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Abstract—The wide range of performance characteristics of
storage technologies motivates the use of a hybrid energy storage
systems (HESS) that combines the best features of multiple tech-
nologies. However, HESS design is complex, in that it involves the
choice of storage technologies, the sizing of each storage element,
and deciding when to charge and discharge each underlying
storage element (the operating strategy. We formulate the problem
of jointly optimizing the sizing and the operating strategy of an
HESS that can be used for a large class of applications and
storage technologies. Instead of a single set of storage element
sizes, our approach determines the Pareto-optimal frontier of the
sizes of the storage elements along with the corresponding optimal
operating strategy. Thus, as long as the performance objective
of a storage application (such as an off-grid microgrid) can
be expressed as a linear combination of the underlying storage
sizes, the optimal vector of storage sizes falls somewhere on this
frontier. We present two case studies to illustrate our approach,
demonstrating that a single storage technology is sometimes
inadequate to meet application requirements, unlike an HESS
designed using our approach. We also find simple, near-optimal,
and practical operating strategies for these case studies, which
allows us to gain several new engineering insights.

Index Terms—Smart grids, Energy storage, Hybrid storage
systems, Energy efficiency, Power efficiency.

I. INTRODUCTION

Storage devices can enhance the performance of future
smart grids in several ways; they can convert unreliable and
intermittent renewable energy into a predictable and smooth
source of power, encouraging and facilitating large scale
renewable integration to the grid. Storage devices can be used
for arbitrage; i.e., to buy electricity at low prices and sell
it back when it is more expensive. Similarly, they can be
used for demand shaping with the goal of reducing electricity
bills. Load demands are much more controllable when storage
devices are used for load leveling or peak shaving. Finally,
storage devices can guarantee supply-demand matching in off-
grid locations.

Each of these applications of storage has different quality
requirements and performance constraints. Moreover, a wide
range of storage technologies are available today, each with
unique performance characteristics, but none being able to
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meet the requirements of all applications. For instance, super-
capacitors provide very high power, but low energy capacity,
making them unsuitable for off-grid microgrids. In contrast,
compressed air storage provides high energy capacity but
relatively lower power, making them unsuitable for loads
with a high peak-to-average power ratio. This motivates us
to design hybrid energy storage systems (HESS) that combine
the beneficial features of several storage elements to satisfy
the performance requirements of an application [1], [2], [3].
The optimal design of an HESS must take advantage of the
best features of the underlying storage elements and overcome
their weaknesses.

There are at least three levels of freedom in an HESS
design: (1) the choice of storage technologies, (2) the sizing
of the storage elements, and (3) the charging and discharging
operating strategy. The coupling among these three factors
makes an optimal design complex. Existing work typically
considers only one of these three factors in HESS design (e.g.,
[4], [5], [6]), not exploiting the full design space. Thus, the
actual gain of the optimal HESS design when compared with a
single-technology storage system is yet unknown (and possibly
underestimated). Moreover, existing work is very application-
dependent, not applicable even with minor changes to another
application [6], [7], [3], [8], [9]. Such studies consider very
specific objective functions using different weights for storage
unit pricing, storage lifetime and volume, or ROI. This paper
is an attempt to address these shortcomings.

We study the broad class of applications that can be de-
scribed in the form of the following offline demand-supply
matching problem: To derive the optimal sizing and optimal
operating strategy for a HESS given a particular set of storage
technologies, a representative input power trace (the supply)
and a corresponding committed output power trace (the de-
mand) subject to the constraint that the demand be met at all
times. Our solution returns a Pareto-optimal frontier of the
sizes of the underlying storage technologies. This frontier can
be used to find the optimal operating point of any application
with a linear objective function that is non-decreasing in
the vector of storage sizes. Note that our approach jointly
optimizes the HESS size(s) and operating strategy. By repeat-
edly using our approach for different combinations of storage
technologies, we can find the optimal design of an HESS,
accounting for all three free factors.

Our framework applies to a large class of storage tech-
nologies that are characterized by a set of general evolution
equations given in Section III. This class includes batteries,
super capacitors (SCap), and compressed air energy stor-
age devices (CAES) [10]. However, our approach is trace-
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dependent and assumes that the entire trace is known ahead
of time. This is typical for a design problem (e.g., the sizing of
the elements) but impractical for designing a useful operating
strategy. Nevertheless, the trace-dependent optimal operating
strategy can serve as the benchmark for any practical operating
strategy (i.e., a rule-based strategy that is myopic). Indeed, in
this paper, we present practical operating strategies inspired
by the offline optimal. Specifically, we use our framework
for two case studies: solar power firming and self-usage in
off-grid scenarios and show that there are simple, practical,
near-optimal operating strategies.

Our key contributions are:
• We develop a joint HESS optimal sizing and operating

strategy formulation for a large class of supply-demand
matching applications and a broad class of storage el-
ements. We further convert it to a linear programming
(LP), substantially reducing the solution time. Our formu-
lation returns a Pareto-frontier of the minimum sizes of
the storage elements. This frontier can be used to find the
optimal storage sizes of different applications depending
on their objective functions.

• We construct a simple RC-based energy evolution model
for supercapacitors and show that it has the same generic
form as the energy evolution model of batteries.

• We apply our formulation to two important case studies
and find near-optimal practical operating strategies for
each case.

• We use real-world power traces for these applications
and provide numerical results, which lead to several
interesting engineering insights. For example, we show
that a single storage technology is sometimes inadequate
to provide the requirements of the storage application,
while a well-designed HESS is adequate.

