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Abstract

Background: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia
(AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPa) on macrophages. Although AML
cells express SIRPa, its function has not been investigated in these cells. In this study we aimed to determine the role of the
SIRPa in acute myeloid leukemia.

Design and Methods: We analyzed the expression of SIRPa, both on mRNA and protein level in AML patients and we
further investigated whether the expression of SIRPa on two low SIRPa expressing AML cell lines could be upregulated
upon differentiation of the cells. We determined the effect of chimeric SIRPa expression on tumor cell growth and
programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of
agonistic antibody in combination with established antileukemic drugs.

Results: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPa is differentially
expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5
AML and low levels in FAB M0–M3. Interestingly, AML patients with high SIRPa expression had a poor prognosis. Our results
also showed that SIRPa is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPa with an
agonistic antibody in the cells stably expressing chimeric SIRPa, led to inhibition of growth and induction of programmed
cell death. Finally, the SIRPa-derived signaling synergized with the activity of established antileukemic drugs.

Conclusions: Our data indicate that triggering of SIRPa has antileukemic effect and may function as a potential therapeutic
target in AML.
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Introduction

Currently only one third of adult patients diagnosed with acute

myeloid leukemia (AML) can be cured despite aggressive

chemotherapy, and relapse rate is still high in these patients

[1,2,3]. Although the prognosis of pediatric AML patients is

better, the outcome remains relatively poor. With standard

induction chemotherapy, complete remission (CR) for newly

diagnosed pediatric AML is achieved on more than 80% of

patients, however, about 30–50% of these children relapse from

minimal residual disease (MRD) cells that apparently survived

chemotherapy [4,5,6]. Therefore, new treatment modalities for

AML are warranted.

Distinct morphological subgroups in French-American-British

(FAB) classification associate with different chromosomal rear-

rangements and acquisition of recurring genetic abnormalities; for
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example t(8;21))(q22;q22) and t(15;17))(q22;q21) create fusion

genes, AML/ETO and PML/RARa, which predominate in FAB

M2 and M3 AML subtypes respectively. These proteins are two of

the most common AML-associated oncofusion proteins, which in

total represent 20% of the AML occurrence [7]. The cytogenetic

rearrangement involved with t(8;21) disrupt genes that are

required for normal hematopoietic development, such as subunits

of core-binding factor [8]. Expression of the PML/RARa fusion

protein leads to a differentiation block at the promyelocytic stage

that can be relieved by all-trans-retinoic acid (ATRA). Studies on

AML/ETO and PML/RARa expressing cells have revealed that

aberrant signaling pathways are involved [9]. Insights into these

signaling pathways in AML at molecular level will pave ways for

new treatment modalities.

Signal regulatory protein alpha (SIRPa) is a transmembrane

receptor composed of 3 immunoglobulin-like domains in its

extracellular region and an intracellular domain containing

immunoreceptor tyrosine-based inhibitory motifs (ITIMs) which

recruit and activate SHP-1 and SHP-2 [10,11]. SIRPa is

predominantly expressed on myeloid and neuronal cells [10]

and its activation has been implicated in regulation of different

cellular functions such as adhesion, migration, growth and

differentiation [12,13,14]. Despite restricted expression of SIRPa,

CD47, the natural ligand for SIRPa [15], is ubiquitously expressed

and interacts with the SIRPa extracellular region. This interaction

results in inhibition of phagocytosis by macrophages through

tyrosine phosphatase activation and inhibition of myosin accumu-

lation [16,17,18]. CD47 functions as a ‘‘don’t eat me’’ signal and

plays a key role in the programmed cell removal of abberant

versus normal cells [19]. Indeed, it was recently shown that CD47

is overexpressed on AML leukemic stem cells as compared to their

normal counterparts (hematopoietic stem cells) and this contrib-

utes to inhibition of phagocytosis and clearance of LSCs [20]. In

addition, blocking antibodies directed against CD47 promoted

phagocytosis as suggested through disruption of CD47-SIRPa
interaction and this enhanced tumor clearance in vivo [20,21,22].

These findings are in line with several studies, which reported

elimination of tumor cells by employment of CD47 blocking

antibodies [20,22,23,24,25,26,27].

Although SIRPa is known to be expressed by AML cells as well

[11,28], its function on these cells has not been identified.

Furthermore, previous studies were performed with antibodies

that not only recognized SIRPa, but also several of the related

molecules such as SIRPb1 and SIRPc. In the present study we

have examined the mRNA and protein expression of SIRPa in a

large cohort of AML patients and determined its relevance for

AML cell survival. We show for the first time that SIRPa ligation

triggers programmed cell death in AML cells and synergizes with

antileukemic agents.

