in identical 

order for all participants.

We constructed a compound score for global cognition which has been described in 

more detail elsewhere.20 The global cognition score is a summary measure of the Z-scores of 

all assessed cognitive tests, except the MMSE. All Stroop trials are included in the compound 

score, Z-scores of the Stroop are inverted in this compound score to ensure that a higher 

score reflects a better performance on all tasks.

Assessment of covariates

A-piori, we selected the following potential confounders based on previous 

literature.6,10 Sex, age, employment status, education, smoking, body mass index (BMI), 

depressive symptoms, activities of daily living (ADL), myocardial infarction (MI), stroke, 

diabetes mellitus (DM), possible apnea and time of cognitive testing. All confounders were 

routinely collected in the Rotterdam Study. During a home interview all participants were 

asked about their employment status, education (low, intermediate or high), current 
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smoking, depressive symptoms and activities of daily living (ADL). Depressive symptoms 

were assessed using the Center for Epidemiologic Studies Depression (CES-D) scale21 (range 

0-60). ADL was assessed with the Stanford Health Assessment Questionnaire22 (range 0-3). 

Height and weight were measured without shoes and heavy clothing during a center visit to 

calculate the BMI (kg/m2). MI, stroke and DM were determined during the center visit and 

medical records. Possible apnea was assessed with two questions from the Pittsburgh Sleep 

Quality Index.23 We considered apnea possible when participants reported (1) loud snoring 

at least two nights per week and at least occasional respiratory pauses or (2) respiratory 

pauses during sleep with a frequency of at least 1-2 nights per week.24 Time of cognitive 

testing was assessed to prevent a time-of-day effect on cognitive functioning. 

Statistical analyses

We assessed the associations of the 24-hour activity rhythm and sleep with cognitive 

functioning using linear regression analyses. We studied the associations of the 24-hour 

activity rhythm and sleep with global cognitive functioning (averaged z-scores), the WLT 

immediate recall (number of words over three trials), the WLT delayed recall (number of 

words), WFT (number of named animals), LDST (number of correct items) and the 

interference trial of the Stroop (time in seconds). Of the sleep variables, total sleep time was 

also tested in a quadratic model to test a possible u-shaped relation of total sleep time with 

cognitive function. Associations were tested in two successive models. The first model was 

adjusted for sex, age, employment status, education, BMI, smoking, depressive symptoms, 

ADL, MI, stroke, DM, possible apnea and time of testing. The second model was also mutually 

adjusted to test if the effects of indicators of the 24-hour activity rhythm and sleep were 

independent. Potential determinants were only tested in the second model if an association 

between the sleep or activity rhythm parameter and the respective cognitive task had been 

observed in the first step. Analyses were repeated excluding participants with a MMSE-

score < 26,19 to assess whether effects could be explained by severe cognitive impairment 

only. To assess whether the effects of the 24-hour activity rhythm and sleep differed by age, 

we assessed the interaction terms of age with activity rhythm and sleep parameters 

quantitatively. Because these interaction analyses were exploratory we used a more 

stringent cut-off for significance (p<0.001) to correct for multiple testing. To facilitate the 

interpretation of possible interactions, we will illustrate interactions observed between 

continuous variables by categorizing these variables. All analyses were performed using IBM 

SPSS Statistics, version 21 (IBM Corp., Somers, NY USA).

As the number of missing values per confounder never exceeded 5%, missing values 

in quantitative predictors were replaced by the median. A separate missing category was 

used for qualitative predictors. All 24-hour activity rhythm and sleep indicators and cognitive 

test scores were winsorized at 4 standard deviations from the mean. To obtain normally 
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distributed values, interdaily stability, intradaily variability, sleep onset latency, wake after 

sleep onset and subjective sleep quality were transformed using a Box-Cox transformation.25,26 

All activity rhythm and sleep parameters were standardized to facilitate interpretation.

Results

Mean age of participants was 62 years (standard deviation (SD): 9 years) and 53% 

was female. 15% had a low education and 33% were still employed (see table 1). Uncorrected 

correlations between activity rhythm indicators, sleep parameters and cognition measures 

can be found elsewhere.

First, we studied if 24-hour activity rhythms were associated with general cognitive 

functioning and domain specific tasks (see table 2). A lower intradaily variability, i.e. less 

fragmented rhythm, was associated with better global cognitive functioning (B=−0.05 per 

SD-increase, standard error (SE)=0.02, p=0.003), while the stability of the rhythm was not 

associated with global cognition (B=0.02 per SD-increase, SE=0.02, p=0.24) after adjustment 

for confounders. A more stable rhythm (B=0.42 per SD-increase, SE=0.15, p=0.004) and a 

less fragmented rhythm (B=−0.47 per SD-increase, SE=0.15, p=0.002) were both associated 

with a higher number of correct items on the LDST. Also, a more stable rhythm (B=−1.04 per 

SD-increase, SE=0.35, p=0.003) and lower fragmentation (B=1.47 per SD-increase, SE=0.36, 

p<0.001) were related with less time, thus better performance, on the Stroop interference 

trial. Stability and fragmentation of the rhythm were not associated with the immediate and 

delayed recall of the WLT, and the WFT.

Second, we studied the association of sleep with global cognitive functioning and 

domain-specific tests (table 2). Of the objectively measured sleep parameters, only a short 

sleep onset latency was associated with better global cognition (B=−0.05 per SD-increase, 

SE=0.02, p=0.015). Persons with a shorter sleep onset latency also knew more words on the 

delayed recall of the WLT (B=−0.19 per SD-increase, SE=0.09, p=0.027) and named more 

words on the WFT (B=−0.45 per SD-increase, SE=0.17, p=0.007). No other associations of 

sleep with cognitive tests were found. 

Third, we assessed perceived sleep quality in relation to cognitive functioning. A 

lower reported sleep quality was not related to global cognitive functioning or specific 

cognitive tasks. 

Results for the associations of the activity rhythm, sleep and sleep quality did not 

change largely when persons with MMSE<26 were excluded (n=138) from the analyses 

(results available upon request).

To test the independence of the effects of the 24-hour activity rhythm and sleep, the 

associations of the activity rhythm and sleep with global cognition, LDST-score and 

performance on the Stroop interference trial were assessed in a mutually adjusted model, 
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as these outcomes were associated with multiple activity rhythm and sleep indicators. The 

association of intradaily variability (B=−0.05 per SD-increase, SE=0.02, p=0.011) with global 

cognition remained significant after mutual adjustment, as well as the association of 

intradaily variability with performance on the Stroop interference (B=1.32 per SD-increase, 

SE=0.43, p=0.002) Of the sleep variables, only the association of sleep onset latency) with 

Table 1. Population Characteristics, N=1723 

Demographic
Female, % 53.5
Age (years) 62.23 ± 9.35
Employment, % 33.3
Education, %

Low 15.2
Intermediate 63.4
High 19.6

Health indicators
Stroke, % 2.5
Myocardial infarction, % 1.9
Diabetes Mellitus, % 8.9
Depressive symptoms, score (range 0-60) 5.46 ± 7.02
Activities of daily living, score (range 0-3) .29 ± .42
Smoking, % 20.7
Body mass Index (BMI), kg/m2 27.86 ± 4.16
Possible apnea, % 29.1
Use of medication, % 22.4

Circadian rhythm
Duration actigraphy recording, hours 137.63 ± 14.19
Interdaily stability, score .80 ± .10
Intradaily variability, score .42 ± .13

Objectively assessed sleep
Sleep onset latency, minutes 14.54 ± 12.35
Total sleep time , hours 6.38 ± 0.86
Wake after sleep onset, minutes 69.65 ± 26.26

Sleep quality
Perceived sleep quality, score (range 0-7) 5.54 ± 1.61

Cognition
Global cognitive functioning, averaged z-score .01 ± .74
Word learning test (WLT) immediate recall, number of correct words (range 0-45) 22.55 ± 6.43
Word learning test (WLT) delayed recall, number of correct words (range 0-15) 7.47 ± 2.88
Word fluency test (WFT) , number of correct words 22.50 ± 5.87
Letter Digit Substitution Task (LDST),number of correct items 30.23 ± 6.75
Stroop color word test (Stroop) interference trial, seconds 47.40 ± 16.04

Values are stated as mean ± standard deviation or percentage. 
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global cognition remained significant (B=−0.06 per SD-increase, SE=0.02, p=0.013. None of 

the other associations of the 24-hour activity rhythm and sleep with cognitive tests remained 

significant

Lastly, we performed exploratory analysis to assess whether the effects of the 24-

hour activity rhythm and sleep were modified by age; three interaction-terms met the 

stringent limit of p<0.001. Age modified the association of intradaily variability and 

Figure 1. Illustration of the continuous tested interaction of intradaily variability (IV) and age for the 
Stroop Interference trial, and the interaction of sleep onset latency (SOL) and age for the Stroop 
interference trial and the letter digit substitution task (LDST). Bars present means per group, error bars 
depict standard deviations of the group mean.
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performance on the Stroop interference trial (p<0.001). In addition, age modified the 

association of sleep onset latency and LDST-score (p<0.001) and the association of sleep 

onset latency and time spent for the Stroop interference trial (p<0.001). Sleep onset latency 

and age were categorized to illustrate the quantitative interaction in figure 1. A more 

fragmented rhythm was more strongly associated with worse performance on the Stoop 

interference trial in older ages. Similarly, longer sleep onset latency was more strongly 

associated with worse performance on the LDST and the Stroop interference trial in older 

aged persons compared to middle-aged persons. 

Discussion

In our population-based study, both aspects of the 24-hour activity rhythm and sleep 

were related to global cognitive functioning. More specifically, disturbances in the 24-hour 

activity rhythm were mostly related to tasks that draw on perceptual speed and executive 

functioning, while an increased sleep onset latency was related to tasks which are associated 

with memory performance. 

Fragmentation of the activity rhythm and sleep onset latency both affected global 

cognition. Yet, these effects of the fragmentation of the rhythm and sleep onset latency on 

global cognition were independent from each other. Activity rhythm and sleep parameters 

were also only modestly correlated in our sample. This suggests that disturbances of 

circadian rhythms and disturbances of sleep affect cognitive functioning relatively 

independently; the small decreases in effect size after mutual adjustment suggested only 

limited shared variance. Circadian rhythm effects on cognition have previously been 

suggested to be independent of sleep in studies in which the human circadian rhythm was 

desynchronized.27 Circadian control of pathways, synchronization of local clocks and 

neurogenesis have been named as possible mechanisms through which circadian 

disturbances might affect cognition.28 On the other hand, sleep deprivation research has 

demonstrated that disturbed sleep can reduce neural activity,29 and sleep has also been 

hypothesized to affect synaptic strength.8 Further research is needed to disentangle the 

mechanisms which evoke the distinct effects of circadian rhythms and sleep on cognition.

Moreover the 24-hour activity rhythm and sleep parameters showed diverse 

association patterns with the different cognitive tasks. Fragmentation of the rhythm was 

particularly important for non-memory tasks. This extends on previous research where 

fragmentation has been associated with all cognitive subdomains except for episodic 

memory6 or where associations with memory disappeared after correction for confounders.5 

In contrast, a long sleep onset latency was associated with worse memory performance. 

While this association has not been demonstrated population-based studies, it extends on 

clinical research of sleep and memory. Thus, in our study 24-hour activity rhythms were 
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related to non-memory executive tasks, whereas sleep characteristics, particularly sleep 

onset latency, were related to memory.

The association between disturbed rhythms and cognitive performance can be 

explained in multiple ways. First, the association could be a direct effect of disturbed 

rhythms on perceptual speed and executive functioning. Fragmentation, in our study, 

indicates fragmentation during the day as well as fragmentation during the night. It has 

been suggested that a high fragmentation not only indicates problems staying asleep during 

the night, but also problems in staying awake during the day.30 We cannot assess the 

temporality of the effect in our cross-sectional study, so we can only carefully infer that 

persons with a high fragmentation may be less vigilant during the day which directly worsens 

the performance on perceptual speed and executive functioning tasks. Second, a shared 

underlying factor could explain the association between disturbed rhythms and worse 

cognitive functioning in the non-memory tasks. For example, an unhealthy lifestyle has been 

related to disturbed activity rhythms10 and to worse cognitive performance.31 Third, the 

direction of the effect can also be reversed, worse cognitive functioning might also lead to 

more disturbed rhythms. For example, dementia is accompanied by highly disturbed 

patterns of sleep. It has even been suggested that this is a major reason for hospitalization 

of demented patients.11 Severe cognitive deficits can disturb activity rhythms in this 

situation. However, in our sample exclusion of participants who screened positive for 

dementia, did not change the results largely.

The association of lengthened sleep onset latency with poorer performance on the 

delayed recall of 15 words and generating animal names was not explained by disturbances 

in the activity rhythm. This is in line with the suggestion that memory performance is largely 

independent of the circadian rhythm disturbances.32 It has been suggested that the 

association of sleep onset latency with memory can be explained by attention deficits; the 

inability to direct and control attention is not only detrimental for memory performance, 

but also for falling asleep as this requires the disregard of outside stimuli and thoughts.33 

However, in our sample sleep onset latency was not related with any other tasks which draw 

more on attention.

We found that age modified the association of sleep onset latency and non-memory 

tasks, as well as the association of fragmentation and performance on the Stroop interference 

trial. This demonstrates that age is an important factor in the relation of the 24-hour activity 

rhythm and sleep with cognition. Although our study is cross-sectional, it suggests that 

older people are more vulnerable for disturbed sleep and activity rhythms with respect to 

their cognitive performance, specifically in non-memory tasks. Most likely this is due to the 

aging of the brain, which diminishes the ability to compensate the effects of circadian and 

sleep disturbances on cognition.
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The current study has several strengths. First, the embedding in an existing 

population-based study makes our findings more generalizable. Second, we assessed 

cognition with multiple, established cognitive tests. Third, activity rhythms and sleep have 

been assessed objectively over multiple nights. Fourth, we used non-parametric measures 

of the 24-hour activity rhythm. The main advantage of a non-parametric indicator, above a 

parametric indicator, is that no assumptions are made about the nature of the rhythm; such 

an assumption is particularly problematic in elderly populations with less pronounced 

circadian rhythms.12 However, there are some limitations that should be considered. First, 

we cannot draw any conclusions on the temporality of the observed associations as our 

study is cross-sectional. Also, the design of our study was particularly suited to assess the 

24-hour activity rhythm, as an indicator of the circadian rhythm. Actigraphy allows us to 

estimate sleep parameters, but it lacks the precision of polysomnography which is considered 

the gold standard in sleep research.14 Next, we had self-rated but no objective information 

about sleep disordered breathing which may be a mediator between sleep and activity 

rhythm disturbances and cognition. Although a study in community-dwelling older men was 

not able to find an association between the apnea/hypopnea index and cognition,34 it is not 

clear to what extent sleep disordered breathing affected our results. Last, persons with 

better cognitive functioning might be overrepresented in our study because they are less 

likely to refuse cognitive testing.