The rest of the paper is structured as follows. In Section II,
we discuss the main characteristics of storage technologies,
motivate the use of an HESS, and introduce our system model.
We formulate our offline design problem in Section III. Then,
we describe the two case studies in details in Section IV. In
Section V, we provide some numerical examples for our cases
studies. We explore the related work in Section V and conclude
the paper in Section VII.

II. SYSTEM DESCRIPTION AND MODEL

A. System description and characteristics of storage

There are several storage technologies such as mechanical,
thermo-dynamic, electrochemical, and electro-magnetic, each
with its own operating characteristics [10], [8]. Depending of
the applications, some of these operating characteristics could
be a bottleneck. For example, due to inherent inefficiencies,
each unit of energy stored is reduced by a certain efficiency
factor when added to (or discharged from) a storage device
(the charge (discharge) efficiency). As another example, stored
energy leaks over time (self-discharge). The leak rate can be a
function of several parameters such as state of charge, storage
size, and temperature, depending on the storage technology. In
addition, there is a limit on the maximum charge (discharge)
power (the maximum charge (discharge) rate). Finally, one of
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Fig. 1: System model

the most important characteristics of storage systems is their
energy (resp. power) density. Energy (resp. power) density is
the maximum amount of energy (resp. power) that can be
stored in (resp. drawn in or out of) a given storage device per
unit volume.

Most storage imperfections are not an issue if storage can
be infinitely sized. The size of storage is, however, severely
limited due to the high prices of the current storage technolo-
gies. The cost is typically presented either per unit of energy
or per unit of power, depending on the requirements of the
application.

Typically, a storage device has some mix of good and
poor operating characteristics1. For example, there is no single
technology which is both energy efficient and power efficient.
Well-designed HESS can possibly exploit the best features
of its underlying storage technologies, while hiding their
weaknesses.

B. System model

Our supply-demand matching system model is described in
Fig. 1. We assume that the HESS is composed of N storage de-
vices. We consider a discrete time model; i.e., t = 0, δ, 2δ, . . .,
where δ is the time unit and a time horizon T = Kδ (typically
a year). We assume that all variables remain constant in a
time-slot. A supply power S(k) is the input to the HESS that
commits to provide the given committed output power D(k)
at any time k. For the offline design problem, we assume
that we have representative traces for both S(k) and D(k)
over the horizon T . The goal is to optimally design such
an HESS, accounting for all possible choices of the three
levels of freedom: the operating strategy, the choice of storage
technologies, and storage sizing.

Operating strategies determine three actions at any time,
given the input and the current state of the system (i.e., input

1To date, there is no single storage technology which outperforms others
in all aspects.
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Name Description (unit)
S(k) The input power in time slot k (W )
D(k) The committed output power in time slot k (W )
r The ratio of the long-term average of output to the long-term average of the input (0 ≤ r ≤ 1)

J(k) The output power directly from source in time slot k (W )
Ii(k) The input power put into storage i at k (W )
Ic(k) The curtailed input power at k (W )
Oc(k) The curtailed output power at k (W )
Oi(k) The output power drawn from storage i at k (W )
eij(k) The power migration from storage i to storage j at k (W )
bi(k) The energy content of storage i at k (Wh)
ai Maximum usable fraction of storage i
Γi The self-discharge ratio of storage i
γi The self-discharge energy of storage i (Wh)
ηc

i The charging efficiency of storage i
ηd

i The discharging efficiency of storage i
αc

i The charging rate of storage i (in hr−1)
αd

i The discharging rate of storage i (in hr−1)
Bi The size of storage i (Wh)
N Total number of storage devices in HESS
T Time horizon (in h)
K Time horizon in number of time slots
δ Time unit (in h)

TABLE I: List of Notations.

power, output power, and the state of charge of the storage
elements): charge (what is the charging power to each element
of the HESS?), discharge (what is the discharging power from
each element of the HESS?), and charge migration: (what is
the energy that must be transferred from one storage device
to the other?)

Power traces are time series vectors with the k’th element
corresponding to the value of that element at time kδ. The
input power S(k) at time k can be (possibly partly) deliv-
ered directly to the output (denoted by J(k)) or be (partly)
stored at some of the N storage devices (the corresponding
charging being denoted by Ii(k) for any i ∈ {1, . . . , N}),
or undesirably curtailed (Ic(k)). Each storage device i can
also migrate energy at any time slot k to another device
j with power eij(k). To simplify notation, we also define
self-migration and we set it to zero (eii(k) = 0 for any
i and k). Finally, each storage device i can be discharged
to serve the output power at any time slot k (denoted by
Oi(k) for any i ∈ {1, . . . , N}) and the surplus output power
Oc(k) at any time k is discarded. Please see Table I for a
list of notations. Designing an operating strategy corresponds
to selecting appropriate values for (Oi(k), eij(k), Ii(k), J(k),
Ic(k), Oc(k) for i, j ∈ {1, . . . , N}).

Our system model in Fig. 1 enforces some constraints on
these variables: Firstly, the net input and output powers at the
HESS connecting points to the system must be zero; i.e.,

Ic(k) + J(k)− S(k) +
N∑
i=1

Ii(k) = 0 ∀k (1)

J(k)−D(k)−Oc(k) +
N∑
i=1

Oi(k) = 0 ∀k (2)

Secondly, all variables are non-negative. We can treat Ic(k)
and Oc(k) as slack variables and remove them from the list
of independent variables and replace Ic(k), Oc(k) ≥ 0 and

Eqs. (1), (2) equivalently with

N∑
i=1

Ii(k) ≤ S(k)− J(k) ∀k (3)

J(k) +
N∑
i=1

Oi(k) ≥ D(k) ∀k (4)

We assume that the storage devices in our framework belong
to the broad class of storage whose operation can be described
as the following (applied to storage device i) [11], [12].