Design and Methods

Antibodies and drugs
At this moment no human agonistic SIRPa antibody is

available. However, a rat agonistic SIRPa antibody (ED9) was

generated in our laboratory [10,29], that is also commercially

available at Serotec (Oxford, UK). Such an agonistic antibody has

much higher affinity to rat SIRPa as compared to CD47-Fc

fragments [30,31], so the use of this agonistic antibody was

preferred for mechanistic studies and optimal SIRPa triggering.

To be able to exert an agonistic signal using the available rat

antibody, a chimeric construct of SIRPa was generated carrying

rat SIRPa extracellular domain and human transmembrane and

cytoplasmic region. The following monoclonal antibodies (mAb)

were used in this study: ED9 (anti-rat SIRPa; mouse IgG1 isotype)

was labeled with Alexa-633, which was obtained from Invitrogen

(Breda, The Netherlands). Considering the differences between rat

and human SIRPa, it is not likely that the ED9 agonistic antibody

cross-reacts with the human SIRPa [30,31]. For the experiments

in the current study we used a concentration of 10 mg/ml ED9

antibody. This concentration may be considered as relatively high,

but at this concentration the antibody is still specific since the

negative controls (i.e. empty vector cells) show no response to this

antibody at all. A dose-response curve is depicted in Figure S1.

Rabbit polyclonal Ab8120 (Abcam, Cambridge, United King-

dom) is directed to the cytoplasmic tail of human SIRPa. Mouse

anti-actin monoclonal antibody, mAb1501R, was purchased from

Chemicon International (Temecula, CA, USA). mAb against

caspase-3 was obtained from Cell Signaling Technology (Boston,

MA, USA). APC-labeled anti-human CD11b was acquired from

BD pharmingen (San Jose, CA, USA). PE- labeled B6H12 was

purchased from Santa Cruz Biotechnology and B6H12 F(ab’)2-

fragments were generated in our laboratory by pepsin digestion as

previously described [32].

The histone deacetylase (HDAC) inhibitors (Trichostatin A

(TSA), valproic acid (VPA) and sodium butyrate) and ATRA were

purchased from Sigma Aldrich (St Louis, MO, USA). 5-aza-2-

deoxycytidine (DAC, decitabine) was kindly provided by Pharma-

chemie BV (Haarlem, The Netherlands). Cytarabine (CytosarH)

was obtained from Pharmacia & Upjohn (Woerden, The Nether-

lands). Daunorubicin (CerubidineH) was purchased from Rhone

Poulenc Rorer (Amstelveen, The Netherlands). Etoposide (PV16,

VepesidH) was obtained from Bristol-Myers Squib (Woerden, The

Netherlands). Imatinib was provided by Novartis (The Nether-

lands). zVAD was obtained from Merk Biosciences (Darmstadt,

Germany).

Patient samples
For the expression array experiments bone marrow and/or

peripheral blood samples were collected from adult AML patients

at diagnosis, as described by Valk PJ et al. [33]. Bone marrow

and/or peripheral blood samples from children diagnosed with de

novo AML were collected from the following study centers: VU

University Medical Center, Amsterdam, The Netherlands; The

Dutch Childhood Oncology Group (DCOG), The Hague, The

Netherlands and the AML BFM-study Group, Hannover,

Germany. AML subtypes were classified according to the criteria

by Bennett et al., including the modifications to diagnose FAB

subtypes [34]. Mononuclear cells were isolated by density gradient

centrifugation as described previously [35]. All samples contained

at least 80% leukemic cells, as determined morphologically by

analyzing May-Grünwald-Giemsa (Merck, Darmstadt, Germany)

stained cytospins.

Cell Lines and culture conditions
The human leukemic cell lines KG1a (primitive human

hematopoietic myeloid progenitor), Kasumi-1 (human acute

myeloid leukemia, FAB M2 t(8;21)), HL-60 (human promyelocytic

leukemia), NB4 (human acute promyeloctic leukemia, FAB M3

t(15;17)),U937 (human acute monocytic leukemia), THP-1

(human acute monocytic leukemia), CEM (human acute lympho-

blastic leukemia), Jurkat (human T-cell acute lymphoblastic

leukemia) were routinely cultured in RPMI 1640 medium (Gibco

Laboratories, Irvine, UK) supplemented with 10% fetal calf serum

(Integro BV, Dieren, the Netherlands). Kasumi-1 cells (0.56106)

were incubated for 0, 3, 24, 48, 72 and 96 hours with 1 mM DAC,

0.3 mM TSA, 0.5 mM VPA and 1 mM sodium butyrate in 5%

CO2 humidified air at 37uC. Cells were subsequently used for
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Western Blot analysis, as described below. Human neutrophils

were isolated from heparinized blood of healthy individuals by

centrifugation over isotonic Percoll (Pharmacia, Uppsala, Sweden)

and subsequent lysis of erythrocytes as described [36]. Neutrophils

were cultured in Hepes-buffered saline solution supplemented with

1% human serum albumin (Cealb: Sanquin, Amsterdam, the

Netherlands) and 5 mM glucose.

