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Abstract

To stimulate and facilitate the use of alternative-fuel vehicles, it is crucial to have a
network of refueling or recharging stations in place that guarantees that vehicles can reach
(most of) their destinations without running out of fuel. Because initial investments in these
stations are restricted, it is important to choose their locations deliberately. A fast growing
stream of literature therefore analyzes the problem of locating refueling or recharging sta-
tions. The models proposed in these studies assume that the driving range is fixed, although
reality shows that the driving range is highly stochastic. These models thereby misrepresent
the actual coverage a network of refueling stations provides to drivers. This paper intro-
duces two problems that do take the stochastic nature of the driving range into account. We
first introduce the Expected Flow Refueling Location Problem, which is to maximize the
expected number of drivers who can complete their trip without running out of fuel. The
Chance Constrained Flow Refueling Location Problem is to maximize the number of drivers
for which the probability of running out of fuel is below a certain threshold. We prove the
problems to be strongly NP-hard, propose novel mixed-integer programming formulations
for these problems, and show how these models can be extended to the case that the driving
range varies during a trip. Furthermore, we extensively analyze and compare our models
using randomly generated problem instances and a real life case study about the Florida
state highway network. Our results show that taking the stochastic nature of the driving
range into account can substantially improve the network coverage, that optimal solutions
are highly robust with respect to data impreciseness, and that the potential gains of stochas-
tic models heavily depend on the driving range distribution. Based on the results, we discuss
policy implications.
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1. Introduction

The increase in oil prices and concerns about global warming have increasingly motivated
the development of alternative-fuel vehicles, which, for instance, use hydrogen, ethanol,
biodiesel, natural gas, or electricity as a source of energy. The number of car manufacturers
presenting hybrid vehicles is going up and also pure or all-electric vehicles are more and
more becoming popular. To facilitate and to stimulate this development, it is crucial to
have a network of facilities in place that guarantees that vehicles can reach (most of) their
destinations without any problems (i.e., without running out of fuel). Particularly in the
first period after the introduction of a new type of alternative-fuel vehicle, investments in
these facilities are scarce. There is little opportunity of making money on them, as the pool
of potential customers is still relatively small (Romm, 2006).

To overcome this “chicken and egg problem”, governments, car manufacturers and other
companies make joint efforts to establish an initial network of refueling stations that satisfies
the basic needs of potential alternative-fuel vehicle users. For example, Tesla establishes a
network of superchargers in Northern-America and Europe, to guarantee that the most
important routes are covered sufficiently (TeslaMotors, 2015). As initial budget to place
these stations is restricted, it is very important to choose the locations of new stations
deliberately.

The problem of choosing the locations of refueling stations has therefore attracted con-
siderable attention in the past few years (see e.g. Kuby and Lim, 2005; MirHassani and
Ebrazi, 2012; Capar and Kuby, 2012; Capar et al., 2013). These studies model this location
problem as a flow coverage problem, where a flow represents a population of electric vehi-
cle (or, more generally, alternative-fuel vehicle) users travelling from the same origin to the
same destination. Such flow is defined to be “covered” or “refueled” if the driving distance
(or time) between each pair of consecutively passed refueling stations does not exceed the
driving range of the vehicle. The problem of maximizing the total amount of flow that is
refueled is referred to as the Flow Refueling Location Problem (FRLP) and can be solved
efficiently by means of standard software (Capar and Kuby, 2012; MirHassani and Ebrazi,
2012).

The FRLP belongs to the class of facility location problems. Classical facility location
problems assume non-moving demand units and a static location of the facilities. This latter
assumption is relaxed in dynamic facility location problems, which allow facilities to be
relocated (cf. Arabani and Farahani, 2012). The assumption of non-moving customers has
been relaxed by the class of flow interception facility location problems (FIFLPs), which
aim to locate facilities that capture or intercept customers along their origin-destination
paths (see e.g. Hodgson, 1990; Berman et al., 1992). Examples of flow interception problems
include the positioning of billboards (Averbakh and Berman, 1996), roadside healthcare
facilities (De Vries et al., 2014) and refueling locations (e.g., the FRLP). Berman and Krass
(1998) extend the flow interception problem by accounting for competition among different
facilities.

Whereas these classical flow interception problems assume that customers follow certain
pre-planned paths, Kim and Kuby (2012) formulate the location problem in which drivers are
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willing to deviate from their preferred paths to refuel their vehicles. This problem is referred
to as the deviation flow refueling location problem. Yıldız et al. (2016) propose a branch
and price approach to solve this problem, which significantly reduces the computation time.
Finally, whereas the FRLP and the deviation FRLP mainly focus on enabling long-distance
trips, Kang and Recker (2014) optimize locations with respect to short-distance traffic, for
which the driving range is assumed to be of no limitation. Instead, the authors propose
models to locate the facilities based on household scheduling and routing considerations.

The flow refueling location problems discussed so far implicitly assume that the driving
range of a vehicle is fixed and known in advance. However, reality shows that the driving
range is highly variable. For instance, it is dependent on the age of the battery, the tem-
perature, the amount of traffic on the road, and the driving style (Ehsani et al., 2009; Musk
and Straubel, 2012; Dong and Lin, 2014). Therefore, regarding the driving range as fixed
can significantly misrepresent the coverage level provided by a network of refueling stations,
and potentially lead to location choices that are far from optimal in reality. Lee et al. (2014)
make a first attempt to include stochasticity of the driving range into the location problem,
by assuming a randomly distributed battery load at the beginning of a trip from origin to
destination. The authors, however, unrealistically assume that the driving range is sufficient
to cover all origin-destination combinations, such that recharging is needed at most once
during a trip. Simulated annealing is used to solve the location problem for a small network.

In this paper, we investigate two ways to incorporate the stochastic nature of the vehicle
driving range into the problem of locating refueling stations. We first propose a new formu-
lation of the FRLP, which contains the driving range explicitly as a parameter (in contrast
with existing formulations). Using this formulation as a starting point, we first introduce and
model the Expected Flow Refueling Location Problem, which is to maximize the expected
number of drivers who can complete their trip without running out of fuel. Although this
model provides a natural way to deal with stochasticity, it does not consider the coverage
levels provided to each of the flows separately. As a consequence, it prefers to provide two
equally sized flows with 51% coverage over providing one flow with 100% coverage. This
might be easily justifiable in the context of hybrid (electric) vehicles, which can switch to a
different power source when the primary source is exhausted. However, since drivers of, for
instance, pure electric vehicles or hydrogen vehicles will strongly dislike the large probability
of running out of fuel, this solution will be far from optimal in their context. We there-
fore also introduce and model the Chance Constrained Flow Refueling Location Problem,
which is to maximize the number of drivers for which the probability of completing their
trip without of running out of fuel is at least 1 − α. We numerically analyze these models
using randomly generated networks (see Capar and Kuby, 2012) and a real life case study
on the Florida state highway network (see Kuby et al., 2009; Capar et al., 2013).

The remainder of this paper is organized as follows. Section 2 describes our reformu-
lation of the FRLP. The stochastic model formulations are introduced in Section 3, and
Section 4 describes our numerical results. Finally, in Section 5 we draw conclusions and
state opportunities for future research.
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2. Reformulation of the Flow Refueling Location Problem (FRLP)

The Flow Refueling Location Problem can be described as follows. Consider a network
G(L,E) where L denotes a set of locations and E a set of arcs between these locations.
The set of locations L is the union of the following three sets: the set of potential facility
locations, K, the set of origins, O, and the set of destinations, D. Consider a collection
of drivers who travel along this network. In line with the literature (Kuby and Lim, 2005;
Capar and Kuby, 2012) we use the term flow to refer to the subset of drivers that travels
from the same origin to the same destination along the same path. Let F denote the set of
all the flows and let Of and Df denote respectively the origin and destination of the drivers
along flow f . The path travelled by the drivers in flow f is an ordered sequence of edges
e ∈ E connecting the following vertices: the start vertex Of ∈ O, an ordered subset of
potential facility locations, Kf ⊆ K, and the end vertex, Df ∈ D. The volume of flow f ,
i.e., the number of drivers that travels from Of to Df , is denoted by vf . The vehicles have
a driving range of R (miles/kilometers), and can be refueled/recharged at refueling facilities
along their route. We consider a flow to be covered if vehicles can travel from their origin
to their destination and back to their origin without running out of fuel. The objective of
the FRLP is to locate p facilities in the network, so as to maximize the number of drivers
covered.

Existing models for the FRLP include the driving range restriction implicitly by repre-
senting the coverage of a flow or arc by means of binary parameters (Kuby and Lim, 2005;
Capar and Kuby, 2012; Capar et al., 2013; MirHassani and Ebrazi, 2012). We propose a new
MIP formulation that explicitly contains the driving range. Before we propose our model,
let us introduce some notations. We use the binary decision variable xk to indicate whether
a facility is placed at potential facility location k (xk = 1) or not (xk = 0). For sake of
simplicity, we assume that there are currently no facilities in the network. The model can
easily be adapted in the case that there are. Furthermore, we use auxiliary variables yf to
indicate whether flow f is covered (i.e., refueled: yf = 1) or not (yf = 0).