bi(k) = Γibi(k − 1) + ηci ci(k)δ − 1
ηdi
di(k)δ − γi ∀k (5)

where ci(k) (resp. di(k)) is the charging (resp. discharging)
power in time slot k. ci(k), di(k), and bi(k) must satisfy for
any k:

0 ≤ ci(k) ≤ αciBi (6)

0 ≤ di(k) ≤ αdiBi (7)
ci(k)di(k) = 0 (8)
0 ≤ bi(k) ≤ aiBi (9)

In words, the storage device i cannot be charged (dis-
charged) faster than αciBi (αdiBi) Watts, where Bi is the size
of the storage device i. A fraction 1 − ηci (1 − ηdi ) of the
total energy being charged to (withdrawn from) the storage
device i is lost due to energy conversion inefficiency. The
storage device i operates properly (i.e., with an appropriate
lifetime) if only a fraction ai of the entire storage device is
used. The storage cannot charge and discharge at the same
time and finally, the stored energy leaks over time by as much
as (1 − Γi)bi(k) + γi during time slot k, where bi(k) is the
energy stored in element i at time k.
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Note that in the system described in Fig. 1, we have for all
i and k:

ci(k) = Ii(k) +
N∑
j=1

eji(k) (10)

di(k) = Oi(k) +
N∑
j=1

eij(k) (11)

III. PARETO-OPTIMAL SIZING OF AN HESS

The objective of our offline optimization problem is to
minimally size the elements of the HESS, given representative
traces for S and D, such that D is always met (note that this
problem might not always be feasible). We jointly optimize
the vector of storage sizes (B1, B2, . . . , BN ) and the operating
strategy; i.e., the variables (Oi(k), eij(k), Ii(k), J(k)) for any
i, j ∈ {1, . . . , N} and any k ∈ {0, . . . ,K}. Specifically, using
the above definitions and notation and given (S(k)), (D(k)),
the parameters of the storage elements (αci , α

d
i , ηci , η

d
i , ai,

γi, and Γi for any i ∈ {1, . . . , N}), we want to solve the
following multi-objective problem to find the Pareto-optimal
frontier (B1, B2, . . . , BN ):

Minimize
(Bi),(Oi(k)),(Ii(k)),

(J(k)),(eji(k))

(B1, . . . , BN ) (12a)

subject to
Bi ≥ 0, ∀i (12b)

J(k) ≥ D(k)−
N∑
i=1

Oi(k), ∀k (12c)

N∑
i=1

Ii(k) ≤ S(k)− J(k) ∀k (12d)

Ii(k) +
N∑
j=1

eji(k) ≤ αciBi ∀k;∀i (12e)

Oi(k) +
N∑
j=1

eji(k) ≤ αdiBi ∀k;∀i (12f)

0 ≤ bi(k) ≤ aiBi, ∀k;∀i (12g)

bi(k) = Γibi(k − 1) + ηci (Ii(k) +
N∑
j=1

eji(k))δ

− (Oi(k) +
N∑
j=1

eij(k))δ/ηdi − γj ∀k;∀i (12h)

Ii(k), Ii(k), Oi(k), Oi(k) ≥ 0 ∀k;∀i (12i)
eij(k), J(k) ≥ 0 ∀k;∀i, j (12j)Ii(k) +

N∑
j=1

eji(k)

×
Oi(k) +

N∑
j=1

eij(k)

 = 0 ∀k;∀i

(12k)

This problem can be solved iteratively by replacing the

multi-objective function by the following scalarized objective:

Minimize
(Bi),(Oi(k)),(Ii(k)),

(J(k)),(eji(k))

N∑
i=1

wiBi (13)

for all weights wi ≥ 0 such that
∑N
i=1 wi = 1. Assuming

a small set of underlying storage technologies (i.e, small
N) and a discrete set of weights for each technology, it is
possible to explore the entire state space as long as the core
optimization problem can be quickly solved, i.e., is linear.
However, the scalarized optimization problem is non-linear,
because of the last non-linear constraint (Eq. (12k)) that is used
to prevent storage elements from simultaneously charging and
discharging. The following lemma shows that this inequality
can be removed, converting the problem to a linear program
(LP) and facilitating the use of fast LP solvers.

Lemma 1. There is an optimal solution that does not require
simultaneously charging and discharging any storage element
in the HESS.

Please see the Appendix A.1 for the proof.
Let us consider P1, the original NL problem with Eq. (12k)

and the linear problem P2 corresponding to P1 without
Eq. (12k). P2 has a larger feasibility region than P1. We show
in Appendix A.1 that an optimal solution of P2 can always
be transformed into another optimal solution of P2 where no
simultaneous charging or discharging of any storage element
occur. We show that this transformed optimal solution is also
an optimal solution for P1, the original problem.

IV. CASE STUDIES

Recall that the Pareto sizing frontier describes the mini-
mal set of HESS sizes necessary to always match supply
and demand. For a given application, whose performance
objective—such as minimizing price, volume, or weight—can
be expressed as a linear combination of the storage sizes, we
can find the corresponding optimal vector of HESS sizes by
evaluating the application’s objective only along the Pareto
frontier, instead of the entire space. In this section, we apply
this approach to two specific case studies. For both case
studies, we consider an HESS with two storage devices (i.e.,
N = 2). We first justify our choice of storage technologies,
then discuss the two applications. This section ends with a
discussion on practical operating strategies.