DNA isolation
Cell lines. 1–56106 of KG1a, Kasumi-1 and HL-60 cells

were resuspended in HIRT buffer (0.6% SDS, 10 mM Tris,

10 mM EDTA pH 8). Proteinase K was added and samples were

incubated at 50uC for 2 hours and subsequently at 37uC
overnight. Phenol: chloroform (1:1) was added and the solution

was mixed vigorously and centrifuged. The aqueous layer was

transferred into a tube and the phenol/chloroform extraction was

repeated. Following centrifugation, the aqueous layer was

removed and the DNA was precipitated by NaOAC/EtOH

(1:24), washed with 70% EtOH and resuspended in TE buffer.

DNA concentrations were measured with spectrophotometer

(Nanodrop, Isogen, The Netherlands).

Patient samples. DNA was isolated from cryopreserved

cytospins. A sterile swab and a drop of sterile water were used to

wipe the cells from the slides. The swab was transferred into buffer

(100 mM Tris, 10 mM NaCl, 5 mM EDTA, 1% SDS pH 9)

containing proteinase K and incubated overnight at 52uC. Tubes

were centrifuged and DNA was isolated as described above. For

the method of the bisulphate sequencing of the DNA see Methods

S1.

Western blot analysis
Cells were washed in PBS, centrifuged and the cell pellet was

lysed with Igepal lysis buffer (Sigma-Aldrich) containing protease

inhibitor cocktail (Roche). Whole cell lysates were clarified by

centrifugation and denatured in Laemmli’s sample buffer (Bio-rad

Laboratories, Hercules, CA, USA). After that cell lysates were

subjected to Western blot and membranes stained with primary

and secondary antibodies.

Construction of retroviral vectors and transduction of
Kasumi-1 cells

The rat-human SIRPa fusion construct (chSIRPa) was gener-

ated from cDNA and PCR fragments as follows: nucleotide 1–

1236 of the rat SIRPa cDNA [10] was fused to nucleotide 1230–

1509 of the human cDNA (prot. accession No: NM_080792). The

chSIRPa protein contains amino acids 1–412 (rat extracellular

domain) and amino acids 411–503 (human transmembrane and

cytoplasmic region) resulting in a total length of 505 amino acids,

including the signal sequence. The sequence of the construct was

confirmed by automated sequencing.

For retroviral transduction the chSIRPa construct was cloned

into the retroviral expression vector pLZRSpMBN-linker-IRES-

eGFP(NotI) [37]. The Phoenix-A packaging cell line [38] was

transfected with the retroviral construct containing chSIRPa or

empty vector (EV) containing eGFP by calcium-phosphate

transfection. After puromycin selection (Sigma-Aldrich, St Louis,

MO, USA), harvested virus supernatant [37] was used for

transduction of Kasumi-1 or NB4 cells. chSIRPa-expressing cells

were subsequently selected in several rounds by FACS sorting

(MoFlo,Dako Cytomation) on the basis of eGFP expression to

reach to .98% positive cells. Cell surface expression of chSIRPa
was determined by FACS analysis using the ED9 mAb, as

described below. FACS-sorted, mock-transduced cells containing

EV were used as controls in all experiments. Ectopic expression of

SIRPa and/or eGFP were regularly monitored and were found to

be stable for several months, with .90% positive cells.

Cell proliferation and programmed cell death
For cell proliferation assays cells were seeded in triplicate at

16105/ml concentration in 96-well plates and treated with 10 mg/

ml of the ED9 mAb where indicated and incubated for the

mentioned time points up to 7 days. For programmed cell death

(PCD) experiments, cells were seeded at 0.56106 cells/ml and on

days 1 and 3 PCD was measured by Annexin V-phycoerythrin

and 7-amino-actinomycin D (7-AAD) or DAPI double staining

according to the manufacturer’s protocol (BD Pharmingen, San

Jose, CA, USA). All analyses were performed on a FACS calibur

(BD Biosciences, San Jose, CA, USA). Cells positively stained with

Annexin-V and 7-AAD negative were considered to be early

apoptotic.

Growth inhibition studies
Growth inhibitory effects of chemotherapeutics in combination

with ED9 mAb were evaluated with the MTT-assay, as described

previously [39]. SIRPa and EV cells were incubated with 4

concentrations of cytarabine (ara-C) 2.5–0.002 mM, daunorubicin

(DNR) 18.0–0.005 mM, etoposide (VP16) 4.4–0.01 mM and

imatinib 520.005 mM in combination with one fixed concentra-

tion of the ED9 mAb (10 mg/ml); these experiments were done in

triplicate. Within each experiment all drugs were tested alone, as

well as in combination. Drug interactions between chemothera-

peutic drugs and ED9 mAb were studied by using the multiple

drug effect analysis of Chou and Talalay [40] (Calcusyn software,

Biosoft, Cambridge, UK) and antagonistic, additive or synergistic

interactions were determined. This method is commonly used in

many drug interaction studies [41]. The interactions are deter-

mined by Combination Index (CI) which indicates synergism

(CI,0.9), additivity (CI = 0.9–1.1) or antagonism (CI.1.1). In the

CI-FA plot the CI values .0.5 are evaluated and per experiment a

mean CI was calculated from FA values 0.5, 0.75 and 0.9. The

average CI (6 SD) of three experiments is given for each of the

combinations.