In what follows we will use a slightly different vector of vertices to represent a path:

πf = [πf (1), πf (2), . . . , πf (n− 1), πf (n)]

Here, πf (1) and πf (n) represent the origin vertex Of and the destination vertex Df , respec-
tively. The vector [πf (2), . . . , πf (n − 1)] is the sequence of locations k ∈ Kf with a new
facility passed during a trip from Of to Df . We call these locations new facility locations.
Hence, this representation does not necessarily include all k ∈ Kf . Note that πf depends on
the decision variables xk for all k ∈ Kf , because these variables determine the new facility
locations. We make the following assumption about this path:

Assumption 1. A driver in flow f cyclically travels from Of to Df to Of to Df et cetera,
as follows: [πf (1), πf (2), . . . , πf (n− 1), πf (n), πf (n− 1), . . . , πf (2), πf (1), πf (2), . . . ]

We assume that drivers do not deviate from their route to visit another new facility
location and we assume that there is always sufficient capacity at a refueling facility. We refer
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to Section 5 for a discussion of these assumptions. Furthermore, we assume that a refueling
facility at location k can be reached by traffic from both directions. This assumption is
motivated by the fact that recharging facilities are generally located either on both sides of
a highway or close to an exit of a highway, so that they are easily accessible for traffic from
both directions.

Note that, in case that |πf | = 2, there are no new facility locations along the path of
flow f . Let us consider the case that |πf | ≥ 3. By Assumption 1 we know that a driver in
flow f always returns to πf (1) after reaching πf (n), and vice versa. We refer to the path
from πf (1) via πf (n) to πf (1) as the flow f cycle. This cycle could be regarded as a set
of trips between successively passed new facility locations. This set of trips is given by:
{πf (h) → πf (h + 1)|2 ≤ h ≤ n − 2} ∪ {πf (n − 1) → πf (n) → πf (n − 1)} ∪ {πf (h + 1) →
πf (h)|2 ≤ h ≤ n− 2} ∪ {πf (2)→ πf (1)→ πf (2)}. We refer to these trips as cycle segments.

Definition. A cycle segment of the flow f cycle is identified by two vertices k and l in
the following cases:

• k is the origin and l is the first new facility location that is visited when travelling
from the origin to the destination. Then vertices k = Of and l ∈ Kf identify the cycle
segment l→ Of → l.

• k is the last new facility location that is visited before reaching the destination l. Then
vertices k ∈ Kf and l = Df identify the cycle segment k → Df → k.

• k and l are two new facility locations that are visited consecutively. Then vertices
k ∈ Kf and l ∈ Kf identify the cycle segment k → l.

Figure 1 illustrates the definition of the cycle segments.

Of

l1

l1

. . .

l2

l2

l3

l3

. . .

l4

l4

Df

Figure 1: An illustration of the three types of cycle segments of the flow f cycle: the cycle segment identified
by vertex l1 and the origin (l1 → Of → l1), the cycle segments identified by vertices l2 and l3 (l2 → l3,
l3 → l2) and the cycle segment identified by vertex l4 and the destination (l4 → Df → l4).

We note that a flow f is covered if and only if the driving range exceeds the length of
each cycle segment corresponding to this flow. The length of a cycle segment is represented
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by the parameters tkl, defined for any k, l ∈ {Of ∪Kf ∪Df}. For k ∈ Kf and l ∈ Kf , this
parameter denotes distance between locations k and l, for k = Of and l ∈ Kf this parameter
represents the distance from l, via Of to l, and for l = Df and k ∈ Kf this parameter
represents the distance from k, via Df to k. For later use we define tOfDf

=∞ for all f ∈ F .
In the model formulation we use Lf to denote the total set of locations in the path of

flow f (i.e., Lf = {Of ∪ Kf ∪ Df}) and Lkf denotes the set of locations that are passed
after passing location k during a trip from Of to Df (including Df ). We use the binary
variables iklf to indicate whether locations k and l identify a cycle segment of the flow f
cycle (iklf = 1) or not (iklf = 0). Observe that it is sufficient to define these variables only
for l ∈ Lkf by Assumption 1 and the definition of the distance parameters tkl. Finally, M
denotes a large number

(
e.g., 2 ·maxf∈F

{
maxk∈Kf

{tOfk + tkDf
}
})

.
We summarize our notations in the following table:

Sets and indices
L set of locations, indexed by k, l
E set of arcs between locations
K set of potential facility locations
O set of origins
D set of destinations
F set of flows, indexed by f
Kf set of potential facility locations

along flow f
Lf set of locations along flow f
Lkf set of locations along flow f passed

after location k on a trip from Of to Df

Parameters
p number of new facilities to locate

Parameters (continued)
R driving range
Of origin of flow f
Df destination of flow f
tkl length of the cycle segment

identified by locations k and l

Decision variables
xk binary variable; 1 if a facility is

placed at location k and 0 if not
yk binary variable; 1 if flow f is

covered and 0 if not
iklf binary variable; 1 if locations k

and l identify a cycle segment of
the flow f cycle and 0 if not

Using these notations, the FRLP can be formulated as the following MIP model:
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max
∑
f∈F

vfyf (1)

s.t.
∑
k∈K

xk = p (2)∑
l∈Lf

iklf tkl − (1− yf )M ≤ R f ∈ F, k ∈ {Of ∪Kf} (3)∑
l∈Lf

iklf = xk f ∈ F, k ∈ Kf (4)∑
l∈Lf

iklf = 1 f ∈ F, k ∈ Of (5)∑
k∈Lf

iklf = xl f ∈ F, l ∈ Kf (6)∑
k∈Lf

iklf = 1 f ∈ F, l ∈ Df (7)

iklf ∈ [0, 1] f ∈ F, k ∈ Lf , l ∈ Lkf (8)

xk, yf ∈ B f ∈ F, k ∈ K (9)

The objective function (1) maximizes the total flow volume covered. Constraint (2)
restricts the number of new facilities that can be placed. Constraint (3) stipulates that a
flow is covered if and only if the driving range exceeds the length of each of the corresponding
cycle segments. The decision variables are defined in constraints (8) - (9). Finally, By
Lemma 1 constraints (4) - (8) stipulate that variables iklf take the values as defined above.
Observe that constraints (8) define the variables iklf to be continuous variables on [0, 1].

Lemma 1. Constraints (4) - (8) ensure that iklf = 1 if and only if locations k and l identify
a cycle segment of the flow f cycle and that iklf = 0 otherwise.

Proof. We refer to De Vries et al. (2014) for the proof of this lemma.

To distinguish the problem described by (1) - (9) from the stochastic variants intro-
duced next, we refer to this problem as the Deterministic Flow Refueling Location Problem
(DFRLP) from now on.

3. Stochastic Models

This section describes two ways to deal with a stochastic driving range. Without loss
of generality, the driving range of a vehicle, denoted by R(ω), is defined as some function
of the random variable or vector of random variables ω. This can be thought of as a set
random conditions – like weather, traffic, driving style, or battery condition – influencing the
driving range. We consider the same problem as in Section 2, but now assume that coverage
depends on the random variables ω. Coverage thus becomes a matter of chance rather than
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a binary observation, as assumed in the DFRLP. In line with this, we use binary variables
yωf to indicate whether or not a driver along flow f can perform its trip without running
out of fuel under random conditions ω. In Section 3.1 we model and analyze the problem
to maximize the expected flow volume covered as a two-stage recourse model. Section 3.2
describes and analyzes a model that handles driving range variability by means of chance
constraints.

We make the following assumptions about the driving range:

Assumption 2. Given the realization of ω, the driving range, R(ω), is the same at each
cycle segment traversed by vehicle in flow f .

Assumption 3. R(ω) is randomly distributed with cumulative density function (CDF) G :
R+ 7→ [0, 1].

We refer to Section 3.1.1 and Section 3.2 for a discussion on relaxing these assumptions
for the two stochastic models, respectively.

3.1. Expected Flow Refueling Location Problem (EFRLP)

Let a vehicle be covered if and only if the driving distance between each pair of con-
secutively passed refueling stations does not exceed the driving range of the vehicle. The
problem of locating refueling stations can be regarded as a two-stage stochastic optimization
problem. Using the terminology from the field of stochastic optimization, the first-stage
decisions are to locate the facilities (i.e., on xk), whereas the second stage “decisions” are
whether or not to cover a vehicle in flow f (i.e., on yωf ), given a realisation of its driving
range. Qf (x, i) denotes the expected “value” of the second stage decisions corresponding to
flow f : the flow volume times the probability that a vehicle in that flow is covered. Here,
x = {xk} and i = {iklf}. Using these notations, the problem of maximizing the expected
flow volume covered can be described as:

max
∑
f∈F

Qf (x, i) (10)

s.t.
∑
k∈K

xk = p (11)

(3)− (8)

xk ∈ B k ∈ K (12)

The expected value function Qf (x, i) is defined as follows:

Qf (x, i) = Eω[ max
yωf ∈{0,1}

{vfyωf }] (13)

s.t.
∑
l∈Lf

iklf tkl − (1− yωf )M≤ R(ω) k ∈ {Of ∪Kf} (14)
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The objective (10) is to maximize the expected flow volume covered. Constraint (11)
stipulates that exactly p new facilities are located. Constraints (3) - (8) construct the cycle
segments and constraints (12) define the decision variables. Finally, constraints (14) stipulate
that a vehicle in flow f is covered if and only if the driving range is sufficient to traverse all
segments of the flow f cycle.