A. Choice of Storage Technologies

Batteries and supercapacitors are, respectively, known to be
energy efficient and power efficient energy storage technolo-
gies. Thus, a combination of a battery and a SCap is an a
priori good combination to meet both the energy efficiency
and the power efficiency requirements of an application. The
energy-content evolution of these two technologies can be
modelled by Eqs. (5)-(9). In the following, we assume that the
first storage element (i.e., i = 1) is a battery and the second
(i.e., i = 2) is a SCap. We now describe and characterize SCap
and batteries in more detail.
A.1 Batteries
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Fig. 2: SCap circuit model.

There is a large range of battery technologies; widely-used
technologies include:

• Lead-acid (PbA) battery: PbA batteries are attractive due
to their low up-front cost. However, their lifetime is
limited and they must be frequently replaced.

• Lithium-ion (Li-ion) battery: Lithium-ion cells are typi-
cally rated for much higher charge and discharge power
than PbA cells, making them better suited to absorb high
pulses of generated power to meet large power demands.
This type of battery does not require full recharge to
prevent degradation, meaning that the stress of infrequent
full charges found in renewable-energy applications may
actually be a benefit. Finally, Lithium-ion batteries have
much longer cycle lives than PbA batteries.

• NiCd battery: The most important feature of NiCd cells
is that they have the highest power density among the
existing batteries, making them suitable for applications
with high current drain requirements. However, cadmium
is a highly toxic heavy metal that can damage the envi-
ronment if not disposed properly. NiCd cells suffer from
so-called ‘memory loss’, which means that they gradually
lose their maximum energy capacity if they are repeatedly
recharged after being only partially discharged.

The most important imperfections of a battery are its charg-
ing/discharging inefficiencies and the limits on its maximum
charging/discharging power rates [10]. Batteries have negligi-
ble self-discharge. Thus,

Γ1 ≈ 1; γ1 ≈ 0. (14)

A.2 Supercapacitors (SCap)
SCaps have a high power density. They can be fully charged

or discharged within seconds [13], which is much faster than
any battery technology [14]. The cycle life of a SCap is very
high (500,000 to 1,000,000 charging cycles) compared to a
battery (few thousands) [14]. However, SCap is an expensive
technology (5x to 20x more expensive than Li-ion batteries),
its energy density is low, and its self-discharge rate is quite
high [14].

There are several circuit models proposed in the literature
to model the operation of SCaps. When SCaps are charged
and discharged within the period of a day or so, as is the case
in our two applications, the simple parallel RC circuit model
shown in Fig. 2 is found to be adequate. In Appendix A.2 we
show that the evolution of the energy stored in a SCap can be

PbA Li-ion NiCd SCap

ηcηd 0.75 0.9 0.8 1
αc 0.25 1 2 large
αd 2 2 20 large
a 0.80 0.80 0.80 1
Γ 1 1 1 0.9987
γ 0 0 0 0

TABLE II: Storage systems characteristics in room temperature and
for renewable energy applications [15], [16], [14], [8].

modelled by Eqs. (5)-(9) with

Γ2 =
(

1− 2δ
RC

)
; γ2 = 0

B2 = 1/2CV 2
max; αc2 = αd2 =∞; a2 = 1 (15)

where C, R, and Vmax are, respectively, the values of the
parallel capacitance, the parallel resistor, and the maximum
allowable terminal voltage of the equivalent circuit model.
These parameters can be easily obtained from the data sheet
of an SCap.

B. Applications

Our problem formulation can be applied to any storage
application for which we have representative traces for the
input power S and the committed output power D.
B.1 Application 1: Firming Solar Power

Solar power is inherently an intermittent source of power,
making it unreliable. However, it can be converted to a reliable
and smooth power source, using an HESS. Precisely, in this
application, the solar power trace (S(k)) is given and we
compute for each day how much we commit in terms of output
power using a given parameter r. Hence the output power
D(k) is constant over a day, depends on the input power, and
is computed as:

D(k) = r × average of S in day d ∀k in day d (16)

Given (S(k)), the larger r, the larger the payoff (since we sell
more power), but the larger the HESS needs to be. One can
consider finding the optimal value of r for different objective
metrics for example, the return on investment (ROI) of the
system. In this paper, however, we consider r as an input to
our problem. Note that r does not change on a daily basis and
that 0 < r < 1 since the average demand cannot be larger
than the average supply.

The HESS in this application has two main roles: 1) to
carry over energy to be used during the night; 2) to smooth
out power generation in short time scales and convert it into a
constant output power. Due to high energy density of battery
technologies, they are great to meet the first goal. The high
power density of SCaps makes them ideal for the second goal.

B.2 Application 2: Self-usage
Another important application of storage is in off-grid

scenarios. Consider a household which has solar PV panels
on the roof and is not connected to the grid. The entire load
demand of the household must be met by the only available
source of power, which is solar power. The HESS in this
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application has two main roles: 1) to carry over energy for
as long as necessary, perhaps even a few days, to ensure that
there exists enough energy to meet the load demand even
during several consecutive days with high load demand; 2)
to guarantee that the supply-demand matching is guaranteed
in all time scales. Again, battery and SCap are, respectively,
good candidates to meet the first and the second goal, due to
their energy and power density characteristics.

In this application, we are given an irradiance trace E(k)
for the location of the home. Let κ be the efficiency of a unit-
area PV panel and Ē be the long-term average of E. Then,
n = D̄

κĒ
is the minimum number of unit-area panels needed

to make sure that the total energy produced is larger that the
total energy needed. We can then choose r so that the number
of panels is n

r with 0 < r < 1 and then, the larger r, the less
investment on solar PV panels, which implies more investment
on HESS to meet the load demand. One can consider designing
r for different objective metrics such as minimizing the overall
budget for the system (solar panels and HESS). In this paper,
however, we consider r as an input to our problem.