Statistical analysis
The statistical significance of measured differences in prolifer-

ation and PCD between the various conditions and cell

populations was determined using the paired Student’s t-test.

Calculations were performed using Graph-pad Prism and SPSS

software. Statistical analysis (Cox proportional hazards model;

reported p values corresponded to the Wald test) on overall

survival and event free survival was performed in SPSS software.

Survival distribution was compared with median SIRPa expres-

sion of the whole group.

Results

SIRPa mRNA expression in AML
The mRNA level in pediatric AML patients was analyzed in a

micro-array dataset containing 226 samples [42]. SIRPa mRNA

expression varied considerably among different AML patients

(Figure 1A). A clear association was observed between SIRPa
expression and AML FAB subtypes with the highest levels found in

the myelo-monocytic FAB M4/M5 subsets. The SIRPa expression

levels in myeloblastic leukemic blasts were relatively low in the

FAB M0–M3 subtypes. The M6 erythroid type of AML also

showed a low SIRPa expression. Comparing acute myeloid

leukemia cases with normal bone marrow, lower expression of

Role of SIRPa in Acute Myeloid Leukemia
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SIRPa was observed in immature AML subtypes (Figure 1A),

suggesting a myeloid differentiation stage-dependent expression,

which is in line with the high expression of SIRPa found on

normal monocytes and macrophages [10]. In particular, the

significant difference between M0–M3 and M4/M5 (p,0.001),

and the different expression distribution are depicted in Figure 1B.

Classifying pediatric samples based on karyotypes showed the

highest (p = 1.63610210) and lowest (p = 2.0561026) expression of

SIRPa in MLL-rearranged and t(8;21) subgroups, respectively

(Figure 1C). Since we only accessed one pediatric dataset, we

validated these findings in adult AML datasets [33,43,44] and

consistent with the pediatric results the highest level of SIRPa
expression was found in M4 and M5 subtypes as compared to the

immature groups such as FAB M0, M1, M2 and M3 (Figure S2).

In addition, karyotype classification of 285 AML patients in an

adult dataset [33], showed increased SIRPa expression in inv(16),

and MLL-rearrangement groups (depicted as clusters 5, 9 and 16)

in comparison to t(8;21) and t(15;17) AML (Figure S1B).

To examine whether SIRPa expression is correlated with

patient survival, we performed an analysis on overall survival (OS)

and event free survival (EFS) in the pediatric cohort (n = 175), for

which follow-up data are available. We observed that higher

SIRPa expression compared to the median of the 175 patients (8.1

arbitrary units), significantly correlated with unfavorable outcome.

Figure 1D shows the Kaplan Meier analysis based on OS (log-rank

p = 0.024, hazard ratio (HR) 1.7, p = 0.026). For EFS the data

were similar: log-rank p = 0.029, and HR: 1.5, p = 0.031. In

addition, following stratification on karyotype, we could not

generally find any significant relation between SIRPa and

outcome (not shown). Only within the MLL rearranged samples

a high SIRPa expression (above the median SIRPa expression of

the MLL rearranged group) exhibited a trend towards unfavorable

outcome (HR: 2.28, p = 0.062).

It is difficult to compare the outcome between children and

adults since the adults have, in general, a very dismal prognosis. In

the data set of Valk et al. [30] no association was found between

SIRPa expression and outcome on the whole cohort. For the adult

MLL rearranged samples, high SIRPa levels associated with a

slightly favorable outcome (HR: 0.84, p = 0.027). In both children

and adults, multivariate analysis reveals that SIRPa is not an

independent risk factor.

Recent studies have shown that CD47, the ligand for SIRPa, is

a prognostic factor in breast cancer and its expression correlates

with SIRPa expression in bone marrow and peripheral blood of

breast cancer patients [32,45]. We therefore evaluated a possible

association between SIRPa and CD47 expression in different

datasets [33,42,46], however we did not find any evidence for such

an association in AML. Figure 1E shows that CD47 is equally

distributed among the pediatric AML subtypes while there is a

clear difference in SIRPa expression with the MLL-rearranged

clustering in the high SIRPa range.