Let zf denote the probability that a vehicle in flow f is covered, also referred to as the
coverage level of flow f . By Assumption 2 zf equals the probability that the driving range
exceeds the length of the largest cycle segment. The latter equals max(k,l){iklf tkl}, so that
the value of zf is obtained by:

zf = P
(
R(ω) ≥ max

(k,l)
{iklf tkl}

)
(15)

= 1− G
(

max
(k,l)
{iklf tkl}

)
(16)

= 1−max
(k,l)
{iklfG(tkl)} (17)

Equation (17) holds because variables iklf take the value 0 or 1, and because G(0) = 0
(see Assumption 3). By (17) the value of Qf (x, i) can be obtained with the following small
MIP problem. Here, parameters gkl denote G(tkl); the probability that the driving range is
smaller than tkl.

Qf (x, i) = max vfzf (18)

s.t. zf ≤ 1−
∑
l∈Lf

iklfgkl k ∈ {Of ∪Kf} (19)

zf ≥ 0 (20)

For a given location k ∈ Lf , the right-hand side of (19) denotes the probability that the
driving range exceeds the length of the segment identified by locations k and l for which
iklf = 1. Hence, zf takes the value of the smallest probability among the cycle segments. In
case that no new facility location is located along the path of flow f , Constraints (3) - (8)
ensure that iOfDff = 1. In this case zf equals 0, because tOfDf

=∞ by definition and thus
gOfDf

= 1. Substituting equations (18) - (20) in (10) - (12) yields the following model:
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max
∑
f∈F

vfzf (21)

s.t.
∑
k∈K

xk = p (22)

(3)− (8)

zf ≤ 1−
∑
l∈Lf

iklfgkl f ∈ F, k ∈ {Of ∪Kf} (23)

zf ≥ 0 f ∈ F (24)

xk ∈ B k ∈ K (25)

We refer to the problem described by (21) - (25) as the Expected Flow Refueling Location
Problem (EFRLP).

3.1.1. Non-homogeneous driving range

The EFRLP assumes that the driving range distribution is the same for all cycle segments
in the flow f cycle (Assumption 2) and for every flow (Assumption 3). In this section we
relax these assumptions.

Driving range per flow. Due to differences in speed restrictions and traffic volumes, it is likely
that some flows are more crowded than others and thus that the driving range distribution
differs per flow. Because of the separability of the second stage in the recourse formulation,
this can easily be incorporated. Denote by Rf (ω) the driving range for flow f . Let Rf (ω)
be randomly distributed with cumulative density function (CDF) Gf : R+ 7→ [0, 1] and let
gklf denote Gf (tkl). The correct formulation for this case can easily be derived from the
formulation for the EFRLP by replacing gkl by gklf in constraints (23).

Driving range per segment; complete correlation. Assumption 2 can be relaxed as follows. Let
(k, l) be the locations that identify a segment in the flow f cycle. Furthermore, let R(klf)(ω)
denote the random driving range on this segment, with corresponding CDF Gklf : R+ 7→ [0, 1].
Next, we make the following assumption for any pair of segments of the flow f cycle, identified
by the locations (k1, l1) and (k2, l2):

Assumption 4. Rk1l1f (ω) and Rk2l2f (ω) are completely correlated. That is, for a given
realization of ω, Gk1l1f (Rk1l1f (ω)) = Gk2l2f (Rk2l2f (ω)).

Assumption 4 is a generalization of Assumption 2 and is able to capture more realistic
scenarios. It is to be expected that the average driving range differs in different parts of the
network (e.g., because speed restrictions and the amount of congestion differ), but also that
variations in the driving range in different parts of the network are correlated. For instance,
during cold periods, the driving range will be relatively low in all parts of the network.
The EFRLP can easily be adjusted to the case that Assumption 4 holds. In this case, the
probability that a vehicle in flow f is covered equals the smallest probability that the driving
range exceeds the length of a segment among all segments of the flow f cycle. Hence, let
g̃klf be Gklf (tkl). Then it suffices to replace gkl by g̃klf in constraints (23).
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Driving range per segment; no complete correlation. Assumption 2 could also be relaxed to
the case that the driving ranges at different segments of the flow f cycle are not or not
completely correlated. This relaxation influences the calculation of the coverage probability
for a flow f , as this probability is now calculated by means of the joint probability function of
the driving ranges corresponding to the different segments. Obviously, this makes the model
highly non-linear in general. We propose to deal with this non-linearity by using Bonferroni’s
inequality (Bonferroni, 1936) as an approximation for the joint probability. In our context,
this inequality states the following. Let event Ej denote the event that the driving range
exceeds the length of flow f segment j ∈ {1, ...,m}, and let P (Ej) denote the probability
that this occurs. The probability that a vehicle in flow f is covered is then represented by
P (∩m

j=1Ej). Then Bonferroni’s inequality states that:

P (∩mj=1Ej) ≥ 1−
m∑
j=1

[1− P (Ej)] (26)

Hence, let zf again represent the probability that a vehicle in flow f is covered. Then
the expected value function is approximated by:

Qf (x, i) = max vfzf (27)

zf = 1−
∑
k∈Lf

∑
l∈Lf

iklfaklf (1− gkl) (28)

zf ≥ 0 (29)

Here parameter aklf equals 2 if k ∈ Kf and l ∈ Kf , and equals 1 otherwise. This ensures
that a segment k → l that is traversed twice during a trip at the flow f cycle (i.e., during
the trip from Of to Df and during the return trip) is also counted twice. We did not need
to consider this aspect so far, because the other problem variants consider the segments
separately. Constraint (28) approximates zf by setting it equal to Bonferroni’s lower bound
(Bonferroni, 1936). Note that, for a given k ∈ Lf , the summation

∑
l∈Lf

iklf (1 − gkl)
denotes the probability that the driving range exceeds the length of the segment identified
by the locations k and l for which iklf = 1.

We observe that this case generalizes the case of a driving range distribution per arc.
Since a segment simply represents a sequence of arcs, the segment fuel consumption (which
yields the driving range) has a joint probability distribution with the fuel consumption of
the arcs as variables. Hence, driving range distributions per arc translates into a driving
range distribution per segment.

3.1.2. Value of the Stochastic Solution

Although deterministic problems are often easier to solve, including stochasticity is more
realistic. In this section we provide ways to evaluate the benefits of using a stochastic driving
range. Let Q̄ be the optimal value of the EFRLP. Furthermore, let Yf (x, i, R(ω)) ⊆ {0, 1}
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be the set of all feasible values for yf , given the variables x and some realization of R(ω), as
defined by constraint (14) (note that the values of the variables i are implicitly determined
by the decision variables x). Then Q̄ can be written as:

Q̄ := max
x∈B

Eω [h(R(ω),x, i)] (30)

Here, the function h(R(ω),x, i) is defined as follows:

h(R(ω),x, i) =
∑
f∈F

max{vfyf |yf ∈ Yf (x, i, R(ω))}

Instead of using the distribution function of the driving range we could (naively) solve the
EFRLP for the expected value of the driving range, which is equivalent to assuming that
Pr(R(ω) = Eω[R(ω)]) = 1. Let QEV denote the value of the solution to this expected value
problem given in (31) and let (x̄, ȳ, ī) be the corresponding solution. Filling in this solution
in the original problem provides us with the expected result of the expected value problem,
denoted by QEEV , given in (32).

QEV := max
x∈B

h(Eω[R(ω)],x , i) = h(Eω[R(ω)], x̄, ī) (31)

QEEV := Eω[h(R(ω), x̄, ī)] (32)

Obviously, QEEV provides a lower bound for Q̄, since (x̄, ȳ, ī) is a feasible solution. This
lower bound allows us to calculate the so-called Value of the Stochastic Solution V SS = Q̄−
QEEV : the costs you make by using the naive expected value solution instead of considering
the stochasticity in the variables (Birge, 1982). In Section 4 we use the V SS to evaluate our
stochastic models.