C. Practical Operating Strategies

The Pareto-optimal sizing frontier is obtained by simul-
taneously optimizing storage sizes along with the operation
strategy. However, this optimal operation strategy is trace-
dependent and requires the entire supply and load traces
in advance. In practice, however, this information is not
available. Nevertheless, the Pareto-optimal frontier provides
a benchmark for any practical operating strategy. This raises
the question of how well a practical operating strategy can
perform compared to the Pareto-optimal benchmark.

We define a practical strategy to be one that does not require
any knowledge of the future. To design our practical operating
strategies, we observe that in our numerical examples the
problem defined by Eqs. (12a)-(12k), in which no migration
of energy allowed, that is, eij(k) = 0 ∀i, j and ∀k, results
in nearly-optimal solutions. This motivates the following two
simple practical operating strategies:
Strategy 1: The SCap is used as the primary storage device
for both charging and discharging. The battery is used only if
the SCap fills up when it is charging or becomes empty when
it is discharging.
Strategy 2: The SCap is used as the primary storage device
for discharging and the battery is used as the primary storage
device for charging. The battery is used for discharging only
if the SCap becomes empty and we use the SCap for charging
only if the battery becomes full.

Both of these operating strategies use the SCap as the pri-
mary storage for discharging. This is because, given the high
self-discharge rate of SCaps, we want to minimize the time
that we keep energy in SCaps. The difference between Strategy
1 and Strategy 2 is in the choice of the primary storage for
charging. The relative performance of these two operating
strategies depends mainly on their relative charge/discharge
efficiencies and degree of self-discharge, as explained next.

Suppose there is one unit of energy that needs to be stored
in an HESS. We have the option to store it either in the SCap

or in the battery. Say that this energy unit with the optimal
operating strategy will be withdrawn after kd time slots. This
means that this energy unit spends kd time units in the storage
device before it departs the device. If that energy unit is stored
in the battery, by the end of kd time slots, we can withdraw
only a fraction of ηc1η

d
1 < 1 from that energy unit, due to

the battery charging/discharging inefficiencies since there is
no leakage (from Eq. (14)). If it is stored in the SCap, we can
withdraw only a fraction of Γkd2 < 1 from that energy unit after
kd time units, due to the SCap self-discharge (from Eq. (15)).
Thus, the primary storage device for charging operation at
any point depends on how long that energy unit is supposed
to be kept in the storage device before it departs. In a myopic
strategy, kd is not known ahead of time, and hence the optimal
choice of storage for charging at any time is not known either.
As a result, we propose Strategy 1 and Strategy 2. We will
compare the performance of such static operating strategies
with the optimal operating strategy, using real world traces in
the next section.

V. NUMERICAL EVALUATION

In this section, we present some numerical examples for the
two case studies described in Section IV. The characteristics of
the storage devices used in this section are listed in Table II2.
We use the scalarized version of the optimization problem
formulated in Eq. (12a) to Eq. (12j) to find the Pareto frontier
and the optimal operating strategy. We also compute the
minimum B2 (given B1), assuming one of the two practical
operating strategies described in Section IV-C. For the source
power trace, we use one year of the solar irradiance dataset
from the atmospheric radiation measurement website [17]
from the C1 station in the Southern Great Plains permanent
site. For the first case study, we consider one panel and study
several values for r between 0 and 1. For the second case
study, we use for the load demand data, anonymized hourly
home-level load data provided to us by a Local Distribution
Company in Ontario, Canada and scale the irradiance set
by the factor n

r as discussed above where 0 < r < 1 is
given. Fig. 3 helps better visualize the statistical properties
of the input power and the committed output for these two
applications, by plotting several daily sample paths of one
month of these processes.

A. Pareto-optimal Sizing

Fig. 4 illustrates the Pareto-optimal sizing frontier of a
(SCap+battery) HESS when the operating strategy is optimal
for the two applications under study, three battery technolo-
gies, and several values of r. Note that these curves essentially
show insights into HESS feasibility. For example, for the solar
firming application, for r = 0.7, the three battery technologies
yield the same Pareto frontier. Moreover, since the frontiers

2Note that the imperfection parameters of a battery can be very different
from its nominal values when the battery is used to store energy from
renewable energy sources. In fact, the charging and discharging rates can
exceed the rated values at times. The intermittent charging-discharging nature
of storage operation in renewable energy applications tends to increase the
efficiency of storage operation, allowing larger charging-discharging values.
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Fig. 3: Daily sample paths of one month of the available solar power (in blue), the committed output power for the solar power firming
application (in red), and the committed output power for the self-usage application (in black). Thick curves present the average values over
all the sample paths with the same colour.
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Fig. 4: Pareto-optimal frontier of (Scap+battery), using three battery technologies for different values of r.

intersect both the X and Y axes, all the batteries and SCap
could also have performed solar firming by themselves. How-
ever, even though the three battery technologies yield the
same Pareto frontier, it does not mean that the systems are
equivalent since once an objective function based on cost has
been chosen they might yield very different operating points on
the frontier and one of these operating points might dominate
the others. For r = 0.8, the three battery technologies yield
the same Pareto frontier and although the batteries could have
performed solar firming by themselves, SCap alone could not.
For r = 0.9, an HESS with PbA cannot performed solar
firming at all while an HESS with Li-ion or NiCd can and
Li-ion seems to do it better (though again the final comparison
would depend on the cost). Li-ion can perform solar firming
alone while NiCd and PbA cannot.

For the self-usage application, Fig. 4 clearly shows that the
larger the r, the more expensive the HESS is (in terms of
storage sizing) and hence the more pronounced the role of the
storage technology. Comparing the performance of the battery

technologies and their corresponding physical imperfections
in Fig. 4 suggests that the charging/discharging efficiency is
the key feature that differentiates their performance.