SIRPa protein expression in AML
We determined SIRPa protein expression, by Western blotting

using an antibody directed to the cytoplasmic tail of the human

SIRPa on various leukemic cell lines and patient samples. While

no expression was observed among acute lymphoblastic leukemia

(ALL) cell lines, AML cell lines differentially expressed the SIRPa
protein (Figure 2A). In particular, immature myeloblasts such as

t(8;21) Kasumi-1, KG-1, HL60 cells or promyelocytes like t(15;17)

NB4 cells expressed low or undetectable levels of SIRPa protein

compared to more differentiated monocytic cells such as THP-1

and U937 (Figure 2A). We also analyzed 20 primary pediatric

AML patient samples and consistent with the mRNA data, SIRPa

protein expression was low/undetectable in immature subgroups

compared to the more mature groups such as M4 and M5

(Figure 2B, C). As expected we did not observe SIRPa expression

in ALL patient samples (n = 10) (Figure S3). Collectively, these

findings suggest a selective myeloid and differentiation stage-

dependent expression of SIRPa mRNA and protein expression in

AML.

Upregulation of SIRPa upon differentiation of t(15;17)
AML cells

To address whether SIRPa expression is upregulated upon

differentiation of AML cells, we selected the NB4 cell line, a

t(15;17) M3 FAB subtype, which only express low levels of SIRPa
(Figure 2A). Since ATRA treatment of t(15;17) APL patients is

known to result in granulocytic differentiation [47,48], we

examined if SIRPa expression increased after exposure to ATRA.

To address this, the NB4 cells were incubated with 1 mM ATRA

for 7 consecutive days and granulocytic differentiation of the NB4

cells was confirmed by upregulation of the common myeloid

marker CD11b (Figure 3A). In concert with the increased

differentiation of NB4 cells, SIRPa protein expression was

markedly upregulated following ATRA exposure (Figure 3B).

This upregulation was already detectable after 24 hrs and it was

further increased during the following days of treatment.

Induction of programmed cell death in t(15;17) AML cells
following SIRPa ligation

Our initial experiments with the rat myeloid cell line NR8383

showed that several agonistic monoclonal antibodies [49] against

rat SIRPa (for example ED9, ED17 or OX41) or recombinant Fc-

fusion proteins containing the extracellular region of CD47, the

natural ligand of SIRPa, are able to suppress cell proliferation

(Figure S4). In order to investigate the effect of SIRPa ligation in

NB4 cells we tested a variety of previously reported antibodies

against SIRPa, but these either lacked the appropriate specificity,

showing cross-reactivity with other SIRP family members, or

lacked the agonistic activity [28,32]. In addition CD47-Fc did not

show a sufficiently high affinity for binding to SIRPa in our in vitro

experiments to be used as an agonistic (data not shown). Hence, to

be able to study the effect of SIRPa triggering in human myeloid

cells, we generated a chimeric SIRPa (chSIRPa) construct that

enabled the use of the rat specific SIRPa agonistic ED9 mAb. This

chSIRPa construct consisted of the extracellular region of rat

SIRPa and the transmembrane and the cytoplasmic domains of

human SIRPa [10]. Stable t(15;17) NB4 cell lines expressing

chSIRPa or empty vector (EV) were generated by retroviral

transduction. Flow cytrometric analysis of the retrovirally trans-

duced and FACS-sorted cells showed that the vast majority

(.90%) of cells had been transfected by chSIRPa (Figure 3C).

The levels of chSIRPa expression (i.e. mean fluorescence) were

comparable to those seen, with the same mAb, on rat

macrophages or granulocytes ([10] and data not shown).

Ligation of SIRPa in NB4 cells by agonistic ED9 mAb resulted

in induction of programmed cell death (PCD) as quantified by flow

cytometry using annexin-V/7-AAD staining (Figure 3C). After

24 h of exposure to ED9 mAb, the percentage of annexin-V

positive cells was significantly higher in the NB4 chSIRPa cells

(47.368.6%), as compared to NB4 EV cells (15.165.0%;

p = 0.009) (Figure 3C). These data support the requirement for

ED9 binding to SIRPa, since no induction of cell death was

observed in NB4 EV cells. These findings provide evidence for

induction of cell death capacity by SIRPa triggering in APL cells.

Role of SIRPa in Acute Myeloid Leukemia
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Figure 1. SIRPa mRNA expression and its prognostic effect in pediatric AML cohort. (A) SIRPa mRNA expression was determined in
different FAB subtypes. The dots represent individual patients and the horizontal bar is the group mean. The horizontal dotted line represents the
mean levels (139.6; n = 5) of SIRPa expression in normal CD34+ HSC. (ND: not determined). (B) Frequency of SIRPa expression among different FAB
subtypes of AML patients is shown as stacked histograms. (C) SIRPa mRNA expression as stratified after karyotype (NK: normal karyotype). (D) Overall
survival of pediatric AML patients (n = 175) stratified according to either low (, median of 8.1) or high ($ median 8.1) SIRPa mRNA expression. (E)
Correlation between CD47 and SIRPa mRNA expression is shown by the blue and red dots, respectively. The lower bar demonstrates the cluster of
patients in karyotypes, in which higher SIRPa expression is clustered in blue, representing the MLL rearrangement group on the right side.
doi:10.1371/journal.pone.0052143.g001
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From a therapeutic perspective, it would appear beneficial to

relieve differentiation block in M3 AML cells by using ATRA and

as a result to upregulate SIRPa expression, which can subse-

quently be targeted by an agonistic antibody to induce PCD.