3.2. Chance Constrained Flow Refueling Location Problem (CCFRLP)

This section provides an alternative way to deal with the stochasticity in the driving
range parameters. The proposed model defines a flow to be covered if and only if the
probability that a trip along the flow f cycle can be made without running out of fuel is at
least 1 − α. Hence, the probability of running out of fuel at such segment is at most α.
Under Assumption 2, the probability of running out of fuel equals the smallest probability
that the driving range exceeds the length of a segment among all cycle f segments. Again,
let G : R+ 7→ [0, 1] denote the CDF of the driving range, and let gkl = G(tkl). Using these
notations, the problem of maximizing the flow volume covered can be described as:
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max
∑
f∈F

vfyf (33)

s.t.
∑
k∈K

xk = p (34)∑
l∈Lf

iklfgkl ≤ α + (1− yf ) f ∈ F, k ∈ {Of ∪Kf} (35)

(3)− (8)

xk ∈ B k ∈ K (36)

yf ∈ B f ∈ F (37)

The objective function maximizes the total flow volume covered, which we refer to as the
chance constrained flow volume covered. Constraint (34) restricts the number of new facilities
to place. Constraints (35) stipulate that flow f is covered if and only if the probability of
running out of fuel is at most α for each of the segments of the flow f cycle. Again,
constraints (3) - (8) stipulate that variables iklf take the values as defined before. Finally,
the decision variables are defined in constraints (36) - (37). We refer to the problem described
in (33) - (37) as the Chance Constrained Flow Refueling Location Problem (CCFRLP).

Note that the CCFRLP model described in (33) - (37) bears a close resemblance to the
EFRLP model described in (21) - (25). The only differences are that the latter sets α = 1
and replaces binary variable yf by continuous variable zf . In Section 4 we will discuss the
differences between the models in detail.

Non-homogeneous driving range. The CCFRLP model can be easily adapted when assump-
tions 2 and 3 are relaxed to the assumption of a completely correlated driving range per
segment: it suffices to replace gkl by g̃klf in constraint (35) (see Section (3.1.1)). When al-
lowing the driving ranges in different cycle segments to be not or not completely correlated,
the proposed model needs to be adapted. We again propose to approximate the (joint)
probability that a trip at the flow f cycle can be made without running out of fuel by means
of Bonferroni’s inequality. Section 3.1.1 shows that the resulting bound on this probability
is given by 1 −

∑
k∈Lf ,l∈Lf

iklfaklf (1− gkl). Hence, the location problem with joint chance

constraints can be formulated by replacing constraint (35) in the CCFRLP model by:∑
k∈Lf ,l∈Lf

iklfaklf (1− gkl) ≤ α + (1− yf ) f ∈ F (38)

4. Impact Analysis

This section numerically analyzes the performance of the models introduced in the previ-
ous sections and the impact of including stochasticity into the location problem. Specifically,
Section 4.1 describes our problem instances and Sections 4.2-4.6 compare the models, ana-
lyze their sensitivity with respect to several types of data, and analyze their computational
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performance. We use CPLEX 12.61 as the solver engine, on a PC with a 3.4 AMD A4-5300B
APU processor and 4 GB RAM. Throughout this section, we apply the EFRLP without the
multiple driving range extension and the CCFRLP with individual chance constraints. To
determine the Value of the Stochastic Solution (V SS, see Section 3.1.2), we make use of the
DFRLP model from Section 2 and use Eω[R(ω)] as the value of the parameter R.

4.1. Problem instances

We test our models on the Florida state highway network described by Kuby et al. (2009)
and on networks we randomly generate based on (a slightly adapted version of) the method
proposed by Capar and Kuby (2012). Appendix A describes the network generation in detail
and Table 4.1 describes our instances. We refer to a randomly generated instance with X
potential facility locations and Y Origin-Destination nodes (corresponding to Y (Y − 1)/2
flows f) as sXwY , and refer to the instance s80w40 as the baseline case. Finally, we set
α = 0.05 and use the Gamma distribution for the driving range, motivated by its flexibility.
The values of the shape parameter κ and scale parameter θ shape we use in the baseline
situation are 50 and 5, respectively, such that Eω[R(ω)] = 250 in accordance with Capar and
Kuby (2012).

Instance name |K| |F | T̄ V

Florida 302 2701 364 1.0E12
s100w50 100 1225 834 1.0E6
s80w40 80 780 822 1.0E6
s60w30 60 435 1153 1.0E6
s40w20 40 190 908 1.0E6

Note: T̄ : average travel distance from origin to

destination per flow, V : total vehicle volume
∑

f vf

Table 4.1: Characteristics of problem instances analyzed.

4.2. Comparison of the models

This section compares solutions of the EFRLP, the CCFRLP, and the DFRLP. For a
given problem instance and a given value of p, we solve each of the three problems. The
three solutions are then analyzed in terms of expected flow volume covered and chance
constrained flow volume covered. Obviously, the EFRLP solution and the CCFRLP solution
are optimal in terms of expected flow volume covered and chance constrained flow volume
covered, respectively. The difference between the EFRLP and the DFRLP solutions in
terms of expected flow volume covered yields the Value of the Stochastic Solution (V SS, see
Section 3.1.2). We repeat this for each p ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25}. Table 4.2 describes
the resulting average V SS and average optimality gaps (i.e. the average over the V SS
or gaps obtained for the 9 values of p). Appendix B describes the coverage statistics for
each individual solution obtained, and Figures 2 and 3 illustrate these for the baseline case
s80w40.
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Opt. gap in terms of expexted Opt. gap in terms of chance
flow volume covered (%) constr. flow volume covered (%)

EFRLP CCFRLP DFRLP EFRLP CCFRLP DFRLP
Instance Solution Solution Solution Solution Solution Solution V SS

Florida 0.00 0.11 0.03 0.08 0.00 0.21 2.90E08
s100w50 0.00 19.94 0.77 52.85 0.00 52.64 3.96E03
s80w40 0.00 5.70 1.45 17.83 0.00 29.26 1.02E04
s60w30 0.00 4.56 3.06 7.23 0.00 28.80 5.24E03
s40w20 0.00 9.14 5.55 26.42 0.00 47.36 4.20E04

Table 4.2: Average Value of the Stochastic Solution (V SS) and average optimality gap (%) in terms of
expected flow volume covered and chance constrained flow volume covered over 9 EFRLP, CCFRLP and
DFRLP solutions.

The results yield several interesting observations. First, the optimality gaps for the
Florida case are much smaller than those for the randomly generated cases. The reason is
that the length of most of the high volume vehicle routes in the Florida case is relatively small
compared to the expected vehicle range (see Table 4.1), causing the differences between the
solution values assigned by the different models to be small. The next section investigates
this mechanism in more detail. A second observation is that the CCFRLP solutions perform
relatively well in terms of expected flow volume covered, whereas EFRLP solutions perform
poorly in terms of chance constrained coverage. This can be explained by the fact that
EFRLP solutions benefit from providing a given flow with partial coverage (e.g., 50%), so
that they place relatively few facilities along the path of a given flow. As a result, they
fail to reach the coverage threshold (1− α) for many vehicle flows. The CCFRLP, instead,
induces the incentive to place relatively many facilities along a given flow. Though, in terms
of expected flow coverage, corresponding solutions overly focus on a restricted set of vehicle
flows, they thereby do yield substantial coverage levels (zf ) for these flows. This effect also
plays a role for the DFRLP model, but it is significantly smaller, as the critical coverage
distance between two facilities used by the DFRLP is much looser than the one for the
CCFRLP. Nevertheless, in terms of actual expected number of vehicles covered, the average
benefit of using a stochastic model instead of a deterministic model can be very large, as
shown by the Value of the Stochastic Solution (see the last column of Table 4.2). For
example, choosing the EFRLP solutions to instance s40w20 instead of the DFRLP solutions
yields an average increase of 42 004 expected number of vehicles covered, representing 4.2%
of the total vehicle volume.

Figures 2 and 3 illustrate that adding multiple facilities to the network can bring about
synergy effects. For instance, when increasing p from 2 to 3, the value of the EFRLP solution
increases by 44 550, whereas it increases by 66 499 when increasing p from 3 to 4. Similarly,
the CCFRLP solution value increases by 46 881 when p increases from 2 to 3, and increases
by 53 081 when p increases from 3 to 4. This can be explained by the fact that generally
multiple facilities are needed to cover a flow (CCFRLP) or to cause a substantial increase in
the coverage level for a given flow (EFRLP). Increasing the value of p by 1 can be the final
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push that enables this for a given flow or a network of flows, causing a jump in the objective
value.
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Figure 2: Expected flow volume covered for the
EFRLP, CCFRLP and DFRLP solutions to the
baseline case s80w40.
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Figure 3: Chance constrained flow volume covered
for the EFRLP, CCFRLP and DFRLP solutions to
the baseline case s80w40.