Fig. 4b illustrates the Pareto-optimal frontier for the self-
usage application. SCap alone cannot meet the load demand
for r > 0.2 while the three battery technologies can up to
r < 0.8. For r = 0.8, the load demand cannot be met by
a single storage technology and we need to have a battery
of size at least 377Wh (denoted by point B) and a SCap
of at least 15KWh (denoted by point A) in any feasible
HESS. This is because, at this large value of r, the battery
inefficiency becomes a bottleneck and we need to combine
the ideal efficiency of SCaps and the negligible self-discharge
of the batteries to meet the load demand.

B. The Performance of the Practical Operating Strategies

Fig. 5 compares the performance of the proposed practical
operating strategies with the optimal trace-based one for a
SCap+Li-ion system for the two applications. We make several
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Fig. 5: Comparing practical operating strategies with the trace-based optimal one for a (Scap+Li-ion) HESS for different values of r.
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Fig. 6: Sensitivity analysis: Solar power firming application

observations. Most importantly, Fig. 5 suggests that there
exists a simple myopic operating strategy (i.e., Strategy 2),
which closely follows the optimal Strategy. In most cases,
Strategy 2 outperforms Strategy 1 (compare points C and D,
respectively, corresponding to Strategies 1 and 2 in Fig. 5a).

As explained in Section IV-C, the only difference between
these two operating strategies is the choice of primary storage
for charging. The better performance of Strategy 2 compared
to Strategy 1 indicates that in critical scenarios, the stored
energy remains in the storage device for a long time, and
hence, the self-discharge of SCap is more restrictive than the
battery inefficiency.

The performance of the operating strategies is also highly
affected by the application. Strategy 1 becomes infeasible
for any r > 0.5 in the self-usage application. Moreover,
the difference between Strategy 2 and the optimal strategy
gradually increases as r increases (for example, check points
E and F in Fig. 5b).

C. Sensitivity Analysis with Respect to the Input Solar Power

We now study the sensitivity of our conclusions with respect
to the input solar power for both applications. We perform
a sensitivity analysis with respect to the variations of solar
power in the same location from one year to another (temporal
variations) and to the variations at different locations (spatial
variations).

Fig. 6a compares the frontier obtained with the solar power
trace used in the previous examples (Dataset 1), with a solar
power trace from the same location but a different year
(Dataset 2). Fig. 6b studies the sensitivity of the results with
respect to the spatial variations by comparing the Pareto-
optimal frontier from two different sites far apart from each
other. We use operating Strategy 2 for all cases. As shown
in Fig. 6, the Pareto-optimal frontier for the solar firming
application is almost insensitive to temporal variations and
is more sensitive to spatial variations. This might stem from
the fact that the output power in this application is highly
correlated with the input power, making the input variability
less significant.

We next do a sensitivity analysis for the self-usage appli-



9

20 40 60 80 100
0

100

200

300

400

500

Size of SCap (KWh)

S
iz

e
 o

f 
b
a
tt
e
ry

 (
K

W
h
)

 

 

Dataset 1
Dataset 2

r = 0.8

r = 0.7

r = 0.6

r = 0.5

r = 0.2

r = 0.4

(a) Different years, same location

20 40 60 80 100
0

100

200

300

400

500

Size of SCap (KWh)

S
iz

e
 o

f 
b
a
tt
e
ry

 (
K

W
h
)

 

 

Location 1
Location 2

r = 0.8

r = 0.7

r = 0.6

r = 0.5

r = 0.4

r = 0.2

(b) Different locations

Fig. 7: Sensitivity analysis: Self-usage application

cation. Fig. 7a compares the Pareto-optimal frontier of the
solar power trace used in the previous examples (Dataset 1)
and another data trace from the same location (a different
year) (Dataset 2), using operating Strategy 2. Fig. 7b compares
the Pareto-optimal frontier of the original trace (Location 1)
and another location (Location 2), using operating Strategy 2.
Fig. 7 shows that the Pareto-optimal frontier is sensitive to
both temporal and spatial variations. This is due to the fact
that we design the system for the worst case scenario, i.e., the
system should meet the demand at all times. Replacing the
input trace with another sample path creates a different worst-
case scenario which might lead to a different Pareto frontier.
In future work, we plan to extend our work to a probabilistic
setting where the demand needs to be met almost surely, but
not always.

VI. RELATED WORK

A hybrid storage system comprising N storage elements can
combine the best features of each element. This allows it to
outperform any single system element in terms of a given cost
function, such as total investment, return on investment (ROI),
system efficiency, and system lifetime. However, the design of
an effective HESS is difficult, due to three coupled design
factors: the choice of the storage technologies, operating
strategy, and storage sizing. Moreover, the optimal design of
an HESS is highly application-dependent [1], [2], [3].

Recent papers have studied the role of HESS in different
applications. These can be categorized into four classes. The
first is source shaping, i.e., to reshape power sources or to
smooth out the fluctuations of renewable energy (e.g., [6]).
Second, demand shaping or load reshaping. Examples of this
application are load leveling or peak shaving of datacenters [8].
Third, HESS can be also used for residential prosumers. For
example, HESS can be used to minimize the daily electricity
cost for residential prosumers with PV panels. Depending on
the time of use pricing, the residential prosumers can use either
their locally generated solar power or buy electricity from the
grid. Storage devices allow household prosumers to optimally
shift their power generation or their load demand in order

to minimize their electricity bills. It is shown that an HESS
composed of PbA and Li-ion batteries achieves an annual ROI
of up to 60% higher than a single-element PbA or lithium-ion
system, given a fixed monetary budget [3], [9]. Finally, HESS
can be used in electric vehicles [4], [5].