Clearly prerequisite for such a strategy to be successful would be

the efficiency of SIRPa triggering following differentiation.

Therefore we examined whether apoptosis induction via SIRPa
persisted after differentiation with ATRA. Stably transduced NB4

(chSIRPa and EV) cells were exposed to 1 mM ATRA in

combination with the fixed concentration of 10 mg/ml ED9

mAb, which was shown to trigger PCD in the NB4 chSIRPa cells.

As expected, ATRA treatment alone did not have any effect on

PCD, whereas ED9 resulted in PCD in the chSIRPa transduced

NB4 cells and this was not significantly altered after differentiation

with ATRA. Furthermore while SIRPa triggering by ED9 mAb

does induce programmed cell death, we found that it did not affect

differentiation (Figure S5).

Taken together, these data indicate that ATRA provides a

stimulus for differentiation of t(15;17) APL cells and this results in

upregulation of SIRPa expression to a level that makes the cells

prone to cell death induction via SIRPa triggering even in

differentiated M3 cells.

Upregulation of SIRPa following differentiation of t(8;21)
AML cells

To examine whether the low endogenous expression of SIRPa
is also upregulated following differentiation of other low-SIRPa-

expressing myeloid leukemic cells, we selected t(8;21) Kasumi-1

cells. These cells belong to AML M2 FAB subtype and express low

endogenous levels of SIRPa (Figure 2A). It has been shown that

histone deacetylase (H-DAC)-inhibitors such as butyrate, valproic

acid (VPA) and trichostatin (TSA) and DNA methyltransferase

(DNMT)- inhibitors such as decitabine, induce granulocytic

maturation of t(8;21) acute myeloid leukemia cells [50,51,52,53]

(and data not shown).

Kasumi-1 cells were exposed to TSA, VPA,butyrate or

decitabine for indicated time points, which resulted in markedly

increased SIRPa levels (Figure 4). With all drugs, an increase in

SIRPa protein expression was detected as early as 3 hrs after

exposure and this expression reached maximal levels after

approximately 24 hrs. These data show that SIRPa is upregulated

following differentiation of Kasumi-1 cells.

An alternative explanation for the upregulation of SIRPa in

t(8;21) AML was that these inhibitors of epigenetic silencing had

acted directly on the SIRPa gene (accession number: NP-

542970.1), and in fact this seemed possible since a prominent

CpG island is present in the PTPNS1 promoter region. DNA

methylation in this region was explored in Kasumi-1 cells and four

t(8;21) AML patients by bisulphite DNA sequencing. Results

revealed actually very low levels of DNA methylation in the

promoter region (Figure S6). We also analyzed the SIRPA2p

pseudogene, in which abundant methylation was detected in the

corresponding region [49]. Taken together these data strongly

suggest that the increased level of SIRPa in t(8;21) Kasumi-1 cells

following demethylating agents is the result of differentiation.

Inhibition of proliferation and induction of PCD in t(8;21)
AML cells by SIRPa triggering

Since triggering SIRPa by agonistic ED9 mAb induced cell

death in t(15;17) NB4 cells, we extended our findings in t(8;21)

Kasumi-1 cells, stably transduced with chSIRPa or EV (Figure 5A).

The overexpression of chSIRPa in Kasumi-1 cells itself did not

affect the growth, however culturing Kasumi-1 chSIRPa cells in

the presence of the agonistic rat ED9 antibody caused a significant

inhibition of proliferation (Figure S7). In order to investigate

whether growth suppression triggered by chSIRPa ligation

coincided with an enhanced level of cell death induction, the

percentage of cell death was quantified by flow cytometry, using

Annexin V and 7-AAD staining (Figure 5B). Already 24 hours

after adding ED9 mAb the percentage of early dying cells, defined

as Annexin V positive, was significantly higher in the Kasumi-1

chSIRPa cells, as compared to Kasumi-1 EV cells, while addition

of an irrelevant antibody had no effect (Figure 5B, lower panel).

Similar results were observed on day 3 of treatment, at which

ligation with ED9 mAb had caused significant cell death in

Kasumi-1 chSIRPa cells (35.2615.3% versus 10.462.8% in

untreated control cells; p = 0.02). All effects required ED9 binding

to chSIRPa, since no induction of cell death was observed in

Kasumi-1 EV cells.