4.3. Sensitivity analysis on the driving range distribution

The results shown in the previous section hint at a strong relationship between the driving
range distribution and solution values. To get a better understanding of this relationship, we
analyze solutions obtained for different settings of the shape parameter κ and scale parameter
θ determining the driving range distribution (i.e., the Gamma distribution). First, we analyze
the impact of the expected driving range on the solutions obtained by considering settings
of low (125), medium (250), and high (500) expected driving range. Figure 4 describes the
corresponding probability density functions (PDFs) and parameter values. Note that the
variance is the same for each of these settings. The impact of the expected driving range on
solution values for the baseline case s80w40 and p = 15 is depicted in Figures 6 and 7.
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Figure 4: PDF of driving range distributions with
low expected value (κ = 12.5, θ = 10,Eω[R(ω)] =
125), medium expected value (κ = 50, θ =
5,Eω[R(ω)] = 250), and high expected value (κ =
200, θ = 2.5,Eω[R(ω)] = 500)
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Figure 5: PDF of driving range distributions with
low variance (κ = 500, θ = 0.5,Vω[R(ω)] = 200),
medium variance (κ = 50, θ = 5,Vω[R(ω)] = 1 250),
and high variance (κ = 25, θ = 10,Vω[R(ω)] =
2 500).
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Figure 6: Optimality gap in terms of expected flow
coverage for the CCFRLP and DFRLP solutions and
low (125), medium (250), and high (500) expected
driving range, using the baseline case s80w40 and
p = 15.
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Figure 7: Optimality gap in terms of chance con-
strained flow coverage for the EFRLP and DFRLP
solutions and low (125), medium (250), and high
(500) expected driving range, using the baseline case
s80w40 and p = 15.

As hypothesized, differences between the solution values tend to decrease when the ex-
pected driving range increases. The rationale underlying this trend is that the values of a
given solution in the different models tend to converge when the driving range increases. For
example, in case of a relatively small driving range, placing 1 facility along a given path may
yield a deterministic coverage score of 1, an expected coverage score of 0.5, and a chance
constrained coverage score of 0. In case of a sufficiently large driving range, however, one
obtains a coverage level equal to or very close to 1, irrespective of the coverage definition
used (deterministic, expected, of chance constrained).

Next, we analyze the impact of the driving range variance on the solutions obtained
by considering settings of low variance (125), medium (1 250), and high variance (2 500).
Figure 5 describes the corresponding PDFs and parameter values. Note that the expected
driving range is the same for these settings. The optimality gaps for the baseline case and
p = 15 in terms of expected flow coverage and chance constrained flow coverage are depicted
in Figures 8 and 9.

We observe that a smaller driving range variance leads to smaller differences between the
solutions. Again, the reason is that the value the different models assign to a given solution
tend to converge when the variance decreases. Note that, in the extreme case of having zero
variance, the three models are equivalent. The larger the variance, the larger the difference
between the critical coverage distances between two facilities used by the CCFRLP and the
DFRLP (i.e., the largest value of the distance between adjacent facilities along a path for
which coverage is obtained), and hence the larger the optimality gap of the DFRLP tends
to be. Similarly, the coverage probability zf takes binary values in case of zero variance,
and becomes “less binary” when the variance increases. Deterministic coverage and chance
constrained coverage, instead, remain binary valued, causing the optimality gaps for the
CCFRLP and DFRLP solutions in terms of expected coverage to increase.
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Figure 8: Optimality gap in terms of expected flow
coverage for the CCFRLP and DFRLP solutions and
low (125), medium (1 250), and high (2 500) driving
range variance, using the baseline case s80w40 and
p = 15.

0

10

20

30

40

50

60

70

Low Medium High

O
p

ti
m

al
it

y
 g

ap
 c

.c
. 
fl

o
w

 c
o

v
. 

(%
)

Variance of driving range

EFRLP solution DFLRP solution

Figure 9: Optimality gap in terms of chance con-
strained flow coverage for the EFRLP and DFRLP
solutions and low (125), medium (1 250), and high
(2 500) driving range variance, using the baseline
case s80w40 and p = 15.

4.4. Sensitivity analysis on vehicle volumes

Flow volume data vf are typically estimated based on traffic counts or mobile phone
data. Due to a mix of methodological limitations, data inaccuracies and traffic dynamics,
these data tend to be imprecise. To assess the potential impact on optimal solutions, we
randomly generate the “true” values of these parameters, v∗f , and calculate the corresponding
optimality gap: the gap between the optimal solution value and the value of the solution
based on the “incorrect” parameter values. Specifically, for each f we generate a random
draw from the uniform distribution on the interval [−δ, δ], represented by U(−δ, δ), and
generate v∗f as v∗f = vf · (1 + U(−δ, δ)). Hence, v∗f deviates at most the factor δ from vf .
Again, we base the analysis on the baseline case s80w40 and p = 15. Repeating this 50
times for each δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} yields the average and maximum optimality gaps
depicted in Figure 10.

We observe that the EFRLP, CCFRLP, and DFRLP solutions are very robust with
respect to data impreciseness. For example, the average optimality gap resulting from 50%
impreciseness (i.e. δ = 0.5) is only 0.16%, 1.06%, and 0.33%, respectively. This can be
explained by the tendency to focus resources on a selected set of dominant vehicle flows.
The 10% largest vehicle flows, which represent over 70% of the total vehicle volume, have
relatively high average coverage levels: 0.72 (EFRLP), 0.68(CCFRLP), and 0.79 (DFRLP)
for the top 10% versus 0.43, 0.27, and 0.55 for the bottom 90%. The vehicle volumes are so
large that, even in the extreme case that they are all substantially over-estimated, it remains
attractive to dedicate resources to these flows. Consequently, the location choices based on
the “incorrect” data tend to remain close to optimal in case that the “true” data are used.

4.5. Chance constrained coverage targets

Solving the CCFRLP requires a choice on the value of α, the maximum probability of
running out of fuel for which a driver is still regarded as being covered. Decreasing the value
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Figure 10: Average and maximum of optimality gaps for the EFRLP, CCFRLP, and DFRLP solutions
resulting from 50 random draws of the “true” vehicle volumes for the baseline case s80w40 and p = 15, using
different values of δ.

of α tends to decrease the number of vehicles covered, as resulting networks tend to get
more concentrated. In other words, it tends to increase the number of facilities needed to
reach the same target in terms of the fraction of vehicles covered, which we denote by β. To
provide decision makers with insight into this relationship, this section numerically analyzes
the trade-off between α, β, and the number of facilities needed by means of a modified
version of the CCFRLP model:

min
∑
k∈K

xk (39)

s.t.
∑
f∈F

vfyf ≥ β
∑
f∈F

vf (40)

(3)− (8), (35)− (37)

The objective function minimizes the number of facilities needed, and constraint (40)
ensures that the fraction of vehicles covered is at least β. Figure 11 depicts the results
for α ∈ {0.10, 0.09, ..., 0.02, 0.01, 0.001} and β ∈ {0.1, 0.2, ..., 0.9}. The number of facilities
needed ranges from 2 (α = 0.1, β = 0.1) to 50 (α = 0.001, β = 0.9). As to be expected, it
becomes more and more costly to cover additional quantities of flow, so that the marginal
costs of increasing β and tend to increase substantially. For example, in case that α =
0.05, increasing the coverage target from 0.1 to 0.2 requires 2 additional facilities, whereas
increasing the target from 0.8 to 0.9 requires 7 additional facilities.

The critical coverage distance between two facilities decreases steeply with α. Conse-
quently, the number of facilities needed to cover a flow tends to increase quickly, as can be
observed from Figure 11. For example, in case that β = 0.9, decreasing α from 0.1 to 0.01
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requires 6 additional facilities, whereas decreasing α from 0.01 to 0.01 requires 11 additional
facilities.
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Figure 11: Number of facilities needed to cover a given target fraction β of the total vehicle volume for
different values of α.

4.6. Computational results

In Appendix C we prove the following result by reduction from the problem CLIQUE:

Proposition 1. The EFRLP, CCFRLP, and DFRLP are strongly NP-hard problems.

To gain some more insight into the tractability of the model, this section and Appendix
D present several computational statistics for the EFRLP and CCFRLP models (the com-
putational performance of models for the DRFLP has been extensively analyzed in Capar
and Kuby (2012); Capar et al. (2013); MirHassani and Ebrazi (2012)). Table 4.3 presents
computational results for the baseline case s80w40. Both models need 25 289 constraints and
14 160 variables to solve this instance. We observe that the solution times for the CCFRLP
are substantially smaller than those for the EFRLP. Furthermore, solution times seem to be
larger for larger values of p. This can be explained by the fact that the number of solutions
equals

(|K|
p

)
, which increases with p for p ≤ 40 and |K| = 80. The results for the other

problem instances are given in Appendix D and confirm these observations. They also show
that solution times tend to grow exponentially with the problem size, as measured by |K|
and |F |. For example, the solution times for the EFRLP and p = 25 range from 2.4 seconds
(s40w20) to 34 hours (Florida).
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p
1 2 3 4 5 10 15 20 25

EFRLP 1.9 13.6 61.0 43.7 60.2 204.1 320.9 652.9 3 118.8
CCFRLP 2.0 15.9 23.6 32.9 36.8 67.6 143.8 138.2 159.5

Table 4.3: Solution times (sec.) for the baseline case s80w40.