The optimal choice of storage technologies for each appli-
cation is governed by the energy and power efficiency of the
storage technologies and the time scales of that application.
Typically, an HESS combines a high energy efficient storage
technology such as batteries with a high power efficient storage
technology such as SCap. In [18] four HESS configurations
have been considered for decentralized PV systems: power-
to-heat/battery, power-to-heat/battery/hydrogen, SCap/battery,
and battery/battery. For a given choice of storage technologies,
the next problem is how to minimally size the underlying
elements to adequately satisfy application requirements.

Prior wok in HESS operating strategies can be categorized
into rule-based or optimization-based strategies [18]. Rule-
based operating strategies are not extracted directly from
solving the optimization problem [19]: Strategy 1 and Strat-
egy 2 in this paper are examples of rule-based operating
strategies. A slightly more complicated version of rule-based
operating strategies are those with “thermostat” concept, which
switch states whenever the energy level of the storage ele-
ments exceed or go below a predefined threshold. In contrast
optimization-based operating strategies are extracted from the
optimization solution [20]. They are either globally optimal
and based on traces, or they are model predictive and real-time.
The solution to the optimization problem in this paper finds the
globally optimal operating strategy, which then inspires a sim-
ple rule-based operating strategy. Despite being impractical for
real systems, globally optimal operating strategies are useful
as benchmarks. Choosing a rule-based or a real-time (model-
based) operating strategy is a trade-off between complexity
and performance.

Optimizing over all three design factors simultaneously
is challenging and has not been studied well. Instead, one
or two elements are assumed to be given and the design
optimization is only over the remaining elements. For example,



10

there are several papers studying the optimal control strategy
for different applications [7], [4], [1], assuming the storage
technology and sizes are given. Yang and Nehorai [11] jointly
size an HESS and size PV panels for a limited choice of
operating strategies (without charge migration) to minimize
the initial investment cost and the maintenance cost. Note
that disallowing charge migration greatly limits the choice of
operating strategies and unclear at this point how much we
lose by doing so. In [12], the optimal placement and sizing
of a (single) storage technology is formulated to minimize the
generation cost.

At this point, it appears that a full understanding of the
performance and feasibility of an HESS over the spectrum
of the design factors is limited to few applications and cost
functions. Our work is a first attempt to account for all three
important elements in the HESS design space. Finally, unlike
all the existing work, our framework is applicable to a wide
range of applications and the choice of storage technologies.

VII. CONCLUSION

Each storage technology has its own power and energy
characteristics and it appears that no single technology is likely
to meet the requirements of all applications of storage. This
motivates the use of hybrid energy storage systems (HESS) to
combine the best features of multiple storage technologies.
The performance of an HESS depends on three coupled
factors: the choice of storage technologies, their sizes, and the
charging/discharging operating strategy. The interplay between
these three factors makes the optimal design of an HESS a
challenging open problem. In this paper, we formulate the
optimal design of an HESS, computing the optimal sizing
and operating strategy for given set of storage technologies.
Iterating over different choices of storage technologies, this
allows us to explore the entire design space for the first time.
Our problem formulation returns the Pareto-optimal frontier of
the sizes of the underlying storage elements. This frontier can
be used to find the optimal storage sizing for any application
with a non-decreasing objective function in the vector of
storage sizes. We prove that our original non-linear problem
formulation can be converted to an LP, substantially reducing
the computation time. Our problem formulation can be applied
to a large set of applications and storage elements. We use this
formulation for two case studies. We also find practical (i.e.,
trace independent and myopic) operating strategies which per-
form close to the optimal trace-dependent one. Finally, using
real traces, we find several interesting engineering insights.
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APPENDIX

A.1: PROOF OF LEMMA 1

Suppose that the starred values (I∗i , O∗i , e∗ij , J
∗) for any

1 ≤ i, j ≤ N refer to a solution of the optimization problem
(skipping (k) in notation for convenience). While this solution
does not necessarily satisfy the claim in the lemma, we can
transform it to a new set of variables (I ′i , O

′
i, e
′
ij , J

′) for any
1 ≤ i, j ≤ N that is also a solution of the problem and yet
satisfies the claim of the Lemma. The values of (I ′i , O

′
i, e
′
ij ,

J ′) are chosen in a way to maintain the values of bi for any
1 ≤ i ≤ N from Eq. (12h) unchanged (compared to those
with the starred values) and satisfy all other constraints, so
the objective function is not affected by this transformation.

To present how to compute (I ′i , O
′
i, e
′
ij , J

′), define Xi such
that

Xi := ηci

I∗i +
N∑
j=1

e∗ji

− 1
ηdi

O∗i +
N∑
j=1

e∗ij

 (17)
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From the energy content evolution formulations (Eq. (12h)),
the sign of Xi determines if the device i is either in charging
or discharging mode. To simplify notation, denote Nch and
Ndc, respectively, the set of storage devices in charging and
discharging mode (at time k). This is

Nch = {i | Xi ≥ 0}; Ndc = {i | Xi < 0} (18)

With this notation, set e′ij to be

e′ij = (19){ [
e∗ij − e∗ji/(ηcjηdj )− Yij − Zij

]
+ if i ∈ Ndc and j ∈ Nch

0 Otherwise
(20)

where [x]+ = max(0, x) for any x. For any j ∈ Nch, Yij is
given by

Yij =
{

0 ∀i /∈ Ndc
Aij

Bij∑
i∈Ndc

Bij
∀i ∈ Ndc, (21)

where

Aij := min
( ∑
i∈Ndc

[
e∗ij − e∗ji/(ηcjηdj )

]
+ , O∗j /(ηcjηdj )