We next investigated whether cell death induction in Kasumi-1

cells was involved caspase activity, which is often required for

PCD. First, we investigated activation of the effector caspase-3,

which can be measured by evaluating the appearance of the p17

caspase-3 cleavage product. As shown in Figure 5C triggering of

SIRPa in Kasumi-1 chSIRPa cells did not result in any detectable

caspase-3 cleavage, whereas this was detected upon culture of

freshly isolated neutrophils. Furthermore, incubation with the

universal inhibitor of caspases, zVAD (10 mM), did not affect

programmed cell death induction via SIRPa in Kasumi-1

chSIRPa cells whereas neutrophil apoptosis was zVAD sensitive

(results not shown). Collectively, these findings indicate a growth-

suppressive and caspase-independent mode of PCD induction via

SIRPa in t(8;21) AML.

To examine whether the observed effects of ED9 mAb in

Kasumi-1 cells, occur through blocking of CD47-SIRPa interac-

tions, we used the blocking anti-CD47 antibody B6H12. As shown

in Figure S8, induction of cell death by ED9 cannot be mimicked

by B6H12. This experiment shows at least that the pro-apoptotic/

growth regulatory effects that we report in this study are not simply

due to a blocking of cis or trans CD47-SIRPa interactions and are

more likely due to agonism of the ED9 antibody that was actually

also reported by us before in another context [54].

SIRPa ligation synergizes with conventional antileukemic
and targeted agents in t(8;21) and t(15;17) AML cells

Considering the potential of exploiting SIRPa targeting to

improve the treatment of AML patients, we examined the efficacy

of the ED9 mAb in combination with clinically relevant

chemotherapeutic agents used for the treatment of AML. NB4

chSIRPa and EV cells were exposed to cytarabine (ARA-C) and

daunorubicin (DNR) in combination with ED9 mAb. Survival was

monitored after 4 days using a range of chemotherapeutic drug

concentrations, which had shown appropriate dose response

curves in pilot experiments. We used a fixed concentration of

Figure 2. SIRPa protein expression in AML cell lines and patients. Western blot analysis was performed in (A) cell lines and (B) 20 pediatric
AML patient samples. b-actin staining was used as loading control. (C) SIRPa expression is quantified relative to b-actin expression.
doi:10.1371/journal.pone.0052143.g002
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ED9 mAb (10 mg/ml), which had been shown to promote PCD in

NB4 cells (Figure 6A). Co-incubation of NB4 cells stably

expressing chSIRPa with each of the two chemotherapeutics

and ED9 mAb resulted in synergistic effects (combination indexes

(CI) using standard calcusyn calculation were

CIDNR = 0.0.5960.04 and CIARA-C = 0.6060.2). No effect of

ED9 mAb was seen in the NB4 EV cells (data not shown).

In addition, Kasumi-1 chSIRPa and EV cells were exposed to

ARA-C, DNR, and VP16 in combination with ED9. Since the

Kasumi-1 cell line has been described to harbor an activating c-kit

mutation [55], we also tested ED9 in combination with the

tyrosine kinase inhibitor imatinib mesylate (Figure 6B). Similar to

the experiments with the NB4 cell line, this was tested using a 4-

day survival assay applying a range of drug concentrations, which

had shown appropriate dose response curves in pilot experiments,

and a fixed concentration of ED9 mAb (10 mg/ml). The leukemic

cell survival of Kasumi-1 EV and chSIRPa cells after incubation

with ED9 alone were 9862.4% and 8764.4%, respectively. Co-

incubation of Kasumi-1 SIRPa cells with each of the four anti-

leukemic drugs and ED9 resulted in synergism which was

indicated by a shift in the dose-response curve. By using the

standard Calcusyn calculations for combination effects, a syner-

gistic effect of ED9 incubation was observed for all applied

chemotherapeutic drugs (combination indexes (CI) include:

CIARA-C = 0.4660.32; CIDNR = 0.7460.06, CIVP16 = 0.5560.066

and CIImatinib = 0.7560.11) (Figure 6B).

Taken together, these results show that expression and ligation

of chSIRPa provide growth inhibitory effects in t(15;17) and

t(8;21) AML cells and this had a synergism with established anti-

leukemic drugs.

Discussion

Insights into the molecular pathogenesis of AML have paved

the way for new treatment strategies that specifically target gene

products implicated in induction of the leukemia. In the present

study we have investigated the role of SIRPa as a potential target

in the treatment of AML. By evaluating SIRPa mRNA levels in

both pediatric and adult cohorts of AML patients, we observed a

differential expression of SIRPa in AML subtypes. Interestingly,

high expression of SIRPa was observed in more mature AML

subgroups (M4 and M5) in comparison to immature subtypes,

normal bone marrow and CD34+ blast cells. There was

interpatient vairability of SIRPa expression between patients with

M4 or M5 subtypes, which is probably due to heterogeneity of

AML. Nevertheless, higher expression in mature subtypes is

consistent with a differentiation related expression of SIRPa.