5. Conclusions

Existing models for locating refueling stations assume a vehicle’s driving range to be fixed.
Although this assumption is easy to work with, it is highly unrealistic and potentially yields
location decisions that are far from optimal. This paper sets out to develop and analyze
models that relax this assumption. We first propose a novel mixed-integer programming
formulation for the (deterministic) Flow Refueling Location Problem, which includes the
driving range as an explicit model parameter. Next, we propose two models, which capture
the stochastic nature of the driving range. The EFRLP defines the probability that a vehicle
can traverse its path without running out of fuel (i.e., the probability that it is covered),
and maximizes the expected number of vehicles covered. The CCFRLP defines a flow to be
covered if the probability of running out of fuel during a trip along the corresponding path
is at most α.

Numerical analyses reveal several key implications for decision makers. First, our analysis
of the Value of the Stochastic Solution (VSS) suggests that using the EFRLP instead of its
deterministic counterpart (DFRLP) can considerably improve the impact of new facilities in
terms of expected coverage. Similarly, in case that coverage is defined by means of chance
constraints, using the CCFRLP model instead of the DFRLP or the EFRLP model poten-
tially leads to significant yields in terms of coverage. We show that these potential gains are
largely determined by the driving range distribution. Larger values for the expected driving
range and smaller values for the driving range variance tend to decrease the gaps between
the different models. Third, synergy effects can be obtained by locating multiple facilities.
Decision makers can exploit these effects in two ways. First, instead of fixing the value of
p, they can investigate whether large synergy effects can be gained by (slightly) modifying
its value. Second, by making long-term investment plans for the network of facilities rather
than taking investment decisions sequentially, they can make optimal use of the synergy
effects between all future facilities. These plans thereby avoid the sub-optimality resulting
from sequential decision making. Fourth, our sensitivity analysis shows that impreciseness
in the flow volume data tends to have little impact on the quality of the location decisions.
Finally, there is a substantial trade-off between service level, as measured by α and β, and
efficiency, as measured by the number of facilities per vehicle covered. This highlights the
importance of choosing service level targets deliberately.

It is up to decision makers to discuss an appropriate definition of coverage, and thereby to
choose for one of the models. Chance constrained coverage may be most intuitively appealing
in the context of pure electric vehicles, since drivers will only make a trip if the chance of
running out of fuel is sufficiently small. On top of that, CCFRLP solutions perform relatively
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well in terms of expected coverage, whereas EFRLP solutions perform weakly in terms of
chance constrained coverage. On the other hand, expected coverage might be more suitable
in the context of hybrid (electric) vehicles, which can switch to a different power source when
the primary source is exhausted.

One assumption of our stochastic models is that the driving range distribution is known.
Though car manufacturers do analyze this distribution (see e.g. Knipe et al., 2003), techno-
logical developments on the one hand or battery deterioration on the other hand may cause
the distribution to change over time. It is therefore important to forecast the evolution of
this distribution, so as to ensure future effectiveness of current location decisions. This is
particularly important in case that a chance constrained coverage criterion is used, since
vehicle flows may lose coverage in case of a downward shift in the driving range. In case of
updated information on the driving range, our methods could be used to analyze whether
additional investments in the network are necessary. Another approach is to make use of
“portable” facilities that can easily be relocated in response to demand or driving range
fluctuations (cf. Hosseini and MirHassani, 2015).

Although the location problems considered in this paper were solved to optimality for
each of the problem instances considered, our numerical experiments show that computation
time increases vastly with the problem size. Developing alternative models and solution
methods, like a column generation solution approach, seems to be promising (see e.g., Núñez
Ares et al. (2015); Yıldız et al. (2016) for column generation methods for similar location
problems). Other relevant directions for future research result from relaxing our model
assumptions. One such assumption is that vehicles do not deviate from their preferred
paths to a nearby refueling station. Kim and Kuby (2012) and Yıldız et al. (2016) propose
models that do include routing choices into the location problem. Also the assumption that
recharging facilities cannot be moved could be relaxed, as Hosseini and MirHassani (2015)
do for a variant of the DFRLP. Relaxing the assumption of uncapacitated refueling stations
renders queue lengths, waiting times and capacity constraints to become important location
criteria. This substantially increases the complexity of the location problem, as shown in
Jung et al. (2014) and Hosseini and MirHassani (2015). New types of models an solution
methods are needed to solve stochastic flow refueling location problems that relax these
assumptions.

References

Arabani, A. B., Farahani, R. Z., 2012. Facility location dynamics: An overview of classifica-
tions and applications. Computers & Industrial Engineering 62 (1), 408–420.

Averbakh, I., Berman, O., 1996. Locating flow-capturing units on a network with multi-
counting and diminishing returns to scale. European Journal of Operational Research
91 (3), 495–506.

Berman, O., Krass, D., 1998. Flow intercepting spatial interaction model: a new approach
to optimal location of competitive facilities. Location Science 6 (1), 41–65.

22



Berman, O., Larson, R. C., Fouska, N., 1992. Optimal Location of Discretionary Service
Facilities. Transportation Science 26 (3), 201–211.

Birge, J. R., 1982. The value of the stochastic solution in stochastic linear programs with
fixed recourse. Mathematical Programming 24 (1), 314–325.

Bonferroni, C. E., 1936. Teoria statistica delle classi e calcolo delle probabilita. Libreria
internazionale Seeber.

Capar, I., Kuby, M., 2012. An efficient formulation of the flow refueling location model for
alternative-fuel stations. IIE Transactions 44 (8), 622–636.

Capar, I., Kuby, M., Leon, V. J., Tsai, Y.-J., 2013. An arc cover–path-cover formulation and
strategic analysis of alternative-fuel station locations. European Journal of Operational
Research 227 (1), 142–151.

De Vries, H., Van de Klundert, J., Wagelmans, A., 2014. The Roadside Healthcare Facility
Location Problem. Tech. rep., Econometric Institute, Erasmus School of Economics, report
number: EI 2014-09.
URL http://repub.eur.nl/pub/51315

Dong, J., Lin, Z., 2014. Stochastic modeling of battery electric vehicle driver behavior:
The impact of charging infrastructure deployment on BEV feasibility. In: Transportation
Research Board 93rd Annual Meeting. No. 14-5107.

Ehsani, M., Gao, Y., Emadi, A., 2009. Modern Electric, Hybrid Electric, and Fuel Cell
Vehicles: Fundamentals, Theory, and Design. CRC press.

Hodgson, M. J., 1990. A Flow-Capturing Location-Allocation Model. Geographical Analysis
22 (3), 270–279.

Hosseini, M., MirHassani, S., 2015. Refueling-station location problem under uncertainty.
Transportation Research Part E: Logistics and Transportation Review 84, 101–116.

Jung, J., Chow, J. Y., Jayakrishnan, R., Park, J. Y., 2014. Stochastic dynamic itinerary
interception refueling location problem with queue delay for electric taxi charging stations.
Transportation Research Part C: Emerging Technologies 40, 123–142.

Kang, J. E., Recker, W., 2014. Strategic Hydrogen Refueling Station Locations with Schedul-
ing and Routing Considerations of Individual Vehicles. Transportation Science 49 (4),
767–783.

Kim, J.-G., Kuby, M., 2012. The deviation-flow refueling location model for optimizing a
network of refueling stations. International Journal of Hydrogen Energy 37 (6), 5406–5420.

Knipe, T. J., Gaillac, L., Argueta, J., 2003. 100,000-mile evaluation of the toyota rav4 ev.
Southern California Edison, Electric Vehicle Technical Center.

23



Kuby, M., Lim, S., 2005. The flow-refueling location problem for alternative-fuel vehicles.
Socio-Economic Planning Sciences 39 (2), 125–145.

Kuby, M., Lines, L., Schultz, R., Xie, Z., Kim, J.-G., Lim, S., 2009. Optimization of hydrogen
stations in Florida using the Flow-Refueling Location Model. International Journal of
Hydrogen Energy 34 (15), 6045–6064.

Lee, Y.-G., Kim, H.-S., Kho, S.-Y., Lee, C., 2014. User Equilibrium-Based Location Model of
Rapid Charging Station for Electric Vehicles with Batteries That Have Different States of
Charge. Transportation Research Record: Journal of the Transportation Research Board
2454, 97–106.

MirHassani, S., Ebrazi, R., 2012. A Flexible Reformulation of the Refueling Station Location
Problem. Transportation Science 47 (4), 617–628.