In conclusion, activity rhythm and sleep disturbances are independently related to 

cognition. Fragmentation of the activity rhythm is related to tasks that depend more strongly 

on executive functioning and perceptual speed, while sleep onset latency is associated with 

worse performance on memory-related tasks. Lastly, our research suggests that non-

impaired circadian rhythms and good sleep are important for good cognitive functioning, in 

particular in the elderly who might be more vulnerable for the effects of circadian rhythm 

and sleep on cognition. Possibly, some cognitive problems can be ameliorated by treating 

circadian disturbances, e.g. with a lifestyle change or medication. 
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Abstract

Disturbed circadian rhythms have been associated with depression and anxiety, but 

it is unclear if disturbances in the 24-hour activity rhythm and sleep are independently and 

specifically related to these disorders. In 1714 middle-aged and elderly participants of the 

Rotterdam Study, we collected actigraphy recordings of at least 96 hours (138 ± 14 hours, 

mean ± standard deviation). Activity rhythms were quantified calculating the fragmentation 

of the rhythm, the stability of the rhythm over days, and the timing of the rhythm. Total 

sleep time, sleep onset latency and wake after sleep onset were also estimated with 

actigraphy. Depressive symptoms were assessed with the Center for Epidemiologic Studies 

Depression scale, persons with clinically relevant depressive symptoms were interviewed to 

diagnose DSM-IV-depressive disorder. Anxiety disorders were determined with the Munich 

version of the Composite International Diagnostic Interview. More fragmented rhythms 

were associated with clinically relevant depressive symptoms (Odds Ratio (OR): 1.27, 95% 

confidence interval (CI): 1.04;1.54) and anxiety disorders (OR: 1.39, 95% CI: 1.14;1.70) after 

covariate adjustment. Less stable rhythms, longer sleep onset latency, and more wake after 

sleep onset were related to clinically relevant depressive symptoms or anxiety disorders 

only if not adjusted for covariates and other activity rhythm and sleep indicators. Our study 

in middle-aged and elderly persons suggests that fragmentation of the 24-hour activity 

rhythm is associated with depression and anxiety. Moreover, this association also largely 

accounts for the effect of disturbed sleep on these psychiatric disorders. 
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Introduction

Circadian rhythms are found in behavior and in physiological processes throughout 

the body.1 The rhythms are regulated by the suprachiasmatic nucleus (SCN), which 

accommodates the central timekeeping mechanism.2 The SCN integrates endogenous 

rhythms with external time cues, usually resulting in the typical 24-hour course of the 

diurnal activity rhythm.3 Previously, we have related disturbances in these 24-hour rhythms 

to demographics, such as employment and having a partner, and lifestyle factors, such as 

coffee use and smoking.4

Disturbances in the 24-hour rhythm are known to affect mood in healthy persons.5 It 

has been suggested that the circadian system is a vital regulator of multiple systems that 

have a key role in mood disorders.6 A few studies related changes in the 24-hour activity 

rhythm to depressive symptoms in the general population.7 Activity rhythms have rarely 

been studied in persons with anxiety disorders despite the overlap in symptoms, genetics 

and environmental risk factors of anxiety and depression. There is some evidence that 

patients with panic disorder have disturbed sleep-wake cycles.8

Psychiatric disorders are typically accompanied by changes in sleep. Persons 

complaining of sleep difficulties are 3-4 times more likely to be depressed.9 Vice versa, up to 

90% of depressed patients report difficulty falling asleep, staying asleep or early morning 

awakenings.10 Disturbed sleep in depressed patients has also been studied using 

actigraphy.11,12 Sleep disturbances are also seen in persons with panic disorder, generalized 

anxiety disorder and post-traumatic stress disorder.13,14 Insomnia has also been linked to the 

onset of anxiety.15

According to one of the most influential models in sleep, the two process model, 

sleep and the circadian rhythm are intrinsically related.16 This model explains sleep changes 

based on chronobiological assumptions, it describes sleep as a function of process ‘C’, a 

circadian component, and process ‘S’ which entails sleep pressure. The two-process model 

explains the relation between sleep and depression. Awakenings in depressed patients 

could be caused by a disturbed build-up of ‘S’ or an earlier timing of process ‘C’.17 However, 

circadian and sleep disturbances are not necessarily the cause of increased depressive 

symptoms, the overlapping symptoms between sleep as well as circadian rhythm 

disturbances and depression might also be accounted for by a common negative emotionality 

factor. Aging might make middle-aged and older persons more vulnerable to this negative 

emotionality. As a result, older adults may be more likely to misinterpret normal variations 

in activity rhythms, sleep, and depression.18 Several other mechanisms have been proposed 

to explain the association of the circadian rhythms and sleep with depression, i.e. a phase 

shift in the circadian rhythm, abnormalities in the neuroendocrine system, and social rhythm 

disturbances.19,20 Although we have demonstrated previously that depressive symptoms are 
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related to 24-hour activity rhythm disturbances,4 it is not clear whether this association is 

independent of the association of sleep with depressive symptoms and also present for 

anxiety disorders. Anxiety has been hypothesized to co-occur with sleep problems through 

the maladaptive interpretation of stimuli and avoidance behaviors.18 Yet, the mechanisms 

underlying the association of circadian rhythms and sleep with anxiety are much less 

explored than those explaining the occurrence of depression.

A better understanding of the unique effects of 24-hour activity rhythm and sleep 

disturbances on depression and anxiety may have important clinical implications, in 

particular for the treatment of depression and anxiety. Depressive and anxiety disorders can 

be treated by changing the rhythm or sleep,21,22 i.e. pharmacological treatment23 and bright 

light therapy.24,25 Sleep deprivation is effective in patients with depression26 but not in those 

with anxiety.27 In elderly persons treatment choice is of particular importance as sleep and 

24-hour activity rhythm disturbances occur frequently.28

In this study, we investigated (1) whether 24-hour activity rhythms and sleep are 

associated with depressive symptoms, (2) whether 24-hour activity rhythm and sleep are 

associated with anxiety disorder and (3) whether the 24-hour activity rhythm and sleep are 

each associated independently and specifically with depressive symptoms and anxiety 

disorders. We hypothesized that (H1) disturbed activity rhythms and sleep are each 

associated with more depressive symptoms. We also expected (H2) that persons with 24-

hour activity rhythm or sleep disturbances have more anxiety disorders, although there is 

limited prior evidence from clinical and epidemiological studies. Last (H3), based on the 

two-process model, we expected the 24-hour activity rhythm to explain the association of 

sleep with depressive symptoms. We also tested whether any similarities in the associations 

of activity rhythms with depressive symptoms and anxiety disorders are explained by 

comorbidity.

Materials and Methods

Study Population

The current study was embedded in the Rotterdam Study, a population-based cohort 

study of middle-aged and elderly inhabitants of Rotterdam, the Netherlands.29 The study 

was conducted in accordance with the guideline in the World Medical Association Declaration 

of Helsinki and approved by the medical ethics committee according to the Wet 

Bevolkingsonderzoek ERGO (Population Study Act Rotterdam Study), executed by the 

Ministry of Health of the Netherlands. Written informed consent was obtained from all 

participants.

From December 2004 until April 2007, 2632 consecutive persons were invited to 

participate in the actigraphy study; 2063 (78%) agreed. Women (60.5% versus 53.4%, 
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p=0.003) and older aged persons (mean age 67.5 years versus 62.3 years, p<0.001) were 

more likely to refuse participation in the actigraphy study. There was no significant difference 

in the prevalence of depressive symptoms or anxiety disorder between included persons 

and persons who refused participation in the study. We excluded 349 participants (17%); in 

109 participants actigraphic recordings did not consist of 4 days and nights, 23 recordings 

were collected in a week of daylight saving time, in 197 persons the actiwatch malfunctioned, 

and in 20 persons there was no information on depressive symptoms. Depressive symptoms 

were scored incompletely in 1 person who refused to answer all questions, for the other 19 

persons data are missing due to refusal or time constraints. In total, data of 1714 participants 

were eligible for further analyses. A flowchart of the study sample can be found in figure 1.

Figure 1 Flowchart of study sample.
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Assessment of depression and anxiety

Depression was assessed with a two-step procedure. First, during the home-interview 

all participants were screened for depressive symptoms with the Center for Epidemiologic 

Studies-Depression (CES-D) scale.30 A cut-off score of 16 defined participants with clinically 

relevant depressive symptoms.31 Second, participants who screened positive for depressive 

symptoms underwent a semi-structured psychiatric interview with the Schedules for Clinical 

Assessment in Neuropsychiatry,32 performed by trained and experienced clinicians. This 

clinical interview allowed us to diagnose major depressive disorder according to the 

Diagnostic and Statistical Manual for Mental Disorders IV (DSM-IV-TR).

During the initial home interview, a slightly adapted33 Munich version of the 

Composite International Diagnostic Interview (M-CIDI) was administered to assess the 

following anxiety disorders according to the DSM-IV-TR: generalized anxiety disorder, 

specific phobia, social phobia, agoraphobia and panic disorder.34 Anxiety disorders were 

grouped into one overlapping category of anxiety disorder according to the DSM-IV-TR. We 

had no information on anxiety in 25 participants. Data of 6 participants on anxiety were 

completely missing for unknown reasons; data of 19 persons were partly missing due to 

time constraints.

Assessment of the 24-hour activity rhythm and sleep

Actigraphy allowed us to assess the 24-hour activity rhythm. All participants were 

asked to wear an actigraph around the non-dominant wrist (Actiwatch model AW4, 

Cambridge Technology Ltd) continuously for 7 consecutive days and nights, and to remove it 

only while bathing. Actigraphs measured in 30-second epochs. All 24-hour periods with 

more than three continuous hours missing were excluded from the analyses to prevent a 

time-of-day effect. Recordings had to consist of at least 96 hours to be scored validly (109 

excluded, 71 recordings did not consist of 96 hours before exclusion of missing periods and 

another 38 recordings did not consist of 96 hours after the exclusion of the 24-hour missing 

periods). In the 1734 recordings available for analysis, we excluded one 24-hour period in 

140 persons (8.1%), two 24-hour periods in 41 persons (2.4%) and three 24-hour periods in 

12 persons (0.7%).On average, the duration of the actigraphy recordings was 138 hours 

(standard deviation (SD) 14 hours).

Activity rhythms were quantified using non-parametric indicators to describe the 

rhythm without making strong assumptions about the shape of the rhythm.4,35,36 We 

calculated three variables to assess the 24-hour activity rhythm: the interdaily stability, the 

intradaily variability, and the dominant rest phase onset. The interdaily stability indicates 

the stability of the rhythm, i.e. the extent to which the profiles of individual days resemble 

each other. Intradaily variability quantifies how fragmented the rhythm is relative to the 

overall variance. The intradaily variability is based on hourly values and reflects transitions 
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of relatively long periods of rest and activity; more frequent alterations between an active 

and an inactive state lead to a higher intradaily variability. Lastly, the dominant rest phase 

onset represents the clock time at which the 5-hour period of lowest activity in the average 

24-hour pattern started.37

We also used the actigraphy recordings to estimate sleep characteristics. Although 

sleep is best assessed with polysomnography, actigraphy is a reliable alternative to estimate 

sleep characteristics.38 We calculated total sleep time (TST), sleep onset latency (SOL) and 

wake after sleep onset (WASO) with a validated algorithm.4,39,40 Subjective sleep quality was 

assessed with a sleep diary during the week of actigraphy. Participants answered three 

dichotomous questions, “Did you sleep well this night?”, “Do you feel well rested after 

getting out of bed?” and “Do you have the feeling that the amount of sleep was too little?”. 

Perceived sleep quality indicates the average of the summed questions over 7 nights (range 

0-7).4

Assessment of covariates

We selected possible covariates based on previous literature. First, we assessed 

demographics4,7,11,14: sex, age, partnership, employment status, and education. Second, we 

studied the medical status4,7,11,14: cognitive status, activities of daily living (ADL), body mass 

index (BMI), use of psycholeptics, use of psychoanaleptics, use of sleep medication during 

actigraphy, and use of medication prescribed for (1) blood and blood forming organs, (2) 

cardiovascular system, (3) genito-urinary system and sex-hormones, (4) systemic hormonal 

preparations, and the (5) respiratory system. Third, we explored lifestyle factors4,41-43: alcohol 

use, coffee use, and current smoking. Last, we assessed sleep characteristics4,44: duration of 

actigraphy and possible apnea. During a home-interview all participants were asked about 

their partnership, employment status, education, smoking, and medication use. Cognitive 

status was measured using the Mini Mental State Exam (MMSE).45 Height and weight were 

measured without shoes and heavy clothing during a center visit to calculate the BMI (kg/

m2). ADL was assessed with the Stanford Health Assessment Questionnaire.46 Alcohol use 

was the self-reported number of units of alcohol which were consumed in the week of 

actigraphy. Coffee use indicated the average of the self-reported cups consumed after 18:00 

during the week of actigraphy. Possible apnea was assessed with two questions from the 

Pittsburgh Sleep Quality Index.47 We considered apnea possible when participants reported 

(1) loud snoring at least two nights per week and at least occasional respiratory pauses or 

(2) respiratory pauses during sleep with a frequency of at least 1-2 nights per week.48 Use of 

medication was assessed at the home-interview and assigned to the different categories of 

the Anatomical Therapeutic Chemical (ATC)-classification. The use of sleep medication was 

self-reported during the week actigraphy on a daily basis.
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Statistical analyses

We tested whether 24-hour activity rhythm and sleep were associated with 

depressive symptoms and anxiety disorders in three successive models. First, we studied 

the associations adjusted for sex and age. Second, we additionally adjusted for partnership, 

employment status, cognitive status, ADL, psycholeptics, psychoanaleptics, sleep medication, 

BMI and coffee use. We only included the a-priori selected covariate in the model if the 

covariate predicted depressive symptoms or anxiety (p<0.10). Third, to assess whether 

activity rhythms and sleep were independent predictors of depressive symptoms and 

anxiety, we studied the associations in a mutually adjusted model. Activity rhythm and sleep 

parameters were only included in this model when significantly associated with the outcome 

in the covariate adjusted model. The variance inflation factor (VIF) indicated that there was 

no multicollinearity (VIF<2).

We tested the effects of the 24-hour activity rhythm on depressive symptoms 

continuously using linear regression. In addition, we studied clinically relevant depressive 

symptoms (CES-D score ≥16) and anxiety disorders (yes/no) as categorical outcomes with 

logistic regression. Clinically relevant depressive symptoms were studied as the category of 

interest in these analyses to prevent for insufficient statistical power (compared to only 

including persons with major depressive disorder). To ensure results of clinically relevant 

depressive symptoms and anxiety disorders were comparable, we constructed one reference 

category for all these logistic analyses. This reference category comprised participants who 

screened negative for depressive symptoms (CES-D score <16) and had no anxiety disorder 

(n=1441). To study whether the comorbidity of clinically relevant depressive symptoms and 

anxiety explained similar associations, we have run the analyses excluding participants with 

both clinically relevant depressive symptoms and an anxiety disorder (N=47). Last, we 

assessed the relation of the 24-hour activity rhythm and sleep with major depressive 

disorder and individual anxiety disorders, i.e. generalized anxiety disorder, specific phobia, 

social phobia and panic disorder and/or agoraphobia. All analyses were performed using 

IBM SPSS Statistics version 21 (IBM Corp., Somers, NY USA).

As the number of missing values per parameter never exceeded 5%, missing values 

in quantitative predictors (missing values: cognitive status 2.2%, ADL 3.4%, BMI 1.1% and 

coffee use 3.0%) were replaced by the median.49 A separate missing category was used for 

categorical predictors (missing values: partnership 0.1%). All 24-hour activity rhythm and 

sleep indicators were winsorized at 4 SD of the mean. We used a Box-Cox transformation50,51 

to obtain normally distributed values for interdaily stability (λ=7.0), intradaily variability  

(λ=-3.9), sleep onset latency (λ=-0.1), wake after sleep onset (λ=0.4) and subjective sleep 

quality (λ=5.3).
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Results

Population characteristics of the total population (N=1714), persons with clinically 

relevant depressive symptoms (n=151), persons with an anxiety disorder (n=144) and the 

reference group (n=1441) can be found in table 1. Activity rhythm and sleep variables were 

low to moderately correlated (table 2). The interdaily stability, i.e. the stability of the rhythm, 

and intradaily variability, i.e. the fragmentation of the rhythm, correlated substantially (r=-

0.50, p<0.001).

We studied whether 24-hour activity rhythm characteristics and sleep characteristics 

were related to clinically relevant depressive symptoms (table 3). A high intradaily variability 

(Odds Ratio (OR): 1.31 per 1-SD, 95% confidence interval (CI): 1.08;1.60, p=0.008) and worse 

perceived sleep quality (OR: 0.41 per 1-SD, 95%CI: 0.32;0.52, p<0.001) were associated with 

more clinically relevant depressive symptoms after covariate adjustment. The fragmented 

rhythm and worse sleep quality remained associated with clinically relevant depressive 

symptoms when mutually adjusted (respectively OR: 1.26 per 1-SD, 95%CI: 1.03;1.55, 

p=0.027 and OR: 0.41 per 1-SD, 95%CI: 0.32;0.53, p<0.001). After exclusion of persons with 

comorbid anxiety disorder, the association of intradaily variability with clinically relevant 

depressive symptoms was attenuated (OR: 1.18 per 1-SD, 95%CI: 0.94;1.48, p=0.163). 

When we assessed depressive symptoms quantitatively, a low stability of the rhythm 

(B=-0.05, SE=0.02, p=0.047), high variability of the rhythm (B=0.10, SE=0.02, p<0.001),               

a later dominant rest phase onset (B=0.05, SE=0.02, p=0.015), more wake after sleep onset 

(B=0.05, SE=0.02, p=0.040) and worse sleep quality (B=-0.30, SE=0.02, p<0.001) were all 

associated with more depressive symptoms when adjusted for covariates (table 3). Persons 

with more fragmented rhythms (B=0.08, SE=0.03, p=0.003), and worse sleep quality (B=-

0.29, SE=0.02, p<0.001) had significantly more depressive symptoms even if we mutually 

adjusted the model for rhythm and sleep characteristics.