)
(22)

Bij :=
[
e∗ij − e∗ji/(ηcjηdj )

]
+ (23)

Given the values of Yij , for any i ∈ Ndc, Zij is computed as

Zij =
{

0 ∀j /∈ Nch
Cij

Dij∑
j∈Nch

Dij
∀j ∈ Nch, (24)

where

Cij := max

0,
∑
j∈Nch

[
e∗ij − e∗ji/(ηcjηdj )− Yij

]
+ + ηdiXi


(25)

Dij :=
[
e∗ij − e∗ji/(ηcjηdj )− Yij

]
+ (26)

The role of Yij and Zij is to ensure that for any j ∈ Nch∑
i∈N

e′ij =
∑
i∈Ndc

[
e∗ij − (e∗ji +O∗j )/(ηcjηdj )

]
+ (27)

unless e′ij is bounded by the following for some i ∈ Ndc∑
j∈N

e′ij ≤ −ηdiXi. (28)

in which case e′ij for j ∈ N will be curtailed to satisfy the
above constraint.

Having the values of e′ij for any 1 ≤ i, j ≤ N , set the
values of I ′i , O

′
i, and J ′ accordingly as follows

I ′i =

Xi/η
c
i −

N∑
j=1

e′ji


+

(29)

O′i =

−ηdiXi −
N∑
j=1

e′ji


+

(30)

J ′ =

J∗ − N∑
j=1

O′j +
N∑
j=1

O∗j


+

. (31)

This choice of J ′ ensures that J ′ ≥ 0 and moreover,
Eq. (12c) with the modified variables holds (knowing that it
holds for the starred values). In addition, the specific choices
of the variables in the above four cases guarantee that I ′i , O

′
i,

e′ji ≥ 0 for any 1 ≤ i, j ≤ N . These choices also ensure that
bi is unchanged. Therefore, we only need to show that the
constraints in Eq. (12d) to Eq. (12f) hold in all cases.

With the choice of J ′ in Eq. (31), to prove that Eq. (12d)
for the modified variables hold, we have to show that both of
the following constraints hold:

N∑
i=1

I ′i ≤ S (32)

N∑
i=1

I ′i −
N∑
i=1

O′i +
N∑
i=1

O∗i ≤ S − J∗ (33)

From Eq. (12d) for the optimal values, we know that

N∑
i=1

I∗i ≤ S − J∗. (34)

Therefore, sufficient conditions for Eqs. (32)-(33) to hold are

N∑
i=1

I ′i ≤
N∑
i=1

I∗i (35)

N∑
i=1

(I ′i −O′i) ≤
N∑
i=1

(I∗i −O∗i ) (36)

In summary, to prove the lemma, it is sufficient to show
that with the choices in Eq. (20) to Eq. (31) satisfy the four
constraints in Eq. (12e) to Eq. (12f) and Eqs. (35)-(36). It can
be verified by replacing the values of (I ′i , O

′
i, e
′
ij , J

′) for any
1 ≤ i, j ≤ N in those four constraints.

A.2: FORMULATING THE ENERGY CONTENT EVOLUTION
OF SCAPS

The terminal voltage of the SCap must not exceed an upper
bound threshold Vmax to ensure that it is safely operating.
For a Scap with capacity C and maximum voltage Vmax, the
maximum amount of energy that can be stored in the device, is
equal to B2 = 1

2CV
2
max. The input power Pio is fixed during

each time slot; Pio(k) denotes the input power during the k’th
time slot or in the time interval [kδ, (k+1)δ]. Let b2(k) denote
the energy content of the SCap at the beginning of time slot
k. Using the energy conservation law, the stored energy in the
SCap evolves according to the following differential equation:

Pio(k) = Vc(t)2

Rd
+ db2(t)

dt
; ∀t ∈ [kδ, (k + 1)δ] (37)

where Vc(t) denotes the SCap’s voltage at time instant t.
Inserting S(t) = 1

2CVc(t)
2 in Eq. (37), yields

Pio(k) = 2b2(t)
RdC

+ dS(t)
dt

; ∀t ∈ [kδ, (k + 1)δ] (38)
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The solution to Eq. (38) is as follows:

∀t ∈ [kδ, (k + 1)δ] :

b(t) =
(
C

2 Pio(k)Rd
)

+
(
b(k)− C

2 Pio(k)Rd
)
e
−
(

2(t−kδ)
RdC

)
;

(39)

Therefore, the energy stored at t = (k + 1)δ is equal to

b2(k+1) =
(
C

2 Pio(k)Rd
)

+
(
b(k)− C

2 Pio(k)Rd
)
e
−
(

2δ
RdC

)
.

(40)
Using the first order approximation of e−

(
2δ
RdC

)
, Eq. (40) is

reduced to:

b2(k + 1) ≈ Γb2(k) + Pio(k)δ, (41)

where Γ =
(

1− 2δ
RdC

)
denotes the self-discharge efficiency

of the storage within a time slot. Thus, we have transformed
the non-linear energy content evolution of a SCap to a linear
one with a first order approximation.

Note that Pio represents both the input (Pio > 0) and the
output power (Pio < 0) to the SCap. Thus, Eq. (41) can be
rewritten as

b2(k + 1) ≈ Γb2(k) + S2(k)δ −D2(t)δ, (42)

where S2 and D2 are, respectively, the input and output power
to the SCap. In addition to Eq. (42), the values of S2 and D2
must ensure that the following constraint holds

0 ≤ b2(k) ≤ B2, (43)

or

0 ≤ b2(k) ≤ 1/2CV 2
max. (44)

The values of C, Rd, and Vmax can be collected from the data
sheet of SCaps.
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