Musk, E., Straubel, J., May 2012. Model S Efficiency and Range.
URL http://www.teslamotors.com/blog/model-s-efficiency-and-range
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Appendix A. Random network generation

The random networks are generated as follows. First, we choose the location of s nodes,
by generating their coordinates uniformly in [0, 1000]2. The distance between two nodes is
assumed to be Euclidian. Afterwards, we generate edges between the nodes by creating the
minimum spanning tree for the complete graph, and add s additional edges by connecting the
s closest node pairs that were not yet connected. We end up with a network N = G(K,E)
with |K| = s locations and |E| = 2s− 1 edges. Next, we duplicate w of the s nodes. These
duplicates are Origin - Destination (O-D) nodes, which define w(w − 1)/2 O-D pairs. For a
given path f , the two O-D nodes are denoted by Of and Df . Dijkstra’s algorithm is used
to determine the shortest path from Of to Df , the potential facility locations passed along
this path (Kf ), and the distance between each pair of nodes in this path (tkl).

To generate the vehicle volumes vf , we perform the following steps. First, we assign to
each of the w O-D nodes a number drawn from a standard uniform distribution U(0, 1). Let
eOf and eDf denote these numbers for the origin and destination respectively, and let Tf be
the travel distance between Of and Df . The non-normalized vehicle volume v∗f is calculated
with equation (A.1). Compared to the network generation method proposed by Capar and
Kuby (2012), this differs deviated in two ways: we do not square the denominator and we
add the indicator function. These changes were made so as to reduce the impact of short
distance routes on location decisions, since long distance routes constitute the main focus of
this research. Next, we obtain the the vehicle volumes vf by normalizing v∗f in such a way
that the total volume adds up to 106.

v∗f =
eOf e

D
f

Tf
· 1Tf≥100 (A.1)

Appendix B. Overall results

Value in EFRLP CCFRLP VSS
p Solution of: EFRLP CCFRLP DFRLP EFRLP CCFRLP DFRLP
1 2.63E+11 2.63E+11 (0.00%) 2.63E+11 (0.00%) 2.62E+11 (0.00% ) 2.62E+11 2.62E+11 (0.00%) 0.00E+00
2 4.11E+11 4.11E+11 (0.00%) 4.11E+11 (0.00%) 4.11E+11 (0.00% ) 4.11E+11 4.11E+11 (0.00%) 0.00E+00
3 5.41E+11 5.41E+11 (0.00%) 5.41E+11 (0.00%) 5.33E+11 (0.00% ) 5.33E+11 5.33E+11 (0.00%) 0.00E+00
4 6.12E+11 6.11E+11 (-0.23%) 6.12E+11 (0.00%) 6.01E+11 (0.00% ) 6.01E+11 6.01E+11 (0.00%) 0.00E+00
5 6.82E+11 6.82E+11 (0.00%) 6.82E+11 (0.00%) 6.68E+11 (0.00% ) 6.68E+11 6.68E+11 (0.00%) 0.00E+00
10 8.44E+11 8.44E+11 (-0.04%) 8.44E+11 (0.00%) 8.27E+11 (-0.03%) 8.27E+11 8.27E+11 (-0.03%) 0.00E+00
15 9.13E+11 9.12E+11 (-0.17%) 9.12E+11 (-0.14%) 8.94E+11 (-0.25%) 8.97E+11 8.92E+11 (-0.56%) 1.24E+09
20 9.54E+11 9.52E+11 (-0.17%) 9.53E+11 (-0.07%) 9.40E+11 (-0.17%) 9.41E+11 9.35E+11 (-0.71%) 7.07E+08
25 9.73E+11 9.69E+11 (-0.41%) 9.72E+11 (-0.07%) 9.62E+11 (-0.22%) 9.64E+11 9.59E+11 (-0.58%) 6.69E+08

Table B.1: Expected volume covered and chance constrained flow volume covered in the EFRLP, CCFRLP,
and DFRLP solutions to the Florida case.
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Value in EFRLP CCFRLP VSS
p Solution of: EFRLP CCFRLP DFRLP EFRLP CCFRLP DFRLP
1 7.10E+04 2.39E+04 (-66.36%) 7.10E+04 (0.00%) 0.00E+00 (-100.00%) 2.25E+04 0.00E+00 (-100.00%) 8.30E-04
2 1.16E+05 9.17E+04 (-20.64%) 1.16E+05 (0.00%) 2.85E+04 (-57.04%) 6.62E+04 2.85E+04 (-57.04%) 0.00E+00
3 1.56E+05 1.31E+05 (-16.23%) 1.55E+05 (-1.14%) 2.85E+04 (-71.41%) 9.95E+04 5.90E+04 (-40.77%) 1.79E+03
4 1.95E+05 1.59E+05 (-18.58%) 1.95E+05 (0.00%) 5.90E+04 (-55.89%) 1.34E+05 5.90E+04 (-55.89%) 0.00E+00
5 2.25E+05 2.07E+05 (-8.15%) 2.25E+05 (0.00%) 5.90E+04 (-63.45%) 1.61E+05 5.90E+04 (-63.45%) 0.00E+00
10 3.95E+05 3.36E+05 (-15.00%) 3.95E+05 (0.00%) 1.67E+05 (-44.58%) 3.01E+05 1.67E+05 (-44.58%) 0.00E+00
15 5.41E+05 4.61E+05 (-14.86%) 5.17E+05 (-4.43%) 3.40E+05 (-21.91%) 4.36E+05 2.36E+05 (-45.83%) 2.40E+04
20 6.51E+05 5.88E+05 (-9.61%) 6.47E+05 (-0.52%) 3.87E+05 (-30.24%) 5.55E+05 3.88E+05 (-30.09%) 3.36E+03
25 7.44E+05 6.69E+05 (-10.03%) 7.38E+05 (-0.88%) 4.50E+05 (-31.12%) 6.53E+05 4.17E+05 (-36.10%) 6.52E+03

Table B.2: Expected volume covered and chance constrained flow volume covered in the EFRLP, CCFRLP,
and DFRLP solutions to instance s100w50.

Value in EFRLP CCFRLP VSS
p Solution of: EFRLP CCFRLP DFRLP EFRLP CCFRLP DFRLP
1 7.64E+04 7.64E+04 (0.00%) 7.64E+04 (0.00%) 7.48E+04 (0.00%) 7.48E+04 7.48E+04 (0.00%) 6.71E-03
2 1.57E+05 1.57E+05 (0.00%) 1.57E+05 (0.00%) 1.21E+05 (0.00%) 1.21E+05 1.21E+05 (0.00%) 0.00E+00
3 2.02E+05 1.82E+05 (-9.75%) 2.02E+05 (0.00%) 1.21E+05 (-27.96%) 1.68E+05 1.21E+05 (-27.96%) 0.00E+00
4 2.68E+05 2.65E+05 (-1.16%) 2.68E+05 (0.00%) 1.65E+05 (-25.15%) 2.21E+05 1.65E+05 (-25.15%) 0.00E+00
5 3.21E+05 2.91E+05 (-9.32%) 3.18E+05 (-0.93%) 2.32E+05 (-14.75%) 2.72E+05 1.65E+05 (-39.35%) 3.00E+03
10 5.01E+05 4.62E+05 (-7.79%) 5.01E+05 (0.00%) 2.58E+05 (-38.70%) 4.21E+05 2.58E+05 (-38.70%) 0.00E+00
15 6.37E+05 5.68E+05 (-10.76%) 6.18E+05 (-3.06%) 4.42E+05 (-20.68%) 5.58E+05 3.07E+05 (-45.01%) 1.95E+04
20 7.29E+05 6.82E+05 (-6.47%) 6.92E+05 (-5.07%) 5.66E+05 (-16.26%) 6.76E+05 3.68E+05 (-45.54%) 3.70E+04
25 8.17E+05 7.68E+05 (-6.08%) 7.85E+05 (-3.94%) 6.33E+05 (-16.94%) 7.63E+05 4.45E+05 (-41.66%) 3.22E+04

Table B.3: Expected volume covered and chance constrained flow volume covered in the EFRLP, CCFRLP,
and DFRLP solutions to instance s80w40.

Value in EFRLP CCFRLP VSS
p Solution of: EFRLP CCFRLP DFRLP EFRLP CCFRLP DFRLP
1 4.34E+04 (-100.00%) 4.34E+04 (0.00%) 0.00E+00 (0.00%) 0.00E+00 0.00E+00 (0.00%) 6.58E-03
2 8.75E+04 8.75E+04 (0.00%) 7.60E+04 (-13.13%) 7.13E+04 (0.00%) 7.13E+04 0.00E+00 (-100.00%) 1.15E+04
3 1.37E+05 1.37E+05 (0.00%) 1.31E+05 (-4.74%) 1.05E+05 (0.00%) 1.05E+05 7.13E+04 (-32.09%) 6.51E+03
4 1.81E+05 1.50E+05 (-17.06%) 1.81E+05 (0.00%) 1.05E+05 (-30.07%) 1.50E+05 1.05E+05 (-30.07%) 0.00E+00
5 2.10E+05 1.99E+05 (-4.85%) 1.93E+05 (-7.82%) 1.68E+05 (-1.67%) 1.71E+05 1.05E+05 (-38.66%) 1.64E+04
10 3.90E+05 3.64E+05 (-6.68%) 3.90E+05 (0.00%) 3.19E+05 (-9.84%) 3.54E+05 3.19E+05 (-9.84%) 0.00E+00
15 5.25E+05 5.09E+05 (-3.05%) 5.24E+05 (-0.27%) 4.51E+05 (-9.10%) 4.96E+05 3.96E+05 (-20.07%) 1.41E+03
20 6.44E+05 6.26E+05 (-2.73%) 6.42E+05 (-0.35%) 5.74E+05 (-8.30%) 6.26E+05 5.15E+05 (-17.68%) 2.27E+03
25 7.62E+05 7.46E+05 (-2.10%) 7.53E+05 (-1.19%) 6.92E+05 (-6.12%) 7.38E+05 6.58E+05 (-10.77%) 9.09E+03

Table B.4: Expected volume covered and chance constrained flow volume covered in the EFRLP, CCFRLP,
and DFRLP solutions to instance s60w30.