Next, we assessed whether 24-hour activity rhythm and sleep characteristics were 

associated with anxiety disorders (table 4). Persons with a more fragmented rhythm and 

persons who perceived their sleep quality worse had more anxiety disorders independent of 

covariates (OR: 1.39 per 1-SD, 95%CI: 1.13;1.70, p=0.002 and OR: 0.68 per 1-SD, 95% CI: 

0.55;0.84, p<0.001, respectively). Mutual adjustment for fragmentation and perceived sleep 

quality did not affect the associations with anxiety disorders (respectively OR: 1.37 per 1-SD, 

95%CI: 1.11;1.68, p=0.003 and OR: 0.69 per 1-SD, 95%CI: 0.56;0.85, p<0.001). After exclusion 

of 47 participants with both clinically relevant depressive symptoms and an anxiety disorder, 

more fragmented rhythms (OR: 1.29 per 1-SD, 95%CI: 1.01;1.63, p=0.038) remained 

associated with anxiety disorder in the covariate adjusted model, while the association of 

subjective sleep quality with anxiety disorder was attenuated (OR: 0.84 per 1-SD, 95%CI: 

0.66;1.06, p=0.14).
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Table 4. Associations of 24-hour activity rhythms, sleep and covariates with anxiety disorders

Anxiety disorders (n=144)1

Basic model Multivariate model
OR 95% CI p OR 95% CI p

Covariates
Sex (male) 2.79 1.90;4.11 <0.001 1.82 1.20;2.76 0.005
Age 0.99 0.97;1.01 0.245 0.95 0.93;0.98 <0.001
Partner - 0.49 0.32;0.75 0.001
Employment - 0.65 0.40;1.06 0.084
Cognitive status - 1.01 0.91;1.13 0.79
Activities of daily living - 2.06 1.34;3.14 <0.001
Body mass index - 1.00 0.95;1.04 0.86
Coffee use (per units/day) - 1.18 0.94;1.47 0.15
Psycholeptics - 2.31 1.36;3.94 <0.001
Psychoanaleptics - 4.35 2.57;7.39 <0.001
Sleep medication in week of actigraphy - 1.86 1.14;3.04 0.013

Determinants
Interdaily Stability (per 1-SD) 0.83 0.70;1.00 0.046 0.97 0.80;1.18 0.77
Intradaily Variability (per 1-SD) 1.63 1.34;1.98 <0.001 1.39 1.13;1.70 0.002
Dominant rest phase onset (per 1-hr) 1.24 1.06;1.44 0.008 1.11 0.95;1.31 0.20
Total Sleep Time (per 1-hour) 0.85 0.69;1.05 0.13 0.87 0.70;1.07 0.19
Sleep Onset Latency (per 1-SD) 1.30 1.04;1.61 0.021 1.10 0.87;1.38 0.43
Wake After Sleep Onset (per 1-SD) 1.12 0.94;1.34 0.20 0.95 0.78;1.15 0.59
Perceived Sleep Quality (per 1-SD) 0.60 0.50;0.73 <0.001 0.68 0.55;0.84 <0.001

OR, Odds Ratios; CI, Confidence Interval; 1-SD; 1 standard deviation.
Sex-age adjusted model, adjusted for sex and age; Covariate adjusted model, adjusted for sex, age, partnership, 
employment, coffee use, body mass index, cognitive status, activities of daily living, use of medication prescribed 
for the nervous system; Mutually adjusted model: adjusted for sex, age, partnership, employment, coffee use, 
body mass index, cognitive status, activities of daily living, use of medication prescribed for the nervous system 
and mutually adjusted for interdaily stability, intradaily variability, phase onset, total sleep time, sleep onset 
latency, wake after sleep onset and perceived sleep quality if the predictor was significant in covariate adjusted 
model.
1 Logistic regression analyses with reference category: no clinically depressive symptoms and no anxiety (n=1441). 
Persons with clinically relevant depressive symptoms and no anxiety disorder (n=104) and no information on 
anxiety (n=25) were excluded from these analyses.

Lastly, we performed exploratory analyses to assess the associations of the 24-hour 

activity rhythm and sleep with major depressive disorder and subtypes of anxiety. We 

observed associations of shorter total sleep time (OR: 0.47 per 1-hour, 95%CI: 0.29;0.76, 

p=0.002) and sleep quality (OR: 0.12 per 1-hour increase, 95%CI: 0.05;0.32, p<0.001) with 

major depressive disorder (n=22) in covariate adjusted analyses. Next, we studied specific 

anxiety disorders, diagnosed with the M-CIDI, as the outcome. More fragmented rhythms 

(OR: 1.75 per 1-SD, 95%CI: 1.20;2.55, p=0.004), a shorter total sleep time (OR: 0.66 per 

1-hour, 95%CI: 0.45;0.97, p=0.033), and a worse sleep quality (OR: 0.64 per 1-SD, 95%CI: 

0.43;0.94, p=0.022) were associated with generalized anxiety (n=39) in the covariate 

adjusted model. In addition, a worse sleep quality was associated with panic disorder and/
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or agoraphobia (n=80, OR: 0.68 per 1-SD, 95%CI: 0.51;0.90 p=0.008) and with social phobia 

(n=26, OR: 0.33 per 1-SD, 95%CI: 0.18;0.61, p<0.001). Activity rhythms and sleep were not 

related to specific phobia (n=30).

Discussion

In this population-based actigraphy study of 1714 middle-aged and elderly persons, 

actigraphically assessed disturbances of the circadian rhythm and sleep were related to 

depressive symptoms and anxiety disorders. As expected, the stability, fragmentation and 

timing of the activity rhythm were all related to depressive symptoms. Of the sleep 

characteristics, only wake after sleep onset and self-rated sleep quality were related with 

more depressive symptoms. Although we expected 24-hour activity rhythms and sleep to be 

also associated with anxiety disorders, only fragmented rhythms and worse sleep quality 

were associated with anxiety disorder. Fragmented rhythms explained the associations of 

the other activity rhythm parameters and wake after sleep onset with depressive symptoms. 

However, fragmented rhythms could not explain the association of perceived sleep quality 

with depressive symptoms or anxiety.

Our research is cross-sectional, yet our results suggest that the circadian organization 

of the activity rhythm plays a key role in both depressive symptoms and anxiety in middle-

aged and elderly persons. This is in line with previous evidence of disturbances in process ‘C’ 

of the two-process model6 possibly due to the aging of the brain. Our study only partly 

supports the phase-shift hypothesis of depression which proposes that mood disturbances 

result from a phase advance or delay.20 The dominant rest phase onset gives an indication of 

the start of the peak of the rest-activity nadir37 this variable was only associated with 

depressive symptoms when modeled quantitatively and not when we dichotomized 

depressive symptoms using a cut-off for clinically relevant depressive symptoms or when 

major depressive disorder was studied as the outcome. This can be explained two ways, 

possibly, our study was underpowered to detect an association of phase onset with clinically 

relevant depressive symptoms and anxiety disorders. Alternatively, changes in the onset of 

the rest phase may impact the continuum of depressive symptoms only, and do not specially 

affect persons with clinically relevant symptoms most. Lastly, both for depression and 

anxiety, a tripartite approach to the associations of circadian rhythm, depression and anxiety 

has been suggested.18 This hypothesis suggests that the overlapping symptoms between 

circadian rhythm and sleep disturbances with anxiety and depression can be accounted for 

by a common negative emotionality factor. Aging might make middle-aged and older 

persons more vulnerable to this negative emotionality. As a result, older adults may be more 

likely to misinterpret normal variations in activity rhythms, sleep, depression and anxiety. In 

addition, altered behaviors change the activity rhythm, sleep, depression and anxiety, e.g. 
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persons might avoid exercise because of a fear to trigger health difficulties and thereby 

impact sleep and depression. 

The idea of a common negative emotionality influencing all aspects from rhythms, 

sleep, depression and anxiety is further supported by the robust associations of perceived 

sleep quality with depressive symptoms and anxiety. In addition, these associations were 

independent of the objectively measured sleep and circadian rhythm parameters. This 

suggests that perceived sleep quality reflects different aspects of sleep than the 

actigraphically assessed 24-hour rhythms. This might be due to sleep misperception, which 

is more common in patients with depression,52 and is influenced by negative emotionality. 

After exclusion of persons with comorbid clinically relevant depressive symptoms and 

anxiety disorders, the association for sleep quality and anxiety disorders disappeared. This 

suggests that perceived sleep quality in persons with an anxiety disorder is influenced less 

by differences in the negative emotionality than that of persons with depressive symptoms.

Our findings suggest separate and shared mechanisms underlie the association of 

24-hour activity rhythms and sleep with clinically relevant depressive symptoms and anxiety 

disorders. For example, total sleep time was related to the clinical diagnosis of major 

depressive disorder but not to depressive symptoms or any of the anxiety disorders. It is 

tempting to speculate that a shorter total sleep time is typical for clinical depression. 

Exploratory analyses of individual anxiety disorders demonstrated that the relation between 

fragmented rhythms and anxiety disorders was mainly accounted for by generalized anxiety 

disorder, which is frequently comorbid with heightened depressive symptoms. Also, 

generalized anxiety disorder is less dependent on specific stimuli, compared to other anxiety 

disorders.13 Possibly, the differences in the associations of 24-hour rhythms and sleep with 

the individual anxiety disorders can be explained by the different etiological backgrounds of 

these anxiety disorders.

The current study had several strengths. First, we assessed depressive symptoms by 

self-report and depressive disorder and anxiety with a clinical interview in a large population-

based sample. Second, we measured the circadian organization of the 24-hour activity 

rhythm objectively with actigraphy, which prevents the information bias which can easily 

occur when participants with heightened depressive symptoms or anxiety disorder judge 

their own sleep. Third, we used non-parametric measures of the 24-hour activity rhythm. 

The main advantage of a non-parametric indicator is that it does not make assumptions 

about the nature of the rhythm, which can be problematic in elderly populations.36 Some 

limitations should also be considered. First, we cannot draw any conclusions on temporality 

since our study is cross-sectional. Second, although circadian rhythms are observable in the 

activity rhythm, this is an indirect assessment only. In addition, the design of our study was 

particularly suited to assess the 24-hour activity rhythm disturbances. Actigraphy allows us 

to estimate sleep parameters, but it lacks the precision of polysomnography.38 Also, we had 
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only a small number of cases with major depressive disorder (n=22). This limited the 

statistical power of these analyses. Thus, we must extrapolate the results of persons with 

depressive symptoms to those with major depressive symptoms very carefully. Last, we 

combined the different anxiety disorders following the DSM-IV-TR, however our results 

suggest that the mechanisms underlying the individual anxiety disorders are not the same.

In conclusion, specifically the fragmentation of the 24-hour activity rhythm is related 

to clinically relevant depressive symptoms and anxiety disorders in this population-based 

study of middle-aged and elderly persons. The stability of the rhythm, the phase of the 

rhythm, the total sleep time, sleep onset latency and wake after sleep onset could not 

explain additional variance above fragmented rhythms for clinically relevant depressive 

symptoms and anxiety disorders. Together with robust associations of worse perceived 

sleep quality with depressive symptoms and anxiety, this suggests that fragmentation of the 

rhythm and negative emotionality are important in the relation between sleep and common 

psychiatric disorders in the middle-aged and elderly. This supports further integration of 

chronobiological and cognitive treatment of sleep problems in the management of 

depressive and anxiety disorders.
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Abstract

The hypothalamic-pituitary-adrenal (HPA) axis plays an important role in sleep. 

Nevertheless, the association of sleep and its 24-hour organization with negative feedback 

control of the HPA axis has received limited attention in population-based studies. We 

explored this association in 493 middle-aged persons of the Rotterdam Study, a large 

population-based study (mean age 56 years, standard deviation: 5.3 years; 57% female). The 

negative feedback of the HPA axis was measured as the change in morning saliva cortisol 

after the intake of 0.25 mg dexamethasone the night before. Actigraphy allowed us to 

measure the stability and fragmentation of the activity rhythm and to estimate total sleep 

time, sleep onset latency and wake after sleep onset. A sleep diary kept during the week of 

actigraphy was used to assess self-reported total sleep time, sleep onset latency, number of 

awakenings and perceived sleep quality. In our study, enhanced negative feedback of the 

HPA axis was found in association with unstable activity rhythms (B=0.106, 95% confidence 

interval (CI): 0.002;0.210), total sleep time (B=0.108, 95%CI: 0.001;0.215) and poor 

subjective sleep quality (B=0.107, 95%CI: 0.009;0.206) after multivariate adjustment. These 

results indicated that the 24-hour organization, duration and experience of sleep are all 

associated with the negative feedback control of the HPA axis.
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Introduction

The hypothalamic-pituitary-adrenal (HPA) axis determines the stress reponse of 

humans as it regulates the release of cortisol by a negative feedback control.1 Cortisol shows 

a typical diurnal pattern with peaks when stress is increased. The diurnal pattern is regulated 

by the suprachiasmatic nucleus (SCN), the body’s central pacemaker, which is responsible 

for the overall co-ordination of the HPA axis and synchronizing the time of day and 

neuroendocrine output.2 

The HPA axis plays an important role in the regulation of sleep.3 However, research 

on the association of sleep parameters with cortisol secretion is not consistent.4 In 

population-based studies, it has been found that saliva awakening cortisol was not associated 

with sleep quantity and quality in healthy middle-aged adults,5 and that cortisol levels in 

urine were not associated with objective sleep duration.6 In contrast, others have observed 

that self-reported sleep duration and disturbances were associated with the diurnal slope in 

cortisol secretion in the population.7 None of these studies, however, assessed experimentally 

induced activation of the HPA-axis. Cortisol levels can be manipulated experimentally by 

performing a behavioral stress test. A recent publication found that sleep deprivation was 

associated with both elevated resting cortisol and an exaggerated cortisol response after the 

Trier Social Stress Test.8 Cortisol levels can also be manipulated pharmacologically to assess 

the functioning of the HPA axis. Results of studies which assessed the HPA axis after 

pharmacological manipulation in relation to sleep are also mixed; poor sleep can lead to 

increased activity of the HPA axis, for example in chronic insomniacs.9 However, self-rated 

sleep was not related to cortisol levels after dexamethasone intake in a combined 

dexamethasone/ corticotrophin-releasing-hormone (CRH) test,10 nor were sleep disorders.11 

Research has been complicated by the use of objective versus subjective measures of sleep 

in different studies.6 In addition, both the HPA axis and sleep behaviors are affected by 

stress. However, most studies on sleep and the function of the HPA axis have been done in 

the laboratory, and rarely in the home situation. This itself might affect hormone regulation, 

which could further complicate the interpretation and generalizability of the results. In 

addition, sleep and cortisol secretion both have strong circadian rhythms, which could affect 

the association between sleep and the HPA axis.3 However, not much is known about the 

24-hour organization of rest activity rhythms in reference to the negative feedback of the 

HPA axis in population-based samples. 

In the current study we assessed the negative feedback of the HPA axis with a very 

low-dose dexamethasone suppression test (DST). The DST is specifically designed to measure 

the negative feedback of the HPA axis and has mostly been used in clinical populations. 

Initially, assessment of the negative feedback of the HPA axis was developed to diagnose 

Cushing’s disease,12 but it has also been proposed as a biomarker for psychiatric diseases.13 
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Diminished negative feedback of the HPA axis has been found in melancholic depression, 

eating disorders and alcoholism, while in contrast an enhanced negative feedback has been 

associated with posttraumatic stress disorder, stress-related bodily disorders and chronic 

fatigue syndrome.14 Within the general population a dose of 1 mg dexamethasone, which is 

comparable to that applied in clinical populations, would suppress saliva cortisol almost 

completely in all persons.15 Therefore we implemented a very low-dose DST to assess the 

effect of 0.25 mg of dexamethasone on cortisol in saliva. A dose of 0.25 mg dexamethasone 

has been suggested for a more informative assessment of the sensitivity of the HPA axis 

feedback in healthy adults.15 We specifically tested the level of cortisol after a very low-dose 

of dexamethasone controlled for baseline cortisol. 

We explored whether the 24-hour organization of the activity rhythm, objective and 

subjective sleep parameters, and perceived sleep quality were related with the negative 

feedback control of the HPA axis in the general population by conducting an experiment 

with a very low-dose DST. Enhanced negative feedback of the HPA was measured as the 

reduction in morning cortisol after a low dose of dexamethasone the prior evening. Both 

sleep and cortisol have a strong circadian organization, therefore we hypothesized that 

disturbed 24-hour activity rhythms were related with the negative feedback control of the 

HPA axis. Results for the association of sleep with the negative feedback control have been 

mixed; to our knowledge, objectively measured habitual sleep has only been studied in 

relation to the negative feedback control of the HPA axis in adolescents.16 Lastly, we expected 

subjective sleep quality to be associated with the feedback of the HPA axis.

Methods

Study Population

The current study was embedded in the Rotterdam Study, a population-based cohort 

of middle-aged and elderly inhabitants of Rotterdam, the Netherlands.17 In 2006, a new 

cohort with inhabitants aged 45 and over was added (RSIII-1). The study was conducted in 

accordance with the guideline proposed in the World Medical Association Declaration of 

Helsinki and approved by the medical ethics committee according to the Wet 

Bevolkingsonderzoek ERGO (Population Study Act Rotterdam Study), executed by the 

Ministry of Health, Welfare and Sports of the Netherlands. Written informed consent was 

obtained from all participants.

All participants in RSIII-1 were invited for the very low-dose DST at the baseline 

assessment. Of 1822 persons (response rate 63.9%) a valid very low-dose DST was available 

after the exclusion of persons with incomplete data (n=58), persons who used corticosteroids 

(n=3), or invalid timing of sampling (n=59). Of these 1822 persons, 627 persons were invited 

for the actigraphy study, 43 persons refused to participate (6.9%). In 17 persons actigraphic 
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recordings did not consist of 4 consecutive days and nights, in 16 persons recordings were 

collected within a week of daylight saving time, and in 58 persons the actiwatch 

malfunctioned. In total, 493 persons remained for analyses.

Assessment of the very low-dose dexamethasone suppression test

For the very low DST participants were asked to collect a saliva sample at 08:00 at day 

1, take a very low dose of dexamethasone (0.25 mg, oral) at 23:00 at day 1, and collect saliva 

again at 08:00 at day 2. Sampling times were kept equal for all participants to prevent large 

individual differences in the time between dexamethasone intake and cortisol sampling. 

Saliva samples were collected using Salivette sampling devices (Sarstedt, Nümbrecht, 

Germany). Participants received oral and written instructions about the use of the sampling 

device. In addition, they were asked not to eat or brush their teeth 15 minutes before the 

collection of the samples and to report the exact date and time of the sampling. Samples 

were stored at -80 ºC until they were analyzed at the laboratory of Biopsychology, Technical 

University of Dresden, Germany. Salivary cortisol concentrations were measured using a 

commercial immunoassay with chemiluminescence detection (CLIA; IBL Hamburg, Hamburg, 

Germany), further details have been described elsewhere (N. Direk, M.J.H.J. Dekker, A.I. 

Luik, C. Kirschbaum, Y.B. De Rijke, A. Hofman, W.J. Hoogendijk, H. Tiemeier, unpublished 

observations).

Assessment of the 24-hour activity rhythm and sleep

Actigraphy allowed us to measure the 24-hour activity rhythm18,19 and to estimate 

sleep parameters objectively.20 All participants wore an actigraph around the non-dominant 

wrist (Actiwatch model AW4, Cambridge Technology Ltd) continuously for 7 consecutive 

days and nights, the actigraph was only to be removed while bathing. Actigraphs measured 

in 30-second epochs.20 Recordings had to consist of at least 96 hours. All 24-hour periods 

with more than three continuous hours missing were excluded from the analyses to prevent 

a time-of-day effect. The average duration of the actigraphy recordings was 138 hours 

(standard deviation (SD): 14 hours).

Activity rhythms were quantified using non-parametric indicators21,22 to describe the 

rhythm without making strong assumptions about the shape of the rhythm.23 Two variables 

were calculated to assess the 24-hour activity rhythm: the interdaily stability and the 

intradaily variability. The interdaily stability indicates the stability of the rhythm, i.e. the 

extent to which the profiles of individual days resemble each other. Intradaily variability 

quantifies how fragmented the rhythm is relative to the overall variance. It is based on 

hourly values and reflects transitions of relatively long periods of rest and activity; more 

frequent alterations between an active and an inactive state lead to a higher intradaily 

variability. 

We also used the actigraphy recordings to estimate sleep parameters. Actigraphy is 
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considered a reliable estimator of sleep parameters such as total sleep time.24 We used a 

validated algorithm20 to calculate total sleep time, sleep onset latency and wake after sleep 

onset using the actigraphy.22,25 

Total sleep time, sleep onset latency and number of awakenings were also self-rated 

by the participant using a sleep diary which was kept during the week of actigraphy. Values 

were averaged over the 7 nights. Perceived sleep quality was evaluated with this same sleep 

diary; participants answered 3 dichotomous questions about their sleep quality. Perceived 

sleep quality indicates the average of the summed and weighted questions over 7 nights 

(range 0-7).

Assessment of covariates

We a-priori selected sex, age, partnership, education, employment status, exercise, 

body mass index (BMI), coffee use, alcohol use, current smoking, activities of daily living 

(ADL), cognitive status, depressive symptoms, diabetes mellitus, possible apnea and use of 

sleep medication, psycholeptics and/or psychoanaleptics, time of cortisol sampling, habitual 

wake up time, and the time difference between sleep measurements and cortisol sampling 

as covariates based on previous literature.22,26 During a home interview all participants were 

asked about a partner, education, employment status, exercise, smoking, ADL, possible 

apnea and medication use. Exercise indicates whether the participants practiced any sports 

on the basis of a self-report questionnaire item. ADL was evaluated with the Stanford Health 

Assessment Questionnaire to indicate health status.27 Cognitive status was measured with 

the Mini Mental State Exam (MMSE).28 We used the Center for Epidemiologic Studies-

Depression (CES-D) scale to measure depressive symptoms.29,30 Diabetes mellitus was 

determined during the center visit on the basis of fasting or non-fasting glucose levels in 

combination with medical records. Possible apnea was assessed with two questions from 

the Pittsburgh Sleep Quality Index.31 We considered apnea possible when participants 

reported (1) loud snoring at least two nights per week and at least occasional respiratory 

pauses or (2) respiratory pauses during sleep with a frequency of at least 1-2 nights per 

week.32 Use of medication was based on self-report during the home interview and in the 

sleep diary. Height and weight were measured without shoes and heavy clothing during a 

center visit to calculate the BMI (kg/m2). Coffee and alcohol use were the number of units 

consumed per day after 18:00h in the week of actigraphy, as reported in a daily question in 

the sleep diary. Time of cortisol sampling was self-reported in a form which was enclosed 

with the saliva sampling devices. Habitual actigraphic wake up time was averaged over the 

actigraphy period.

Statistical analyses

We assessed the associations of the 24-hour activity rhythm and sleep parameters 

with saliva cortisol levels after the intake of 0.25 mg dexamethasone with linear regression 
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in successive models. First, we studied the associations adjusting for baseline cortisol, sex 

and age. Second, we ran models which we adjusted for baseline cortisol, sex, age, 

partnership, education, employment status, BMI, alcohol use, current smoking, ADL, 

cognitive status, diabetes mellitus and use of sleep medication, psycholeptics and/or 

psychoanaleptics, habitual wake up time, and the time difference between sleep 

measurements and cortisol sampling. Lastly, we ran a model in which we adjusted the 

analyses additionally for depressive symptoms to test whether effects were confounded by 

mental health. We included the a-priori selected covariate in the model if the covariate 

predicted the 24-hour activity rhythm or sleep (p<0.05) or if it changed the effect estimate 

of the main determinants by more than 10%. Exercise, coffee use, possible apnea and time 

of cortisol sampling did not meet either of these criteria. Next, we assessed whether sex and 

medication modified the associations of 24-hour rhythms and sleep with cortisol. We 

additionally analyzed the association of the 24-hour activity rhythm and sleep parameters 

with the saliva cortisol level before and after dexamethasone intake without adjustment for 

baseline cortisol in all three models for the comparison of our results with results from the 

classical DST. In the classical DST, only cortisol after dexamethasone intake is assessed, 

instead of the change in cortisol levels before and after intake. All analyses were performed 

using SPSS Statistics (version 21, IBM Corp., Somers, NY USA).

Saliva cortisol levels were natural-log transformed due to the non-normal distribution. 

All 24-hour activity rhythm and sleep indicators were winsorized at 4 standard deviations to 

the mean. We used a Box-Cox transformation33,34 to obtain normally distributed values for 

interdaily stability (λ=7.0), intradaily variability (λ=-3.9), actigrahic sleep onset latency  

(λ=-0.1), actigraphic wake after sleep onset (λ=0.4), self-rated sleep onset latency (λ=0.3), 

self-rated number of awakenings (λ=0, natural log transformation) and subjective sleep 

quality (λ=5.3). All 24-hour activity rhythm and sleep indicators were standardized to 

facilitate the interpretation. The number of missing values for the covariates was generally 

low (alcohol use 0.4%, ADL 6.3%, cognitive status 2.0%, depressive symptoms, 0.2%). 

Missing values in quantitative predictors were replaced by the median.35

Results

Population characteristics (N=493) are presented in table 1. The mean age of our 

sample was 55.6 years (standard deviation (SD): 5.34) and 57% was female. Average saliva 

cortisol levels were 14.75 mmol/L (SD: 8.65) in the morning before the intake of 

dexamethasone and 6.1 mmol/L (SD: 7.13) in the morning after the intake of 0.25 mg 

dexamethasone. Participants slept on average 6.3 hours (SD: 0.88) according to the 

actigraphy, self-rated total sleep time was 6.8 hours (SD: 0.95) on average. On average, the 

week of actigraphy, in which the sleep variables were also self-reported by means of a sleep 
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Table 1. Population characteristics (n=493).

Demographics
Female, % 57.2
Age, years 55.58 ± 5.34
Partnership, % 81.3
Education, %

Low 8.9
Intermediate 66.5
High 23.1

Employment, % 56.6
Health indicators
Exercising, % 59.8
Body mass Index (BMI), kg/m2 27.60 ± 4.28
Coffee use, cups per day 0.96 ± 0.84
Alcohol use, units per week 6.09 ± 8.00
Current smoking, % 25.8
Activities of daily living, score 0.15 ± 0.29
Cognitive status, score 28.11 ± 1.75
Depressive symptoms, score 5.87 ± 7.46
Diabetes Mellitus, % 8.3
Possible Apnea, % 26.4
Use of sleep medication, psycholeptics and/or psychoanaleptics, % 21.1

Cortisol
Cortisol in saliva before dexamethasone intake, mmol/L 14.75 ± 8.65
Cortisol in saliva after dexamethasone intake, mmol/L 6.12 ± 7.13
Sampling time day 1, clocktime 7:57 ± 0:42
Sampling time day 2, clocktime 7:55 ± 0:33
Time between sleep measurements and cortisol sampling, days 34.83 ± 25.21

24-hour activity rhythm 
Interdaily stability, score 0.80 ± 0.10
Intradaily variability, score 0.39 ± 0.11
Duration of actigraphy, hours 137.72 ± 15.04

Actigraphic sleep
Total sleep time, hours 6.31 ± 0.88
Sleep onset latency, minutes 6.37 ± 2.44
Wake after sleep onset, minutes 68.67 ± 23.93

Self-rated sleep
Total sleep time, hours 6.77 ± 0.95
Sleep onset latency, minutes 17.90 ± 12.97
Number of awakenings, score 1.48 ±1.09
Actigraphic habitual wake up time, clocktime 07:34 ± 0:53

Sleep quality
Perceived sleep quality, score 5.35 ± 1.68

Values are stated as mean ± standard deviation or percentage.



96 ● Neuropsychiatric studies of sleep and 24-hour activity rhythms

Ta
bl

e 
2.

 C
or

re
la

tio
ns

 o
f c

or
tis

ol
 in

 s
al

iv
a,

 2
4-

ho
ur

 a
cti

vi
ty

 rh
yt

hm
s,

 a
nd

 s
le

ep
 (N

=4
93

).

1
2

3
4

5
6

7
8

9
10

11
Co

rti
so

l
1

Co
rti

so
l i

n 
sa

liv
a 

be
fo

re
 d

ex
am

et
ha

so
ne

 in
ta

ke
-

2
Co

rti
so

l i
n 

sa
liv

a 
aft

er
 d

ex
am

et
ha

so
ne

 in
ta

ke
0.

40
-

Ci
rc

ad
ia

n 
rh

yt
hm

3
In

te
rd

ai
ly

 s
ta

bi
lit

y
0.

12
0.

10
-

4
In

tr
ad

ai
ly

 v
ar

ia
bi

lit
y

−0
.0

9
−0

.0
9

−0
.6

0
-

A
cti

gr
ap

hi
c 

sl
ee

p
5

To
ta

l s
le

ep
 ti

m
e

−0
.0

4
−0

.0
5

0.
33

−0
.3

1
-

6
Sl

ee
p 

on
se

t l
at

en
cy

−0
.0

6
−0

.0
2

−0
.2

7
0.

34
−0

.4
6

-
7

W
ak

e 
aft

er
 s

le
ep

 o
ns

et
−0

.1
0

−0
.1

1
−0

.1
6

0.
23

−0
.1

7
0.

74
-

Se
lf-

ra
te

d 
sl

ee
p

8
To

ta
l s

le
ep

 ti
m

e
−0

.0
3

−0
.0

5
0.

09
−0

.1
3

0.
41

−0
.0

4
0.

09
-

9
Sl

ee
p 

on
se

t l
at

en
cy

−0
.0

1
−0

.0
5

0.
00

0.
01

0.
10

0.
14

0.
21

−0
.2

6
-

10
N

um
be

r 
of

 a
w

ak
en

in
gs

−0
.1

1
−0

.1
0

−0
.0

1
0.

01
0.

15
0.

05
0.

26
−0

.1
7

0.
25

-
Sl

ee
p 

qu
al

it
y

11
Pe

rc
ei

ve
d 

sl
ee

p 
qu

al
ity

0.
11

0.
18

0.
07

−0
.0

5
0.

01
−0

.0
4

−0
.0

6
0.

33
−0

.3
0

−0
.3

5
-

Bo
ld

 in
di

ca
te

s 
p<

0.
05

. P
ea

rs
on

 c
or

re
la

tio
n 

co
effi

ci
en

ts
. A

ll 
co

rti
so

l l
ev

el
s 

w
er

e 
na

tu
ra

l-l
og

 tr
an

sf
or

m
ed

, i
nt

er
da

ily
 s

ta
bi

lit
y,

 in
tr

ad
ai

ly
 v

ar
ia

bi
lit

y,
 a

cti
gr

ap
hi

c 
sl

ee
p 

on
se

t l
at

en
cy

, 
ac

tig
ra

hi
c 

w
ak

e 
aft

er
 s

le
ep

 o
ns

et
, s

el
f-

ra
te

d 
sl

ee
p 

on
se

t l
at

en
cy

 a
nd

 s
el

f-
ra

te
d 

nu
m

be
r 

of
 a

w
ak

en
in

gs
 a

nd
 p

er
ce

iv
ed

 s
le

ep
 q

ua
lit

y 
w

er
e 

bo
x-

co
x 

tr
an

sf
or

m
ed

. 



3.3 Sleep and 24-hour activity rhythms in relation to cortisol change after dexamethasone ● 97

diary, took place one month (35 days, SD: 25.21) before the very low-dose DST. 

Table 2 shows the correlations between saliva cortisol levels, the 24-hr activity 

rhythm and sleep parameters. Cortisol levels before and after dexamethasone intake 

correlated moderately with each other (r= 0.40, p<0.01) and minimally with depressive 

symptoms (r=-0.10, p=0.024 and r=-0.09, p=0.036 respectively). Parameters of the 24-hour 

activity rhythm correlated substantially with each other (r= 0.60, p<0.01). Similarly, 

actigraphic sleep onset latency and actigraphic wake after sleep onset (r=0.74, p<0.01) 

correlated highly.

Next, we explored the stability and fragmentation of the 24-hour activity rhythm 

with saliva cortisol after dexamethasone intake (adjusted for baseline cortisol), see table 3. 

A more stable rhythm was associated with higher levels of saliva cortisol after dexamethasone 

in the basic model (B=0.132, 95% Confidence Interval (CI): 0.032;0.233). This association 

remained after multivariate adjustment (B=0.106, 95%CI: 0.002;0.210) including adjustment 

for depressive symptoms (B=0.106, 95%CI: 0.002;0.210). A more fragmented rhythm was 

associated with lower saliva cortisol after dexamethasone in the basic model (B=−0.102, 

95%CI: −0.203;0.000). This association was attenuated after multivariate adjustment 

Table 3. Associations of the 24-hour activity rhythm and sleep with saliva cortisol after dexametha-
sone intake when adjusted for baseline cortisol (N=493).

Cortisol in saliva after dexamethasone intake
Basic model Multivariate model

B 95%CI B 95%CI

24-hour activity rhythm
Interdaily stability 0.132 0.032; 0.233 0.106 0.002; 0.210
Intradaily variability −0.102 −0.203; 0.000 −0.073 −0.178; 0.032

Actigraphic sleep
Total sleep time 0.034 −0.063; 0.130 0.108 0.001; 0.215
Sleep onset latency −0.089 −0.253; 0.074 −0.087 −0.254; 0.079
Wake after sleep onset −0.087 −0.189; 0.014 −0.074 −0.179; 0.031

Self-rated sleep
Total sleep time −0.038 −0.132; 0.055 0.012 −0.086; 0.110
Sleep onset latency −0.011 −0.103; 0.081 0.004 −0.090; 0.098
Number of awakenings −0.017 −0.110; 0.077 −0.028 −0.122; 0.066

Sleep quality
Perceived sleep quality 0.108 0.011; 0.205 0.107 0.009; 0.206

CI: Confidence Interval. Bold indicates p<0.05. Linear regression analyses. Cortisol levels were natural-log 
transformed, interdaily stability, intradaily variability, actigraphic sleep onset latency, actigraphic wake after sleep 
onset, self-rated sleep onset latency, self-rated number of awakenings and perceived sleep quality were box-cox 
transformed to obtain a normal distribution. All activity rhythm and sleep variables were standardized. The basic 
model was adjusted for baseline cortisol, sex and age. The multivariate model was adjusted for baseline cortisol, 
sex, age, partnership, education, employment, body mass index, alcohol use, smoking, activities of daily living, 
cognitive status, diabetes mellitus, use of sleep medication or medication prescribed for the nervous system, 
actigraphic habitual wake up time and time difference between sleep measurements and cortisol sampling.
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(B=−0.073, 95%CI: −0.178;0.032), most likely due to strong confounding of wake up time 

(B=−0.196, 95%CI: −0.306;−0.086). 

In addition, we assessed actigraphically measured sleep parameters, as well as self-

rated sleep parameters in relation to saliva cortisol levels after dexamethasone intake 

controlled for baseline cortisol (table 3). Total sleep time was related to saliva cortisol after 

dexamethasone, but only after multivariate adjustment (B=0.108, 95%CI: 0.001;0.215). 

Stepwise analyses showed that this association was affected most by the confounding of 

actigraphic wake-up time (results not presented). Further adjustment for depressive 

symptoms did not change the effect estimate (B=0.108, 95%CI: 0.001; 0.215). Other sleep 

parameters were not related to saliva cortisol after dexamethasone intake, independent of 

measurement method.

We also studied whether perceived sleep quality was associated with saliva cortisol 

after dexamethasone intake (table 3). In all models, a better perceived sleep quality was 

associated with higher levels of saliva cortisol after dexamethasone intake (basic model: 

B=0.108, 95%CI: 0.011; 0.205, and multivariate model: B=0.107, 95%CI: 0.009; 0.206). 

Further adjustment for depressive symptoms changed the effect estimate marginally 

(B=0.118, 95%CI: 0.014; 0.222).