Value in EFRLP CCFRLP VSS
p Solution of: EFRLP CCFRLP DFRLP EFRLP CCFRLP DFRLP
1 1.53E+05 (-100.00%) 1.44E+05 (-6.03%) 0.00E+00 (0.00%) 0.00E+00 0.00E+00 (0.00%) 9.23E+03
2 2.98E+05 1.93E+05 (-35.12%) 2.98E+05 (0.00%) 7.59E+04 (-34.86%) 1.17E+05 7.59E+04 (-34.86%) 2.00E-04
3 3.82E+05 3.51E+05 (-8.13%) 3.79E+05 (-0.72%) 8.59E+04 (-69.74%) 2.84E+05 7.59E+04 (-73.24%) 2.76E+03
4 4.63E+05 4.31E+05 (-6.96%) 4.63E+05 (0.00%) 8.59E+04 (-73.59%) 3.25E+05 8.59E+04 (-73.59%) 0.00E+00
5 5.30E+05 4.80E+05 (-9.42%) 5.18E+05 (-2.19%) 1.77E+05 (-55.29%) 3.97E+05 1.16E+05 (-70.81%) 1.16E+04
10 7.86E+05 7.86E+05 (0.00%) 6.74E+05 (-14.25%) 7.62E+05 (0.00%) 7.62E+05 2.87E+05 (-62.30%) 1.12E+05
15 8.87E+05 8.45E+05 (-4.81%) 7.72E+05 (-13.01%) 8.43E+05 (0.00%) 8.43E+05 4.10E+05 (-51.36%) 1.15E+05
20 9.20E+05 8.67E+05 (-5.81%) 8.05E+05 (-12.50%) 8.47E+05 (-1.98%) 8.64E+05 4.09E+05 (-52.66%) 1.15E+05
25 9.63E+05 9.35E+05 (-2.92%) 9.51E+05 (-1.24%) 8.57E+05 (-2.36%) 8.77E+05 8.12E+05 (-7.39%) 1.19E+04

Table B.5: Expected volume covered and chance constrained flow volume covered in the EFRLP, CCFRLP,
and DFRLP solutions to instance s40w20.

Appendix C. Strongly NP-hardness proof for the DFRLP, EFRLP and CCFRLP

Proposition 1. The EFRLP, CCFRLP, and DFRLP are strongly NP-hard problems.
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Proof. First, note that the decision versions of the DFRLP, EFRLP and CCFRLP are in
NP : our MIP formulations allows us to verify a YES answer to these problems in polynomial
time. Next, we show how to construct a polynomial transformation of the CLIQUE problem
to the decision-version of each of the three problems. Since the CLIQUE problem is strongly
NP-Complete (Papadimitriou and Steiglitz, 1998), this shows that the decision-versions of
the DFRLP, EFRLP and CCFRLP are strongly NP-Complete too.

We consider a graph G(V,E). CLIQUE corresponds to the decision problem “does G
contain a complete sub-graph consisting of n nodes?”. To perform the transformation into
an instance of the DFRLP, the EFRLP or the CCFRLP, we introduce for every node v ∈ V
a potential facility location k ∈ K. Furthermore, for every edge in E, we introduce a flow f
and the corresponding path. This is a direct path from a potential facility location to another
potential facility location. These two locations correspond to the two nodes connected by
the corresponding edge. Note that this transformation can be performed in polynomial time
since |KP | = |V | and |F | = |E|. Finally, we set p = n and choose the values of the remaining
parameters corresponding to the three problems such that flow f is covered (DFRLP and
CCFRLP) or the coverage probability equals 1 (EFRLP) if and only if facilities are placed at
both potential facility locations passed by this flow, and that the coverage level or coverage
probability equals 0 in all other cases. Let the two potential facility locations along the path
of flow f be represented by k1f and k2f . Then for the DFRLP this situation can be attained
by setting tOf ,k1f = 0, tk1f ,k2f = 0, tk2f ,Df

= 0 and by setting the travel time between any
other pair of locations along this path equal to R+ 1. Similarly, for the EFRLP it suffices to
set gOf ,k1f = 0, gk1f ,k2f = 0, gk2f ,Df

= 0 and to set this probability equal to 1 for any other
pair of locations along this path. Finally, for the CCFRLP the situation can be attained by
using the same definition for gkl and by setting α = 0.

To complete the proof, we will show that CLIQUE has a YES-answer if and only if the
corresponding instance of the decision version of the DFRLP, the EFRLP or the CCFRLP
has a solution of value n · (n − 1)/2. First, suppose that CLIQUE has a YES-answer (i.e.,
the graph contains a clique of size n). Note that there are at most n · (n− 1)/2 flow paths
connecting each pair of the n potential facility locations we allocate the new facilities to.
Hence, at most n · (n − 1)/2 flow paths have a coverage level or coverage probability that
is larger than 0. By the construction of the instances we know that the solution value of
the three problems equals the number of flow paths for which the coverage level or coverage
probability equals 1, this implies that the instance has a solution value that is at most
n · (n− 1)/2. Next, observe that, in case that CLIQUE has a YES-answer, there are exactly
n·(n−1)/2 flow paths connecting each pair of the n potential facility locations corresponding
to the n−clique. Then allocating the new facilities to these n potential facility locations
makes sure that the coverage level or coverage probability for each of the corresponding
n · (n− 1)/2 flows has the value 1. This implies that the corresponding solution value is at
least n · (n− 1)/2 and hence equals exactly this number.

Second, suppose that the instance corresponding to the decision version of the DFRLP,
the EFRLP or the CCFRLP has a value of n · (n − 1)/2. Then this means that at least
n · (n − 1)/2 flows have a strictly positive coverage level or coverage probability. Next,
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observe that the fact that we are only allowed to allocate n facilities implies that at most
n · (n − 1)/2 flows have a strictly positive coverage level or coverage probability. Hence,
exactly n · (n−1)/2 flows have a strictly positive coverage level or coverage probability. This
number is only met if there exist exactly n · (n − 1)/2 unique flows that visit two of the n
allocated facilities. This implies that the n vertices in the corresponding CLIQUE instance
form a clique of size n.

Appendix D. Computational results all instances

Florida s100w50 s80w40 s60w30 s40w20
EFRLP CCFRLP EFRLP CCFRLP EFRLP CCFRLP EFRLP CCFRLP EFRLP CCFRLP

|K| 302 302 100 100 80 80 60 60 40 40
|F | 2 701 2 701 1 225 1 225 780 780 435 435 190 190
# variables 846 809 846 809 101 822 101 822 62 571 62 571 35 066 35 066 9 125 9 125
# integer variables 302 3 003 100 1 325 80 860 60 495 40 230
# constraints 172 916 172 916 40 643 40 643 25 289 25 289 14 465 14 465 4 772 4 772

Solution time (sec.) Solution time (sec.) Solution time (sec.) Solution time (sec.) Solution time (sec.)

p

1 91.7 111.6 4.9 5.0 1.9 2.0 0.8 0.9 0.2 0.1
2 878.0 554.9 145.3 76.0 13.6 15.9 6.3 3.7 0.3 0.5
3 15 169.6 580.2 152.2 87.4 61.0 23.6 17.8 6.2 0.5 0.3
4 718.8 737.7 231.3 126.1 43.7 32.9 15.9 5.8 1.6 0.5
5 30 470.4 752.4 241.4 188.6 60.2 36.8 20.9 13.3 0.8 0.5
10 41 792.3 1 890.3 814.3 503.4 204.1 67.6 34.1 8.3 1.1 0.5
15 36 249.1 10 981.3 2 217.8 569.8 320.9 143.8 61.8 20.6 3.0 0.7
20 67 820.1 30 724.4 12 872.3 486.4 652.9 138.2 113.5 38.3 9.4 0.9
25 122 198.2 79 452.4 17 341.8 818.8 3 118.8 159.5 112.4 36.1 2.4 0.5

Table D.1: Solution times (sec.) and model characteristics.
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