Table 4. Associations of the 24-hour activity rhythm and sleep with cortisol in saliva before dexa-
methasone intake (N=493).

Cortisol in saliva before dexamethasone intake
Basic model Multivariate model

B 95%CI B 95%CI

24-hour activity rhythm
Interdaily stability 0.089 0.032; 0.146 0.064 0.005; 0.123
Intradaily variability −0.066 −0.124; −0.008 −0.030 −0.089; 0.028

Actigraphic sleep
Total sleep time −0.014 −0.069; 0.041 0.001 −0.060; 0.062
Sleep onset latency −0.087 −0.180; 0.006 −0.064 −0.157; 0.030
Wake after sleep onset −0.064 −0.122; −0.006 −0.041 −0.100; 0.018

Self-rated sleep
Total sleep time −0.020 −0.074; 0.034 −0.004 −0.059; 0.052
Sleep onset latency 0.000 −0.053; 0.053 0.035 −0.018; 0.088
Number of awakenings −0.056 −0.110; −0.003 −0.054 −0.106; −0.001

Sleep quality
Perceived sleep quality 0.060 0.004; 0.116 0.038 −0.018; 0.094

CI: Confidence Interval. Bold indicates p<0.05. Linear regression analyses. Cortisol levels were natural-log 
transformed, interdaily stability, intradaily variability, actigraphic sleep onset latency, actigraphic wake after sleep 
onset, self-rated sleep onset latency, self-rated number of awakenings and perceived sleep quality were box-cox 
transformed to obtain a normal distribution. All activity rhythm and sleep variables were standardized. The basic 
model was adjusted for sex and age. The multivariate model was adjusted for baseline cortisol, sex, age, 
partnership, education, employment, body mass index, alcohol use, smoking, activities of daily living, cognitive 
status, diabetes mellitus, use of sleep medication or medication prescribed for the nervous system, actigraphic 
habitual wake up time and time difference between sleep measurements and cortisol sampling.
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Next, we studied whether sex and the intake of sleep medication, psycholeptics or 

psychoanaleptics modified the associations of the 24-hour rhythm and sleep with cortisol 

after dexamethasone intake. Significant interaction effects of sex were found on the 

associations of interdaily stability with cortisol after dexamethasone (p=0.049) and on the 

association of total sleep time with cortisol after dexamethasone (p=0.032). In men interdaily 

stability and cortisol after dexamethasone (n=211, B=0.192, 95%CI: 0.036; 0.348) were more 

strongly associated than in women (n=282, B=0.024, 95%CI: −0.119; 0.166). Likewise, total 

sleep time and cortisol after dexamethasone were more strongly associated in men (B=0.186, 

95%CI: 0.032; 0.339) than in women (B=0.029, 95%CI: 0.123; −0.181). No significant 

interactions were found for an effect of medication on any of the associations.

Last, we present the associations of the 24-hour activity rhythm and sleep parameters 

with saliva cortisol before dexamethasone intake and after dexamethasone intake not 

adjusting for baseline cortisol (see table 4 and table 5). Persons with more stable rhythms 

had higher levels of cortisol both before and after dexamethasone intake (B=−0.064, 95%CI: 

−0.005; −0.123, B=0.149, 95%CI: 0.038; 0.260 respectively). Self-rated number of awakenings 

were associated with cortisol before dexamethasone intake after multivariate adjustment 

(B=−0.054, 95%CI: −0.106; −0.001), whereas they were not related to saliva cortisol after 

Table 5. Associations of the 24-hour activity rhythm and sleep with cortisol in saliva after 
dexamethasone intake (N=493).

Cortisol in saliva after dexamethasone intake
Basic model Multivariate model

B 95%CI B 95%CI

24-hour activity rhythm
Interdaily stability 0.196 0.088; 0.304 0.149 0.038; 0.260
Intradaily variability −0.150 −0.259; −0.040 −0.094 −0.206; 0.019

Actigraphic sleep
Total sleep time 0.023 −0.081; 0.128 0.108 −0.006; 0.223
Sleep onset latency −0.153 −0.330; 0.023 −0.131 −0.309; 0.047
Wake after sleep onset −0.134 −0.243; −0.024 −0.102 −0.214; 0.010

Self-rated sleep
Total sleep time −0.053 −0.155; 0.048 0.009 −0.096; 0.114
Sleep onset latency −0.011 −0.111; 0.089 0.028 −0.073; 0.129
Number of awakenings −0.058 −0.159; 0.043 −0.065 −0.165; 0.035

Sleep quality
Perceived sleep quality 0.151 0.047; 0.256 0.133 0.028; 0.239

CI: Confidence Interval. Bold indicates p<0.05. Linear regression analyses. Cortisol levels were natural-log 
transformed, interdaily stability, intradaily variability, actigraphic sleep onset latency, actigraphic wake after sleep 
onset, self-rated sleep onset latency, self-rated number of awakenings and perceived sleep quality were box-cox 
transformed to obtain a normal distribution. All activity rhythm and sleep variables were standardized. The basic 
model was adjusted for sex and age. The multivariate model was adjusted for baseline cortisol, sex, age, 
partnership, education, employment, body mass index, alcohol use, smoking, activities of daily living, cognitive 
status, diabetes mellitus, use of sleep medication or medication prescribed for the nervous system, actigraphic 
habitual wake up time and time difference between sleep measurements and cortisol sampling.
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dexamethasone intake (B=−0.065, 95%CI: −0.166; 0.035). In addition, in persons with a 

worse perceived sleep quality no changes were observed in saliva cortisol before 

dexamethasone (B=0.038, 95%CI: −0.018; 0.094). However, in those with a worse sleep 

quality cortisol after dexamethasone was lowered (B=0.133, 95%CI: 0.028; 0.239) after 

multivariate adjustment. Associations of cortisol after dexamethasone had marginally 

increased effects sizes when they were not adjusted for baseline cortisol, but were largely 

similar to the associations that were adjusted for baseline cortisol.

Discussion

Our study demonstrated that a lower stability of the 24-hour activity rhythm is 

associated with enhanced negative feedback of cortisol in the HPA axis. Similarly, a poor 

perceived sleep quality was related to enhanced negative feedback. Total sleep time was 

associated with cortisol after dexamethasone only when controlled for wake-up time. Total 

sleep time and perceived sleep quality were associated uniquely with cortisol levels after 

the intake of dexamethasone, these sleep characteristics were not associated with cortisol 

before the intake of dexamethasone. 

The stability of the 24-activity rhythm was associated with the change in saliva 

cortisol after intake of 0.25 mg dexamethasone. There are several explanations possible for 

the association of less stable rhythms with enhanced negative feedback of the HPA axis. 

First, a deterioration of the SCN may underlie both less stable activity rhythms as well as an 

enhanced negative feedback control of the HPA axis. A deteriorated SCN can result in 

problems in integrating internal and external time cues,36 which can lead to unstable and 

fragmented rhythms and possibly disturbances in the cortisol rhythm.37 However, research 

has suggested that CRH, which is released from the hypothalamus, is the key circadian 

alerting signal of the HPA axis instead of cortisol.3 Second, the association of the stability of 

the rhythm with the negative feedback of the HPA axis could be due to depressive symptoms; 

cortisol after dexamethasone intake has been suggested as a biomarker for depression.13 

However, while depression has been related with more disturbed circadian rhythms,38 it has 

mostly been related to a diminished negative feedback of the HPA instead of an enhanced 

negative feedback. This is not consistent with our results as we find that less stable rhythms 

are associated with enhanced negative feedback of the HPA axis. Also, adjustment for 

depressive symptoms did not change the association between the stability of the rhythm 

and the negative feedback control in the present study. Associations in the same direction 

as in the present study have been reported for other disorders such as post-traumatic stress 

disorder14 and job-related exhaustion.39 The association of job-related exhaustion with 

negative enhanced feedback has been explained by glucocorticoid receptor hypersensitivity 

accompanied by changes in GR induced gene expression. Possibly, the association of less 
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stable rhythms with enhanced negative feedback follows a similar mechanism, further 

studies are needed to test this hypothesis. Third, less stable activity rhythms may directly 

influence cortisol levels. Possibly, the association of a more stable rhythm and lower cortisol 

levels can be explained by better persistence of a rapidly rising cortisol awakening response, 

despite a low dose of dexamethasone, in those maintaining a more stable activity rhythm. 

Unstable rhythms may result in more awakenings or more fluctuations which are physical 

and psychological stressors that can increase cortisol levels.40 These increased cortisol levels 

might need higher doses of dexamethasone to be suppressed. In our study we did not find 

an association of wake after sleep onset or fragmented rhythms suggesting that awakenings 

are not key in the association of unstable rhythms with enhanced negative feedback of the 

HPA axis. Fourth, previous research suggests that the association between the stability of 

the rhythm and the negative feedback control is bi-directional.3 Thus, a less adaptive HPA 

axis could also lead to more unstable rhythms. Stability of the 24-hour rhythms can be highly 

dependent on amenable behaviors. Less regulation of the HPA axis might lead to less 

regulated behaviors, including less habituated sleep and wake times. 

In our sample, total sleep time was related to saliva cortisol levels after the intake of 

a very low-dose of dexamethasone. This finding was dependent of the measurement 

method of sleep; it was only found when total sleep time was assessed objectively with 

actigraphy. Previous results have been mixed. Most associations of sleep with cortisol were 

found in clinical samples, i.e. in insomniacs,9 or after experimental manipulation of sleep, 

i.e. after sleep deprivation.8 Population-based studies have not found associations between 

objectively assessed sleep and cortisol,5,6 however these cortisol levels were not 

experimentally manipulated. In line with this, we also found that indeed total sleep time 

was not associated with cortisol levels before dexamethasone intake. The discrepancy 

between cortisol levels before and after dexamethasone intake could be explained multiple 

ways. First, sleep may only affect the glucocorticoid receptor mediated negative feedback, 

which is the mechanism mainly influenced by the intake of dexamethasone, and no other 

mechanisms involved in cortisol production. Second, a rapid habituation of the production 

of cortisol to sleep disturbances has been reported,41 possibly this habituation only affects 

certain aspects of the functioning of the HPA axis. 

Poor perceived sleep quality was associated with enhanced negative feedback of the 

HPA axis. This association is unique for the negative feedback control of the HPA axis since 

the association was only observed with cortisol after dexamethasone intake and not with 

cortisol levels before dexamethasone intake. Altered HPA-axis activity has been reported in 

stress-related conditions, for example after acute induced stress,40 after prenatal stress,42 

and in stress disorders.43 Stress could also impact how persons experience their sleep 

quality. More generally, perceived sleep quality may be a marker for general social, 

psychological or physical issues, which might affect how persons react to pharmacologically 
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or psychologically induced stress. Yet, depressive symptoms could not explain the association 

between perceived sleep quality and the negative feedback control in our study. This is in 

line with the normalization of cortisol levels in depressed patients independent of their 

sleep quality.44 In a previous population-based study, low waking salivary cortisol and a 

flatter slope in cortisol secretion were associated with fatigue.45 Possibly, symptoms such as 

fatigue represent the mechanism which underlies the association of poor perceived sleep 

quality and enhanced negative feedback of the HPA axis in the present study. This would 

also be in line with previously described association of enhanced negative feedback with 

chronic fatigue syndrome14 and job-related exhaustion.39

In our study, the associations of the stability of the rhythm and total sleep time with 

cortisol change differed by sex. It has been demonstrated that men exhibit greater saliva 

responses in studies with social stress situations, but studies which assessed the 

pharmacological manipulation of cortisol levels did either demonstrate no sex differences or 

a decreased feedback sensitivity in women, specifically at older age.46 Our results were 

more pronounced in men, which is in line with previous evidence of a stronger negative 

feedback in men than women. The use of 0.25mg of dexamethasone might have been too 

low to trigger a response in the middle-aged and elderly women of our sample due to the 

decreased feedback sensitivity in this population.

Our study has several strengths. First, to our knowledge, we were the first to assess 

a very low-dose DST in relation to sleep in a population-based study in middle-aged and 

elderly persons which deals with the generalizability problem in clinical studies. Second, we 

were able to study the 24-hour organization of the activity rhythm as persons were studied 

with actigraphy over multiple days. And last, we studied sleep with both a sleep diary and 

actigraphy over the same period, which allowed us to differentiate between subjective and 

objective measurements of sleep. Nevertheless, there are also limitations to our study. First, 

we assessed the effects of a very low-dose dexamethasone in a sample of middle-aged and 

elderly persons. Dexamethasone metabolism has been suggested to alter with age.47,48 Age 

did not have a significant confounding influence in our study, but we must be careful in 

generalizing these results to younger populations. Second, although actigraphy is a valid 

estimator of sleep, it lacks the precision of polysomnography.24 Third, the very low-dose DST 

was performed at home by the participants which makes is susceptible for non-compliance. 

However, all of our participants participated voluntarily and could have easily withdrawn 

from participation. In other population-based studies non-compliance has also not been an 

issue.26,49 Fourth, we evaluated the effects of dexamethasone on saliva cortisol levels. It has 

been suggested that low doses of dexamethasone only create a state of low brain cortisol 

which leads to a compensatory increase in central CRH.3 However, we were not able to 

assess this with the current study. In addition, the impact of 0.25 mg of dexamethasone has 

been found to be less reproducible in saliva cortisol levels than in serum cortisol levels.50 The 
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susceptibility for this low dose of dexamethasone has also been suggested to be dependent 

on a distinct GR polymorphism.51 Next, the timing of cortisol sampling was set at 8 AM for 

everyone independent of their wake-up times at the days of saliva sampling. And, as we had 

only one baseline sample, we were not able to assess the cortisol awakening response. Last, 

the actigraphy and very low-dose DST were not administered in the same week, we thus 

assessed the effect of habitual rhythms and sleep on the negative feedback control of the 

HPA axis and not the effect of dexamethasone intake on sleep directly.

In conclusion, a less stable 24-hour organization, a shorter sleep duration, and a poor 

perceived sleep quality were associated with the negative feedback control of the HPA axis, 

as indicated by the difference in the cortisol concentrations in saliva before and after the 

intake of 0.25 mg of dexamethasone. Dexamethasone cortisol reactivity may help to 

understand the impact of circadian rhythm and sleep disturbances on the stress system.
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Abstract

Alterations in rapid eye movement (REM)-sleep have been consistently related to 

depression in clinical studies. So far, there is limited evidence from population-based studies 

for this association of REM-sleep alterations with depressive symptoms. In 489 participants 

of the Rotterdam Study we assessed REM-sleep latency, REM-sleep duration and REM-

density with ambulant polysomnography, and depressive symptoms with the Center of 

Epidemiologic Studies-Depression scale. A longer REM-sleep latency (B=.002, p=.025) and 

higher REM-density (B=.015, p=.046) were related to depressive symptoms after age-sex 

adjustment. When we excluded persons who used sleep medication or medication for the 

nervous system (n=124), only REM-density remained related to depressive symptoms 

(B=.018, p=.027). Our results suggest that REM-density is a marker of depressive symptoms 

in the general population and that associations of REM-sleep are modified by the use of 

medication.
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Introduction

Clinical research suggests that a decreased REM-sleep latency, increased REM-sleep 

duration, and increased REM-density are prominent in persons with depressive disorders.1 

Changes in sleep are found during and before the onset of depressive disorders, suggesting 

that sleep alterations can be both a trait and state marker.2 

Studies on the associations of REM-sleep and depression have been conducted in 

clinical populations with severe depressive episodes mostly. However, in the general 

population symptoms of depression are usually lingering and less severe. In two large 

population-based studies no associations of REM-sleep with depressive symptoms were 

found.3,4 In a large sample of older men a lower percentage of time spent in REM-sleep was 

related to more depressive symptom.5 

Clinical studies typically investigate medication naïve patients, as sleep medication 

and other medication can impact REM-sleep.6 Population-based studies mostly adjust for 

medication use, such as anti-depressants, which are commonly prescribed. However, 

medication can both confound and modify the association between REM-sleep and 

depressive symptoms. In this study we examined whether REM-sleep latency, REM-sleep 

duration and REM-density are related to depressive symptoms in a population-based 

sample. We also assessed these associations excluding persons who used sleep medication 

or medication prescribed for the nervous system.

Methods 

Study Population

The current study was embedded in the Rotterdam Study, a population-based cohort 

of middle-aged and elderly inhabitants of Rotterdam, the Netherlands.7 The study was 

conducted in accordance with the guideline proposed in the World Medical Association 

Declaration of Helsinki and approved by the medical ethics committee according to the 

Population Study Act Rotterdam Study, executed by the Ministry of Health of the Netherlands. 

Written informed consent was obtained from all participants.

From January 2012 until June 2013, 876 persons were invited to participate in a 

polysomnography (PSG) study; 500 participants (57.1%) agreed. There was no significant 

difference in age or depressive symptoms between participants and those who declined to 

take part in the PSG study, although women were more likely to decline (53.8% versus 

61.2%, p=0.028). 11 participants (2.2%) were excluded; for 9 participants the PSG recording 

was of insufficient quality and for 2 participants there was no information on depressive 

symptoms. Data of 489 participants was eligible for analyses. 
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Assessment of depressive symptoms

During a home-interview all participants were screened for depressive symptoms 

with the validated, Dutch version of the Center for Epidemiologic Studies-Depression (CES-D) 

scale.8,9 The CES-D consists of 20 questions which measure negative affect, lack of positive 

affect, interpersonal and somatic problems scored on a 0-3 scale according to their severity, 

with a higher score indicating more depressive symptoms. 

Assessment of sleep

Participants were scheduled for a home visit of a trained research assistant to place 

all sensors to record an ambulant PSG (Vitaport 4, Temec, Kerkrade, the Netherlands). The 

PSG included six electroencephalography channels, F3/A2, F4/A1, C3/A2, C4/A1, O1/A2, O2/

A1, bilateral electrooculography, electromyography, electrocardiography, respiratory belts 

on the chest and abdomen, oximetry, and a nasal pressure transducer and oronasal 

thermocouple to measure airflow. All participants slept one night with the equipment and 

were instructed to spend the night as normal as possible. There were no further restrictions 

on bedtimes and the use of alcohol, coffee, and medication. All recordings were scored 

according to AASM (American Association of Sleep Medicine) guidelines10 by a Registered 

Polysomnographic Technologist (RPSGT).

PSG recordings were manually scored in 30-second epochs for identification of sleep 

stages; each epoch was scored as Wake, N1, N2, N3 or REM sleep. For each of these sleep 

stages, the duration and latency was determined. In addition, we used PRANA (PhiTools, 

Strasbourg, France) software11 to automatically measure REM-density (number of rapid eye 

movements per minute during REM-period). REMs were detected automatically when the 

electrooculography signal had an amplitude of at least 10µV and a slope of at least 10µV/s, 

the duration had to between 0.05 ms and 3.0 ms.

Assessment of covariates

We selected sex, age, education, employment status, alcohol, and coffee use at night 

of PSG, body mass index, apnea-hypopnea index, use of sleep medication at night of PSG, 

and use of medication prescribed for (1) blood and blood forming organs, (2) cardiovascular 

system, (3) genito-urinary system and sex-hormones, (4) systemic hormonal preparations, 

(5) nervous system and (6) respiratory system (according to the anatomical therapeutic 

chemical (ATC) classification system) as possible confounders. 

Statistical analyses

Associations of REM-sleep latency, REM-sleep duration and REM-density with 

depressive symptoms were assessed with linear regression. We conducted age-sex adjusted 

and multivariate adjusted analyses (including all covariates). In addition, we ran the analyses 

separately for participants free of sleep medication and free of medication prescribed for 
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the nervous system. Depressive symptoms were log transformed and standardized in all 

analyses. All analyses were performed using IBM SPSS Statistics, version 21 (IBM Corp., 

Somers, NY USA).

As the number of missing values per parameter never exceeded 1%, missing values 

in quantitative predictors were replaced by the median. A separate missing category was 

used for qualitative predictors.

Table 1. Population Characteristics, N=489

Demographic
Female, % 52.4
Age, years 61.85 ± 5.37
Employment, % 50.2
Education, %

Low 8.6
Intermediate 58.2
High 32.9

Health indicators
Body mass Index (BMI), kg/m2 27.84 ± 4.71
Alcohol use at night of polysomnography, , % 29.4
Coffee use at night of polysomnography, % 61.6
Use of medication for the nervous system (total)1, % 23.3

Psychoanaleptics, % 6.7
Psycholeptics, % 7.6
Anti-Parkinson drugs, % 0.4
Anti-epileptics, % 2.9
Analgesics, % 11.0
Other, % 1.6

Use of medication for the respiratory system, % 8.6
Use of medication for the cardiovascular system, % 42.3
Use of medication for blood and blood forming organs, % 15.7
Use of medication for the genito-urinary system and sex hormones, % 3.1
Systemic hormonal preparations, % 5.1
Use of sleep medication at night of polysomnography, % 6.9

Depression
Depressive symptoms, score 5.43 ± 6.47 

Sleep
Apnea Hypopnea Index (AHI), events per hour 15.71 ± 14.65
Total sleep time (TST), minutes 382.60 ± 63.13
Sleep onset latency (SOL), minutes 21.37 ± 26.08
Rapid Eye Movement (REM)-sleep latency, minutes 88.48 ± 53.09
Rapid Eye Movement (REM)-sleep duration, % total sleep time 18.2
Rapid Eye Movement (REM)-density, n per minute 5.76 ± 6.09

Values are stated as mean ± standard deviation or percentage.
1 The total amount includes all persons who use one or more medications from this category.
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Results

A description of the study population can be found in table 1. 

Table 2. The associations of REM-sleep with depressive symptoms.

Depressive Symptoms
Total sample

n=489
Persons free of 

medication1

n=365
B SE P B SE P

Rapid Eye Movement (REM)-sleep latency (minute)2

Sex-age adjusted .002 .001 .025 .002 .001 .21
Multivariate adjusted .001 .001 .16 .002 .001 .19

Rapid Eye Movement (REM)-sleep duration (%)
Sex-age adjusted −.004 .008 .64 .000 .010 .99
Multivariate adjusted −.002 .008 .76 .002 .010 .81

Rapid Eye Movement (REM) density (n/minute)2

Sex-age adjusted .015 .007 .046 .018 .008 .027
Multivariate adjusted .012 .007 .089 .017 .008 .032

Bold indicates p<0.05. Linear regression analyses. Depressive symptoms were log-transformed and standardized. 
Multivariate adjusted models are adjusted for sex, age, education, employment status, alcohol use, coffee use, 
body mass index, sleep medication use (only in total sample), general use of medication prescribed for the 
nervous system (only in total sample), respiratory system, cardiovascular system, blood and blood forming organs, 
genito-urinary system and sex hormones, and systemic hormonal preparations.
1 Persons who used sleep medication at the night of PSG and/or used medication for the nervous system (n=124) 
are excluded.
2 1 participant did not have any REM-sleep, this person is excluded.

A longer REM-sleep latency and a higher REM-density were associated with more 

depressive symptoms when adjusted for age and sex (respectively B=.002, SE=.001, p=.025 

and B=.015, SE=.007, p=.046; table 2). However, these associations disappeared after 

multivariate adjustment. 

Exclusion of persons who used medication for the nervous system and sleep 

medication at the night of PSG (n=124), substantially increased the strength of the association 

of REM-density with depressive symptoms in the multivariate adjusted model (B=.017, 

SE=.008, p=.032, figure 1). This association was not found in persons who did use medication 

(B=−.002, SE=.017, p=.892). The association of a longer REM-sleep latency with depressive 

symptoms, adjusted for age and sex, was unchanged but no longer significant (B=.002, 

SE=.001, p=.21) in persons who did not use medication.

Discussion 

REM-density was consistently related to depressive symptoms in this general 

population-based study. This association was particularly prominent in participants who did 
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not use any medication prescribed for the nervous system or sleep medication at the night 

of the PSG. No associations of REM-sleep latency and REM-sleep duration with depressive 

symptoms were found in multivariate adjusted models.
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Figure 1. The association of REM-density with depressive symptoms (z-score). Regression lines are 
plotted separately for the total sample (continuous line), persons free of any sleep medication or 
medication for the nervous system (dashed line) and persons with these medications (dotted line). 
Estimates were extracted from the multivariate adjusted model.

To our knowledge the association of REM-density with depressive symptoms has not 

been assessed before in a population-based setting. Our results suggest that, of the REM-

sleep characteristics, only REM-density is a marker of subclinical depressive symptoms in 

middle-aged and elderly persons in the general population. Possibly our findings can be 

explained by the relatively old age of our sample, as REM-sleep latency tends to become 

progressively shorter with middle age, while REM-density does not vary with age.12 In 

addition, it has been suggested that REM-density is altered in both remittent and depressive 

states,13 which might explain this association in the present subclinical population where 

depressive symptoms are less severe but continuously lingering. Research on high risk 

probands demonstrated that REM density is also elevated in healthy relatives of patients 

with depression, and that elevated REM density is predictive for the onset of psychiatric 

disorders.14 Our results support the conclusion that increased REM density is a possible 

endophenotype of depression.

The focus on prevalent depressive symptoms but not on severe depression is 

therefore a strength and a limitation of our study. Another limitation is that we cannot draw 

any conclusions on temporality as our data is cross-sectional. In addition, our study consisted 

of one night of PSG and is thus susceptible for first-night effects. However, all persons were 

studied at their own home to minimize the first-night effect. Our study sample has a high 

average apnea-hypopnea index which might affect our results, to prevent for confounding 
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we included apnea-hypopnea index in our model.

In our study, the use of medication influenced the associations of REM-sleep latency 

and REM-density. After excluding participants who used medication that can affect sleep 

and depression, only the association of REM-density and depressive symptoms became 

more pronounced. Several medications, including antidepressants, are known to inhibit 

REM-sleep.6 In our study, medication use masked the association of REM-density with 

depressive symptoms.

Our findings emphasize that REM-density may be considered as an important marker 

of depression in subclinical populations, next to clinical populations, and that medication 

use may obviate this marker.
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In this thesis I have investigated the variation of sleep and the 24-hour activity rhythm 

in middle-aged and elderly persons of the general population. In particular, I studied how 

this variation was related to neuropsychiatric problems. First, I focused on the associations 

of the 24-hour activity rhythm with demographics and lifestyle in middle-aged and elderly 

persons, and the effects of disturbances in the 24-hour activity rhythm on mortality. In the 

second part of my thesis, I examined the relation of actigraphically measured sleep and 

rhythms with cognition, depression, anxiety, and the negative feedback of the hypothalamic-

pituitary-adrenal (HPA) axis. In the last part, I focused on polysomnographically (PSG) 

assessed sleep. The association between rapid eye movement (REM) sleep and depressive 

symptoms as well as the interrelation between sleep apnea, depressive symptoms and 

fatigue was explored. In this last chapter I have reviewed the main findings of this thesis, 

addressed methodological considerations and discussed implications and recommendations 

for the future.

Main findings

Chapter 2: 24-Hour activity rhythms and habitual sleep in middle-aged and elderly persons

Disturbances in the 24-hour rhythm are common in middle-aged and elderly persons.1 

We demonstrated that activity rhythms are not only disturbed in older age, but that rhythm 

disturbances are also associated with other demographics and lifestyle (chapter 2.1). 

Moreover, rhythm disturbances predicted earlier mortality (chapter 2.2). We tested rhythm 

disturbances by assessing the stability and fragmentation of the rhythm. The stability and 

fragmentation are unique aspects of the activity rhythm, which is demonstrated by the 

association of age with these two aspects. Stability and fragmentation are moderately and 

negatively correlated with each other, but older age increases the stability of the rhythm as 

well as the fragmentation of the rhythm. In chapter 2.2 we observed that more stable 

rhythms and less fragmented rhythms both decreased the mortality risk even if accounting 

for age. If we combine these results an unexpected pattern emerges. We observed that 

more fragmented rhythms are related to older age and, in accordance with this observation, 

that more fragmented rhythms were related to an increase in mortality risk. Possibly, a 

fragmented rhythm is one of the factors underlying this association. However, a contrasting 

pattern is observed for the triangle of stability of the rhythm, old age and mortality; while a 

more stable rhythm is related to older age, a more stable rhythm is also related to a lower 

mortality. We discussed in chapter 2.1 that stable rhythms might reflect a health-related 

behavior instead of a physiologic phenomenon. Stable activity rhythms are not likely to be a 

physiologic result of non-optimal health, which usually accompanies old age. Stabilizing the 

24-hour rhythm might be an adaptive response to entrain the circadian clock, when health 

is not optimal.2 Becoming more rigid in behavior, which is commonly observed in elderly 
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persons, might, intentionally or unintentionally, optimize health and decrease the mortality 

risk.

Until now the additional value of assessing the 24-hour organization of the activity 

rhythm above actigraphic estimates of sleep has been unclear. Therefore, the associations 

of rhythm disturbances with poor health could reflect the associations of sleep with poor 

health. We studied the 24-hour activity rhythm and sleep simultaneously in one study and 

demonstrated that 24-hour activity rhythms are related to sleep parameters but that they 

are not proxies of each other. In other words, the measures tap different behavioral 

phenomena. The results of our study on mortality are in line with this interpretation; we 

only observed an effect of 24-hour activity rhythms on mortality, and no effect of sleep on 

mortality. The associations of activity rhythms and sleep with other health constructs in 

chapters 3.1, 3.2 and 3.3 also suggest that activity rhythm parameters are unique constructs 

and cannot be viewed as sleep parameters.

Determinants of sleep changes have been studied extensively. For example, lifestyle 

and dietary habits, such as alcohol consumption, coffee use and smoking, are known to 

affect sleep.3-5 We demonstrated that lifestyle factors are not only related to sleep, but also 

to changes in the 24-hour activity rhythm. An unhealthy lifestyle, reflected by a higher body 

mass index and smoking, was associated with more fragmented and less stable rhythms. 

These factors are also associated with mortality, but the effect of fragmented rhythms on 

mortality could not be explained by these unhealthy behaviors in our study. Thus, fragmented 

rhythms are not only an indicator or mediator of an unhealthy lifestyle, but pose an 

additional risk for a shorter life. Coffee use increased the stability of the activity rhythm and 

has been suggested to decrease mortality risk in other studies.6 Possibly, coffee has a 

stabilizing effect on the 24-hour rhythm. Recent animal research suggests that caffeine 

increases the responsiveness to light of the master clock.7 This stabilizing effect of coffee on 

the rhythm might be a mechanism which underlies the association of coffee use and 

mortality. However, coffee use could also be an indicator of good health, coffee intake is one 

of the behaviors that persons quickly alter when their health or sleep becomes poor. Indeed, 

the associations of the activity rhythm with healthy behavior are most likely bidirectional. 

Therefore, we cannot conclude whether rhythm disturbances are truly one of the many 

mechanisms through which lifestyle influences mortality risk. 

Chapter 3: 24-Hour activity rhythms and habitual sleep in relation to neuropsychiatric 

problems in middle-aged and elderly persons

In chapter 3 we assessed how 24-hour activity rhythms and sleep were related with 

cognitive functions and psychiatric problems. First, we demonstrated that disturbances of 

sleep and the 24-hour activity rhythm were related to cognition. While persons with longer 

sleep onset latencies had worse memory function, persons with 24-hour rhythm disturbances 



138 ● Neuropsychiatric studies of sleep and 24-hour activity rhythms

performed less on executive functioning and perceptual speed tasks (chapter 3.1). 

Associations of rhythm disturbances and perceived sleep quality with depressive symptoms 

and anxiety were demonstrated in chapter 3.2. Disturbances in the 24-hour activity rhythm 

and a worse perceived sleep quality were also associated with the negative feedback of the 

HPA axis, reflected by cortisol after the intake of a very low-dose of dexamethasone. 

The results of this chapter reflect the importance of the 24-hour rhythm for cognitive 

functions and psychiatric problems, while limited evidence was found for any associations 

of actigraphic sleep parameters with these functions. Actigraphic sleep was only related to 

memory function, while the fragmentation of the rhythm was related to executive 

functioning, depression and anxiety. Possibly, depression and anxiety disturb executive 

functioning,8 or, vice versa, worse executive functions might create a vulnerability for 

depression and anxiety.9 Arguably, disturbances in the domain of the executive functions 

can result in depression or anxiety by making a person interpret stimuli more negatively,9 

e.g. via ruminative responses to negative mood states or the inability to use positive and 

rewarding stimuli to regulate negative mood. However, in our study, the associations of 

disturbed rhythms with cognition were not explained by depressive symptoms, or reversely, 

cognitive status could also not explain the association of disturbed rhythms with depressive 

symptoms. Possibly, a common degenerative process in the brain underlies rhythm 

disturbances, executive function problems, depression and anxiety. In other words, they 

might be different manifestations of a single pathology. A possibly pathology underlying all 

these problems could be a poor function of the HPA axis. However in our study, the stability, 

and not the fragmentation, was related to the negative feedback of the HPA axis. Yet, we can 

conclude that overall the 24-hour organization of the activity rhythm is associated with 

different psychological processes, from cognitive problems to psychiatric symptoms.

Perceived sleep quality was the one sleep characteristic that was associated with all 

neuropsychiatric processes (cognition, depressive symptoms anxiety and the function of the 

HPA axis) reported in chapter 3. Multiple explanations are possible for the associations of 

perceived sleep quality with cognition, depressive symptoms anxiety and the function of the 

HPA axis. First, processes underlying the association of cognition and depression, e.g. 

ruminative responses to negative mood states or the inability to use positive and rewarding 

stimuli to regulate negative mood, might also affect how persons perceive or evaluate their 

sleep. It is not unlikely that these processes are also related to the negative feedback loop 

of the HPA axis, as the HPA axis regulates the release of stress hormones. For example, 

rumination, which has been suggested as a mechanism between cognition and depression, 

is also related to cortisol levels.10 Second, perceived sleep quality could be an overall health 

indicator. Perceived sleep quality is related to quality of life, which is dependent on health. 

The option of sleep as an indicator of poor health is further discussed in the section 

‘Methodological considerations’ of this chapter.
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Chapter 4: Polysomnographic sleep and depressive symptomatology in the general 

population

In chapter 4 we described that only REM-density is a marker of depressive symptoms 

in the general population. This association was particularly prominent in participants who 

did not use any medication prescribed for the nervous system or sleep medication at the 

night of the PSG. We also demonstrated that sleep apnea is not directly related with 

depression in the general population, although both were related with fatigue. Furthermore, 

fatigue moderated the association of sleep apnea and depressive symptoms. 

The results of chapter 4 were affected by two important features of the study design. 

First, associations depend on the population studied. Generally, clinical studies tend to find 

stronger relations as they consider extremes of the population, for example persons with a 

clinical disease (e.g. persons with an apnea index above 15) are compared with healthy 

-often extremely healthy- persons (e.g. persons with an apnea index below 5). In contrast, a 

population-based study includes persons who have no complaints, those who meet the 

criteria for a clinical diagnosis, and also those who have some complaints albeit not enough 

to be diagnosed. We thus considered the continuum of the disease. In our study, only REM-

density was a marker of subclinical depressive symptoms. The macrostructure of REM-sleep, 

for example REM-sleep latency and REM-sleep duration, have been suggested to change in 

persons with clinical depression. However, these characteristics did not differ for disease 

symptoms in the general population. Sleep apnea was not related to depressive symptoms 

in our population-based study, while this association has been found in clinical studies. Both 

these results demonstrate that associations can depend on the population studied. Second, 

the results of every study depend on the precision of the measurement used. For sleep 

research a new eras has started in which we can assess sleep validly with ambulant PSG in 

the participants home.11 Population-based studies, like the Rotterdam Study, are particularly 

qualified to take this opportunity. Ambulant PSG allowed us to study the apnea-hypopnea 

index as a marker of sleep apnea and microstructural variables such as REM-density. In our 

study, measures of the macrostructure of sleep, such as the apnea hypopnea index or REM-

latency, were not able to explain depressive symptoms, while the microstructural variable 

REM-density was related to depressive symptoms. This extends chapter 3.2 where we 

demonstrated that sleep, when assessed with actigraphy which only estimates sleep 

globally, was not related with depressive symptoms. Associations thus rely on the level of 

precision of the variable, and not necessarily on the instrument itself.

In chapter 4, we also demonstrated the importance of assessing effect modification. 

Sleep characteristics can be modified easily by external factors, such as the use of medication, 

and by levels of fatigue. The use of medication influenced the associations of REM-density 

with depressive symptoms. After excluding participants who used medication that can affect 

sleep and depression, the association of REM-density and depressive symptoms became 
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more pronounced. Several medications, e.g. antidepressants, are known to inhibit REM-

sleep. These results demonstrate the importance of not only assessing confounding effects 

of medication, but to also to assess effect modification by medication. Interestingly, we also 

found that the association of sleep apnea with depressive symptoms can be obscured by 

fatigue. Sleep should thus be assessed in close relation with other health variables, as these 

might explain or modify the effects. This is particularly important for comorbid disorders as 

health problems often co-occur with sleep disorders.12 Symptoms and consequences of 

sleep disorders are often non-specific, and could be mistaken for symptoms of consequence 

of other diseases. Careful assessment of the etiology is thus essential to treat sleep and 

other health problems effectively.

Methodological considerations

Assessing circadian rhythms in middle-aged and elderly persons 

Circadian rhythms are found in behavior and in physiological processes.13 These 

rhythms are regulated by the suprachiasmatic nucleus (SCN), which integrates endogenous 

rhythms with external time cues, usually resulting in the typical 24-hour course of the 

diurnal activity rhythm.14 To measure 24-hour rhythms continuous sampling is needed, or at 

least multiple samples over a longer period time. This large amount of measurements 

complicates the assessment of 24-hour rhythms in large population-based samples. 

Assessment of hormone levels in the blood as a measure of the circadian rhythm is for this 

reason simply not feasible in large study samples. Rhythmicity of hormone levels can also be 

assessed in saliva, however as this requires participants to chew on cotton multiple times a 

day for a week, it would be considered too burdensome by many potential participants. Self-

report of the 24-hour rhythm is a low impact measurement, but it is not precise and prone 

to social bias and recall bias. An objective, and less burdensome method to measure 24-

hour rhythms is actigraphy. Participants only have to wear a watch-like-device, which 

measures movement. If this actigraph is worn for a longer period of time, it allows the 

estimation of the 24-hour organization of the rhythm. Actigraphy is considered to be a 

reliable measurement15 with relatively little burden for the participant, and has been used 

commonly in large population-based studies.16-18

Fitting an adapted cosinor curve to the rhythm is a common method to assess the 

24-hour organization of the activity rhythm.19 However, unlike the curvature of certain 

hormone levels, the activity rhythm does not reflect a sinusoidal waveform. The shape of 

the activity rhythm would resemble a more square-shaped rhythm in which the periods of 

rest and activity have clear and steep boundaries. Using a cosinor function to assess the 

activity rhythm can be misleading; specifically when the rhythms have many transitions 

from rest to wake, as this leads to a poor fit of the cosinor curve. These rest-wake transitions 
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are particularly common in elderly persons; they tend to rest more often and do short 

activities. Thus, it has been suggested that activity rhythms should be assessed non-

parametrically.20 Non-parametric methods do not impose a model on the data, which 

prevents for errors in the analysis of highly fluctuating rhythms.21,22 Non-parametric methods 

can describe the stability and fragmentation of the rhythm. These parameters give an 

indication of the level of disturbance in the 24-hour organization of the activity rhythm. 

Hence, we used a non-parametric approach for the assessment of the 24-hour activity 

rhythm in our study of middle-aged and elderly persons.

Polysomnography in large populations

PSG is considered the ‘gold standard’ of sleep research for decades now.23 With PSG 

we are able to assess the brain activity. Brain activity differs not only between sleep and 

wake, but also within sleep. In deep sleep, brainwaves have a large amplitude and a low 

frequency, but in REM-sleep, the sleep in which we dream the most, brainwaves have a 

smaller amplitude and higher frequency, similar to brain waves during wake. However, we 

can clearly distinct REM-sleep from wake; in REM-sleep we see rapid eye movements and 

the muscle tone becomes very low. PSG therefore comprises of more than only 

electroencephalography (EEG), physiologic signals such as electromyography (EMG) and 

electrooculography (EOG) also register important information about sleep.

For decades, a PSG study was only possible in a hospital or research laboratory. PSG 

equipment was too large to facilitate research outside these facilities. In the very beginning, 

PSGs were recorded with a simple pen that traced the brain activity on long sheets of paper. 

With the introduction of the computer, PSG became digital and much more user-friendly. By 

now, ambulant equipment for PSG is available. Ambulant equipment permits performing a 

complete PSG at any place, without a restriction on the amount of information collected. 

The complete equipment (in our study we used the Vitaport 4, Temec, Kerkrade) can be 

worn on a shoulder band, a laptop is only needed for starting and checking the equipment. 

All tracings are stored on a small memory card. The ambulatory PSG equipment has been 

used in clinical practice and research for over a few years now and is gaining popularity. 

There are some limitations to ambulant PSG; it does not allow for real-time overnight 

monitoring, electrodes could get lost as there is no possibility for replacement and the 

environment can be less well monitored. However, depending on the research question, 

these limitations do not outweigh the advantages of ambulant PSG. The major strength of 

ambulant PSG is being able to assess sleep within a persons’ own environment, in his own 

bed in his own room. For clinical purposes this is of interest because the environment can 

be part of the sleep problem, for research this is of particular interest as it makes sleep 

studies more generalizable. Ambulant PSG is generally also experienced less burdensome 

than an overnight PSG in a hospital or laboratory. In addition, ambulant PSG is cost effective, 
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which is important in a world where both hospitals and research institutions have to cut 

their spending. 

The development of ambulant PSG improved the feasibility of recording a full PSG in 

large samples. Although there are studies in which large samples have been invited to a 

sleep lab,24,25 these studies suffer from high costs and can have issues with generalizability. 

The Sleep Heart Health Study (SHHS) was the first study to implement ambulatory PSG in a 

home setting,26 albeit with a limited number of EEG-channels. This has sparked other studies 

to add full or partial ambulant PSG sleep research to their cohorts,27-29 the Rotterdam Study 

is now one of the few studies which is in possession of a large set of full ambulant PSG 

recordings in middle-aged and elderly persons. A repeat of this assessment would make the 

Rotterdam Study truly unique in sleep research, as this allows for a longitudinal, detailed 

assessment of sleep, see also the section ‘Recommendations’ in this chapter.

Sleep and rhythms as an indicator of general health 

Sleep is a common behavior and large part of our life, which is bound to be influenced 

by sickness and health, and arguably also influences health.30 Sleep and rhythms have been 

related to many different health factors, which could lead to the proposition that disturbed 

rhythms are merely an indicator of poor health and not reflecting a specific effect, mechanism 

or cause. Other health indicators are constructs such as quality of life (QOL) or activities of 

daily living (ADL), these constructs typically give a general indication of a person’s health 

status. Generally these constructs are assessed with questionnaires. Persons can also self-

rate sleep characteristics such as sleep duration, sleep quality, and chronotype in a 

questionnaire. Self-rated sleep characteristics did not have any effects on health in our 

thesis, but we did find associations of self-reported sleep quality and health. Sleep quality 

was related to almost all of the health problems we have addressed in this thesis, which 

increases the possibility that the experience of sleep could be an indicator of the status of 

our health, similarly to constructs such as the quality of life index.

We also assessed sleep and rhythms objectively with actigraphy. Actigraphically 

measured sleep characteristics were only related to specific cognitive problems and the 

negative feedback of the HPA axis, and not with depression, anxiety and mortality (chapter 

2 and chapter 3). This would suggest that sleep is not an indicator of overall health, but is 

only associated with certain diseases. The notion of sleep as a marker of overall health is 

further corroborated by studies which have used PSG to assess sleep (chapter 4). However, 

a fragmented 24-hour organization of the activity rhythm was related to a variety of health 

problems studied in this thesis. This suggests that while sleep may not be an indicator of 

poor health, objectively measured fragmented rhythms possibly are a general indicator of 

poor physical and mental health. Disturbed rhythmicity cannot only be found in the activity 

rhythm, it can be found throughout the body, from cells up to complicated behaviors such 
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as cognition and mood.31-33 Fragmented endogenous rhythms might disturb processes all 

over the body, thereby generating a wide array of health problems and diseases. Further 

research in rhythms on all levels is needed to provide evidence for this speculation.

I suggest that, fragmented activity rhythms are a stronger marker of poor health than 

objective sleep per se. Perhaps the most global indicator of general health is perceived sleep 

quality. Of course, perceived sleep quality is also related to the fragmentation of the activity 

rhythm. Possibly, fragmented 24-hour rhythms might worsen perceived sleep quality more 

than a short sleep duration would.

Categorization of variables 

Most studies use categorical variables, in addition to continuous variables. Advantages 

and disadvantages of categorization, such as the loss of statistical power, multiple hypothesis 

testing, and the difficulty comparing results using different cut-offs across studies have been 

discussed extensively before.34-36 In this paragraph I will expand these topics by discussing 

the motivation for the use of categorizations, despite the well-known disadvantages. 

Certain variables are defined in “natural” categories, the most prominent example 

being biological sex, and the use of these categorizations, of course, is straightforward. For 

these variables, other categorizations are mostly irrelevant and the data could never be 

assessed continuously. For other variables, all categorizations are debatable, e.g. for 

education. In the Rotterdam Study alone this variable has been categorized in multiple ways. 

In this thesis, we analyzed education by dividing it in three levels: high, moderate and low. 

In other studies within the Rotterdam Study, it has been analyzed with four levels: low, low-

intermediate, intermediate-high and high.37 In other studies using Rotterdam Study data 

education has also been studied quantitatively as number of years of education.38 But even 

within a single paper the categorization of a variable may differ. For example in chapter 2.2 

of this thesis the association of 24-hour activity rhythms with depression is reported in 

three ways. First, the outcome ‘depressive symptoms’ reflects the quantitative value of the 

weighted total score of the CES-D assessment of depressive symptoms. Second, the variable 

‘clinically relevant depressive symptoms’ reflects the same values of the CES-D, however the 

variable is now dichotomized with a validated cut-off. Third, the variable ‘major depressive 

disorder’ reflects persons who were diagnosed with a clinical major depressive disorder 

with a semi-structured clinical interview (SCAN). Our group has published papers with again 

other definitions, or additional definitions of depressive symptoms or depressive disorder.39,40

This raises the important question why researchers, and also epidemiologists, 

commonly evaluate data in categories. Multiple explanations are possible. First, 

categorizations of exposure make it possible to think in terms of low, medium and high-risk 

groups. Moreover, the association between exposure and outcome can be described in 

terms of a relative risk between these groups. Medical research often makes easy clinical 
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interpretation subordinate to best research practice. Clinicians prefer to have clear cut-offs 

on which they can base the decision whether the patient should be treated. However, the 

use of cut-offs are likely to increase the number of false positive findings. Adherence to 

unequivocal outcomes, common standards and stringent methods is likely to increase the 

proportion of true findings,41 however common standards are not yet always available. The 

use of tertiles, quartiles and quintiles is also a common way of analyzing the data in 

epidemiologic studies, however this method of dealing with the data has similar issues as 

categorizations based on other cut-offs. It involves multiple hypothesis testing, it assumes 

homogeneity of risk within groups leading to both a loss of power and inaccurate estimation, 

and it leads to difficulty comparing results across studies due to the data-driven cut points 

used to define categories.42

Second, categorizations are often used to deal with non-linear associations. Authors 

commonly claim that these categorizations facilitate the interpretation of their data or that 

other models are prone to overfit.43 However, if categorization is used to deal with non-

linearity, the potential of the data is not used to its fullest, which again may cause false 

results. Several statistics have been developed to assess non-linear associations without the 

need for categorization. Possibly the most simple version is by introducing a squared term if 

the association is thought to be parabolic. However, more refined statistical methods to deal 

with other non-linear associations have also become available, for example the use of 

splines.42

Third, categorization allows for manipulation of the data. With an increasing pressure 

to publish in research, the number of cases of fraud seems to have risen in scientific research 

in the last years. In the Netherlands, several cases were exposed in the last years, ranging 

from reporting non-existing data to not having sufficient informed consent of participants. 

Results can also be manipulated by testing associations using different categorizations to 

explore which categorization has the most interesting effects sizes or which categorization 

gives “significant” results. Categorization can also be used to appear more clinically 

meaningful as results often seem to be more dramatic when the extremes of a variable are 

compared. This may increase the likelihood to get published, but can also increase the 

number of false findings in scientific journals due to multiple hypothesis testing. Therefore, 

the scientific field has to be extremely careful in the use of categorizations. I would propose 

that we need standard guidelines for the use of categorizations which should be applied 

whenever publishing in a scientific journal. These guidelines should include new statistic 

tests that have been developed to deal with non-linear associations for example, but also 

stimulate reporting associations of uncategorized data and present results using alternative 

categorizations in supplemental material.
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Recommendations

Clinical implications

This thesis confirms the importance of sleep and rhythmicity in various 

neuropsychiatric problems. In general, sleep has received increasing attention in clinical 

practice,44 general practitioners and the public become increasingly aware of sleep disorders. 

Although awareness is increasing, knowledge about sleep problems is still not optimal. The 

prevalence of sleep disordered breathing has risen largely in the last decades,45 but sleep 

apnea is still not the first diagnoses which comes to the mind of the general practitioner 

when a middle-aged, overweight man with complaints of tiredness and concentration 

problems comes to his practice. A lack of awareness is more prominent for other sleep 

disorders. Persons with insomnia or insomnia complaints often do not get any other 

treatment than sleep medication, while alternative treatments such cognitive behavioral 

therapy can have long lasting effects on insomnia.46 Restless legs syndrome (RLS), is often 

unrecognized by the general practitioner and can take a long time to be diagnosed, while 

asking four simple questions can establish the problem quite accurately.47 The treatment of 

rhythm disorders such as jet lag disorder and shift work disorder often remains limited to 

providing advice about sleep hygiene.44 It is the responsibility of both the clinician and the 

researcher to cover the gap between the knowledge gathered in sleep research and the 

clinical practice. 

In this thesis we mainly assessed the associations of disturbances of sleep and 

rhythms with symptoms of disease in the general population, and not with specific clinical 

disorders. However, our research does give some important suggestions for the clinical 

practice. Chapter 2 stresses the importance of rhythms. Rhythm disturbances can shorten 

our life, and should thus be given attention in the clinical practice, next to sleep. We 

demonstrated in chapter 3 that disturbed rhythms are associated with more depressive 

symptoms and anxiety, and less cognitive functions. We do not have any longitudinal studies 

yet, but we would carefully infer that for numerous diseases, a disturbed rhythm might 

speed up the disease process or decrease the effectiveness of treatment. This is confirmed 

by research on the effects of biological rhythms on pharmacology; the timing of 

pharmacological treatment can improve or decrease effectiveness of medication.48 Similarly, 

chronobiological treatment approaches have proven to be successful for depression and 

anxiety, e.g. by bright light therapy.49,50 Possibly, chronotherapy might be able to target 

psychiatric complaints and sleep disturbances simultaneously, as it might underlie sleep 

disturbances and complaints about depression and anxiety. Last, disturbed rhythms were 

also found to affect cognition, which extends on the research that has been done previously 

on disturbed rhythms in demented and institutionalized elderly.22,51 These results are a 

strong argument for keeping strict daily rhythms, specifically in institutions. No more pajama 
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days, sleeping in to eleven and going to bed at seven, behaviors not uncommonly seen in 

care facilities. Bright light treatment might help stabilizing and defragmenting rhythms52 and 

be beneficial to minimize cognitive deterioration. 

Future directions for research

This thesis is completely based on cross-sectional data, with the exception of chapter 

2.2 which presents the results mortality. Longitudinal data are needed to test whether the 

associations studied in this thesis hold over time and to assess the temporality of these 

associations. The first longitudinal studies in which sleep has been assessed at baseline are 

published, but studies with objective measurements of sleep in large populations remain 

rather scarce. To our knowledge, no longitudinal studies with repeated objective assessments 

of sleep are available, and only extending the follow up of the health consequences will not 

deal with problems such as reversed causality. In the Rotterdam Study, the second round of 

actigraphy, about 5-7 years after the first round, has been finished. With these data, the 

Rotterdam Study comprises one of the few repeated actigraphic measurements in a 

longitudinal cohort. These data will make it possible to assess reversed causality in disturbed 

rhythms and depression for example, but also for other diseases. However, there is a 

possibility for the Rotterdam Study to become truly one of a kind in sleep research. If we can 

repeat the PSG measurement in a few years in our original cohort, a wealth of data with 

tremendous possibilities for studying the changes in specific sleep parameters in relation to 

disease would be created.

With these large studies becoming more and more available in sleep medicine, a gap 

emerged between small sample clinical and laboratory studies and large sample population-

based studies. While the results of animal research haven been increasingly integrated with 

human lab studies in the field of sleep, integration with large population-based studies has 

been scarce. Laboratory studies in smaller samples of participants of large cohorts, would 

demonstrate how these findings from the laboratory compare to population-based studies, 

and translate into the general population. By keeping participants and methodologies equal, 

inter-disciplinary collaboration can help to detect what is prevalent in the general population 

and clinically meaningful. This would be particularly interesting in studies of the relation 

between sleep and cognitive deficits. For example, disastrous effects of sleep deprivation on 

driving abilities have been found.53 However, most people would not drive a car completely 

sleep deprived, they would probably do drive a car partially or chronically sleep deprived. 

Car accidents have been associated with sleep loss and insomnia retrospectively,54 but 

prospectively this is much harder to study with sufficient power, specifically in a naturalistic 

setting. Sleep studies in large prospective cohorts might open up the possibility of prospective 

assessment, as it would be able to answer the question whether persons with chronic short 

sleep or chronic fatigue were involved in more car accidents. A large prospective cohort 
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would create the possibility to answer these questions with ecological validity and avoid 

recall bias. If we additionally could bring those persons who had short sleep and car crashes 

to a sleep laboratory, we would be able to test these persons with driving simulators after 

partial or complete sleep restriction. This would demonstrate whether participants who had 

traffic accidents after chronic short sleep were indeed more vulnerable for sleep restriction 

than persons who had no traffic accidents and chronic short sleep.

Sleep problems, or sleep disorders, suffer from the problem that they are commonly 

comorbid with other disorders. The distinction between primary insomnia and secondary 

insomnia of the DSM-IV-TR demonstrated the idea that sleep was often a ‘secondary’ 

problem. However, with the publication of the DSM-5, the diagnoses of primary and 

secondary insomnia have disappeared. These changes underline the importance of treating 

insomnia, or any sleep disorder, not just as a consequence of any other disorder. In research, 

this leads to the problem of exclusion, do we exclude persons with comorbid disorders or 

not? While it was not uncommon in sleep research to study only those persons with the 

diagnoses of primary insomnia, and exclude those with secondary insomnia, the DSM-5 

changes call for a new evaluation of this strategy. Population-based studies especially tend 

to suffer from a high prevalence of comorbidity, as having multiple diseases or problems, 

and not just one specific disease, is common in the population. However because of this 

heterogeneity, population-based studies might also hold the key to how comorbidity in 

sleep disorders can be addressed best. Longitudinal research in these studies should be able 

to address the problem of reverse causality for disorders that are comorbid frequently. Is 

there a bidirectional association, or is A mainly causing B or vice versa. In addition, disorders 

such as insomnia and depression can manifest themselves differently among persons. Large 

samples offer the possibility to not only assess these diseases based on the theoretical 

phenotype, but also on an empirical phenotype designed from the data. Within a large 

dataset, analyses such as latent class analyzes can be used to discern different manifestations 

of the disease based on the symptoms of the disease.55,56 Latent class analysis posits that a 

heterogeneous group can be reduces to several homogeneous subgroups through evaluating 

and then minimizing associations among responses across multiple variables. These 

empirical distinctions raise new possibilities to find underlying biological mechanisms, as 

these may differ and depend on the empirical phenotype. Empirical based phenotypes 

might also be beneficial for genetic studies as these tend to suffer from imprecise phenotypes. 

Genetic studies are important in finding the biological mechanisms which underlie sleep 

and the 24-hour rhythm, for example by the use of genome wide association studies (GWAS). 

However, so far results have been limited, which seems to be at least partly due to 

questionnaire based sleep phenotypes, which tend to be less specific and therefore needs 

extremely large number to find associations. As first GWAS on sleep duration had just been 

published, the sample size included over 45,000 persons.57 In addition, determining empirical 
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phenotypes for sleep characteristics, genetic sleep studies might also benefit from the 

increase in polysomnographic data that is available. As an increasing number of cohorts 

have both polysomnographic data and genotype data, it is a matter of time before the first 

GWAS with this data becomes available. With this, a new era in genetic sleep research is on 

the way. 

Concluding remarks

I started this thesis in the introduction with the words ‘It is the behavior we all do 

every day and we tend to like it, at least if everything goes well: sleeping. If we make it up to 

90 years of age, we spend around 30 years doing it’. This is where my fascination for sleep 

research once started and this thesis proves that we should keep on sleeping, our health will 

benefit from it. But our health will benefit probably even more, or at least just as much, 

from having undisturbed 24-hour rhythms. We might notice it less, it might take in a less 

prominent place in our lives, but rhythms are key to our healthy live.
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Summary

We spend roughly a third of our life sleeping, but much is still unknown about this 

behavior (Chapter 1). Sleep is thought to be the consequence of two processes which 

interact, the sleep pressure or sleep propensity and the circadian component. The circadian 

component reflects a clocklike mechanism that is basically independent of prior sleep and 

waking and determines the approximately 24-hour rhythm of the sleep-wake pattern. Sleep 

is measured most accurately with polysomnography. PSG consists of different 

electrophysiologic measures, most important are the electroencephalography (EEG) 

channels which allow the assessment of brain activity during sleep. However, 

polysomnography is not suited to measure the 24-hour organization of rhythms, as it is not 

feasible to wear the equipment for multiple days. I therefore studied 24-hour rhythms by 

means of actigraphy, for which persons had to wear an actigraphy for 7 consecutive days 

and nights. Disturbances in sleep and the 24-hour rhythm can occur as a single problem, but 

are also often comorbid with other disorders. Specifically neuropsychiatric problems and 

diseases are often related to sleep and rhythm disturbances. The goal of this thesis is to 

assess the variation of sleep and the 24-hour activity rhythm in middle-aged and elderly 

persons of the general population and to study how this variation is related to neuropsychiatric 

problems.

In chapter 2 I start with describing correlates of the 24-hour activity rhythm in 

middle-aged and elderly persons of the Rotterdam Study. Chapter 2.1 reports on the 

associations of demographics, lifestyle and sleep parameters on the 24-hour activity rhythm. 

The results indicate that older age is associated with more stable and more fragmented 

rhythms. I conclude that with older age the 24-hour activity rhythm becomes more rigid, 

while the ability to maintain either an active or inactive state for a longer period of time is 

compromised. In addition, less healthy behavior e.g., a higher body mass index and smoking, 

are also associated with more rhythm disturbances. Lastly, while actigraphic estimated sleep 

is associated with the 24-hour rhythm, they cannot be used as proxies. Disturbed rhythms 

can also have detrimental effects on health. In chapter 2.2, the effect of disturbed rhythms 

on mortality is reported. Both a more fragmented rhythm and a less stable rhythm increase 

the mortality risk, independent of age and other health behaviors. Disturbed 24-hour 

activity rhythms thus reflect alterations in the biological clock and could be an indicator of 

disease.

The associations of disturbed rhythms and actigraphic estimates of sleep with 

neuropsychiatric problems are described in chapter 3. First, the associations of 24-hour 

rhythms and sleep with five cognitive tests are reported in chapter 3.1. Cognitive functioning 

changes not only with age, but also due to alterations in sleep and rhythms. Our results 

demonstrate that disturbances in sleep are mainly associated with memory-related tasks, 
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while disturbances in the rhythm relate to worse performance on tasks that tap highly on 

executive functioning and perceptual speed. Chapter 3.2 reports on the relation of disturbed 

rhythms and sleep with two common psychiatric disorders, depression and anxiety. 

Depression, and in a lesser extent anxiety, is closely related to sleep and bidirectional 

associations have been suggested. The relation with 24-hour rhythms are much less 

explored. Our results show that fragmented rhythms are related with both depression and 

anxiety, while actigraphic sleep estimates are not related to depression and anxiety in our 

sample. Perceived sleep quality is also associated with anxiety and depression. It thus seems 

that, instead of sleep per se, disturbed rhythms and perceived sleep quality are related to 

depression and anxiety. In Chapter 3.3 a similar conclusion is reported for the negative 

feedback of the hypothalamic-pituitary-adrenal (HPA) axis. The results demonstrate that, 

the stability of the rhythm, sleep duration and a poor perceived sleep quality are related to 

enhanced negative feedback of the HPA axis, which was tested by measuring cortisol levels 

after the intake of a very low-dose of dexamethasone (0.25 mg). Only the stability of the 

rhythm was also related to cortisol levels before dexamethasone intake.

In chapter 4 the first results of a polysomnography (PSG) sleep study in the Rotterdam 

Study are reported. Alterations in rapid eye movement (REM)-sleep have been consistently 

related to depression in clinical studies, but evidence from population-based studies has 

been limited. The results reported in Chapter 4.1 suggest that REM-density is a marker of 

depressive symptoms in the general population and that associations of REM-sleep are 

modified by the use of medication. In chapter 4.2 I assess the interrelation of sleep apnea, 

depressive symptoms and fatigue. Our results suggest that sleep apnea and depressive 

symptoms are not related, although both relate to fatigue. Severe fatigue also obscures the 

association of sleep apnea and depressive symptoms. The interrelation between sleep 

apnea, depressive symptoms and fatigue should be carefully assessed when diagnosing and 

treating sleep apnea.

Chapter 5 reviews the main findings of this thesis, it discusses methodological topics, 

describes clinical implications and does suggestions for further research.
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Samenvatting

We brengen ongeveer een derde deel van ons leven slapend door, maar nog altijd is 

er veel onbekend over slaap (Hoofdstuk 1). Slaap is waarschijnlijk het gevolg van de interactie 

van twee processen, de slaapbehoefte en het circadiaans ritme. Het circadiaans ritme is het 

bij benadering 24-uur durende dag-nacht ritme wat ons lichaam volgt. Zowel de 

slaapbehoefte als het circadiaans ritme zijn essentieel voor ons slaap-waak ritme. Slaap 

wordt meestal gemeten met polysomnografie. PSG bestaat uit een veelvoud van 

electrofysiologsche metingen waarmee we onder andere de hersenactiviteit meten. De 

hersenactiviteit verandert niet alleen tussen slapen en waken, maar ook tijdens onze slaap. 

PSG is een zeer uitgebreid onderzoek, waardoor het niet geschikt is voor langere perioden. 

We gebruiken daarom niet PSG om het 24-uurs ritme te meten, maar actigrafie. Bij een 

actigrafie-onderzoek dragen deelnemers ongeveer een week lang een soort horloge. Dit 

horloge meet beweging, waardoor de 24-uurs organisatie van het bewegingsritme kan 

worden vastgesteld. Problemen in slaap en het 24-uurs ritme komen zowel solitair als in 

combinatie met andere ziekten en problemen voor. Vooral neuropsychiatrische problemen 

zijn vaak gerelateerd aan verstoringen in de slaap en het 24-uurs ritme. Het doel van dit 

onderzoek is het beschrijven van de variatie in 24-uurs ritmes en slaap in volwassenen en 

ouderen in de algemene populatie, en hoe deze variatie samenhangt met neuropsychiatrische 

problemen en stoornissen.

In hoofdstuk 2 beschrijf ik factoren die samenhangen met het 24-uurs bewegingsritme 

in de deelnemers van de Rotterdam Studie. Hoofdstuk 2.1 rapporteert hoe demografische 

kenmerken, leefstijl en slaap geassocieerd zijn met het 24-uurs ritme. Een oudere leeftijd is 

niet alleen geassocieerd met een meer stabiel, maar ook met een meer gefragmenteerd 

ritme. Ouderen lijken dus meer rigide te zijn in hun gedrag, terwijl het vermogen om langer 

in een actieve of non-actieve staat te blijven beperkt is. Een minder gezonde leefstijl, 

bijvoorbeeld door een hogere BMI of door roken, is ook gerelateerd aan meer verstoringen 

in het 24-uurs ritme. Slaap kenmerken, wanneer bepaald met actigrafie, zijn gerelateerd aan 

het 24-uurs ritme, maar deze constructen zijn geen proxy voor elkaar, ze hebben dus elk een 

unieke waarde in wetenschappelijk onderzoek. Problemen in 24-uurs ritmes kunnen de 

gezondheid ernstig verstoren. In hoofdstuk 2.2 worden de effecten van verstoorde 24-uurs 

ritmes op mortaliteit gerapporteerd. Zowel meer gefragmenteerde als onstabiele ritmes 

verhogen de kans op vervroegde mortaliteit, onafhankelijk van leeftijd of leefstijl. 

Waarschijnlijk reflecteren verstoringen in het 24-uurs ritme veranderingen in de biologische 

klok, die mogelijk een indicatie voor een slechte gezondheid zijn.

De samenhang van het 24-uurs ritme en slaap met neuropsychiatrische problemen is 

beschreven in hoofdstuk 3. Als eerste rapporteer ik in hoofdstuk 3.1 de associaties van het 

24-uurs ritme en slaap met cognitie. Cognitie verandert niet alleen met de leeftijd, maar kan 
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ook verslechteren door verstoringen in slaap en het 24-uurs ritme. De resultaten laten zien 

dat slaap voornamelijk gerelateerd is aan geheugentaken, terwijl het 24-uurs ritme vooral 

gerelateerd is aan taken die de executieve functies en snelheid testen. In hoofdstuk 3.2 

worden de associaties van het 24-uurs ritme en slaap met de twee veelvoorkomende 

psychiatrische stoornissen, depressie en angst, beschreven. Depressie, en in mindere mate 

angst, zijn nauw verweven met slaap, en lijken samen een vicieuze cirkel te vormen. De 

relatie van het 24-uurs ritme met depressie en angst is minder veelvuldig onderzocht. In 

onze studie is de fragmentatie van het 24-uurs ritme gerelateerd aan depressie en angst, 

terwijl slaap, wederom bepaald met behulp van actigrafie, niet gerelateerd is aan depressie 

en angst. Hoe mensen hun slaap ervaren, de zogenaamde subjectieve slaapkwaliteit, is wel 

gerelateerd aan depressie en angst. Het lijkt dus zo te zijn dat niet slaap, maar het 24-uurs 

ritme en de ervaring van slaap belangrijk zijn voor depressie en angst. Een vergelijkbaar 

patroon wordt gezien in hoofdstuk 3.3. In dit hoofdstuk heb ik de samenhang tussen het 

24-uurs ritme en slaap met het functioneren van de hypothalamus-hypofyse-bijnier as 

getest. Het functioneren van de hypothalamus-hypofyse-bijnier as is onderzocht door het 

cortisol niveau in het speeksel te bepalen, zowel voor als na de inname van een zeer lage 

dosis dexamethason (0.25 mg). De resultaten lieten zien dat een verstoord 24-uurs ritme, 

een korte slaapduur en een slechte slaapkwaliteit gerelateerd waren aan een versterkte 

negatieve terugkoppeling in de hypothalamus-hypofyse-bijnier as, maar dat alleen een 

verstoord 24-uurs ritme gerelateerd was aan cortisol voor en na de inname van dexamethason

In hoofdstuk 4 beschrijf ik de eerste resultaten van het PSG onderzoek in de 

Rotterdam Studie. Eerder onderzoek heeft laten zien dat veranderingen in REM-slaap 

gerelateerd zijn aan depressie in de klinische populatie, maar er is weinig bewijs voor deze 

associaties in de algemene populatie. In hoofdstuk 4.1 laat ik zien dat REM-dichtheid, de 

dichtheid waarmee snelle oogbewegingen plaatsvinden in de REM-slaap, een marker is voor 

het hebben van depressieve symptomen in de algemene bevolking. Deze associaties worden 

beïnvloed door het gebruik van medicatie. In hoofdstuk 4.2 wordt de relatie tussen slaap 

apneu, depressie en vermoeidheid beschreven. De resultaten laten zien dat slaap apneu en 

depressie niet gerelateerd zijn in onze studie, maar dat beiden wel gerelateerd zijn aan 

vermoeidheid. Ernstige vermoeidheid beïnvloedt ook de relatie tussen slaap apneu en 

depressie. Dit benadrukt het belang van het beoordelen van depressie bij slaap apneu.

In hoofdstuk 5 worden de algemene bevindingen van dit onderzoek beschreven, 

wordt de methodologie bediscussieerd en worden suggesties gedaan voor de klinische 

praktijk en het wetenschappelijk onderzoek.
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