Consistent with this, an upregulation of SIRPa was also observed

during differentiation of AML cell lines, which express low

endogenous levels of SIRPa.

The expression of SIRPa was not correlated to the expression of

its ligand CD47, which was ubiquitously expressed on the AML

blasts. This is consistent with a recent study performed by

Nagahara et al. who showed that increased expression of SIRPa
and CD47 was not correlated on breast cancer cell lines. However

a stronger correlation was observed in the bone marrow and

peripheral blood of breast cancer patients compared to normal

cases [45]. They suggest that such host factor characteristics may

have implications for prognosis of breast cancer. We also evaluated

mRNA levels of other related genes in the various datasets of

Figure 3. Upregulation of SIRPa upon differentiation of
t(15;17) NB4 cells and induction of cell death following its
triggering. (A) NB4 cells were exposed to 1 mM ATRA and granulocytic
differentiation of the cells was examined by cell surface expression of
the common myeloid marker, CD11b. (B) SIRPa protein expression,
determined by western blotting, is upregulated in ATRA-incubated NB4
cells. b-actin is used as a loading control. (C) Flow cytometric analysis of
chSIRPa surface expression is determined by using ED9 mAb in
transduced NB4 empty vector and chSIRPa expressing cells. (D) 24 hrs
following ED9 (10 mg/ml) incubation, the percentage of cell death in
chSIRPa and EV transduced NB4 cells was quantified by APC-Annexin V

and PE-7AAD FACS staining. (E) Percentage of apoptosis after exposure
to 1 mM ATRA is shown in combination with 10 mg/ml of ED9.
doi:10.1371/journal.pone.0052143.g003
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AML. No clear association was observed between CD47 and

SIRPa or different FAB subtypes or karyotypes. In our AML

study, the association between SIRPa and prognosis is not strong

and does not function as an independent factor. Galbaugh et al

showed that SIRPa mRNA was high in triple negative breast

cancer and related to an increased invasiveness of the tumor [56].

However, thus far there are no publications that show a clear

correlation between SIRPa expression and outcome, even for

breast cancer. The lack of differential expression of CD47 in our

study might be due to the fact that we investigated the bulk of the

AML cells and not the leukemic stem cells, for which it was

previously established that CD47expression is associated with poor

prognosis [20].

We demonstrate here for the first time, that SIRPa ligation

using agonistic monoclonal antibodies inhibits cell growth and

promotes cell death induction. Our results suggest that PCD via

SIRPa is caspase-independent. This mechanism of cell death

induction has been reported previously in the context of AML

[57], in which no involvement of caspases in cell death of an AML

cell line was observed upon treatment with chemotherapeutic

drugs. It should be noted that CD47 ligation also induces caspase-

independent PCD [57], and it would seem reasonable to assume

that this was due to a potential blocking of cis-interactions between

CD47 and SIRPa on AML, rather than to agonistic triggering of

both receptors. However, observations show that this was not

likely to be the case, since the effects on t(15;17) NB4 cells and

t(8;21) Kasumi-1 cells could not be reproduced using blocking

antibodies against CD47 (Alvarez et al, not shown). The actual

mechanism underlying the pro-apoptotic effect of SIRPa trigger-

ing is under investigation. Clearly, one obvious candidate to

mediate growth inhibitory signals, particularly in myeloid cells, is

the cytosolic tyrosine phosphatase SHP-1. Our preliminary

findings show that SHP-1 and also the related SHP-2 are in fact

abundantly expressed in fresh AML samples and in established

AML cell lines (data not shown). In rodent macrophage cell lines

the hematopoietic phosphatase SHP-1 can indeed be recruited

and activated upon triggering of SIRPa by its natural ligand

CD47, as well as by the agonistic antibody ED9 used herein [54].

It should be emphasized that while the survival and proliferation

of AML may not be directly regulated by CD47-SIRPa
interactions, there the in vivo life span of leukemic cells may well

be affected by them in another way. In particular, recent studies

have demonstrated that CD47 can act as an anti-phagocytic or so

called ‘‘don’t eat me’’ signal that prevents clearance of human

leukemic cells by macrophages in xenogeneic mouse models in vivo

[20,21]. Other ‘‘don’t eat me’’ signals such as CD200 have also

been shown to be upregulated in multiple tumors including AML

[58]. Leukemic stem cells appear to have higher levels of CD47

than normal CD34+ HSC cells and this could provide them with a

selective advantage for survival. In this study we show that other

signals such as SIRPa can be upregulated to encourage such don’t

eat me signals and subsequent evasion from programmed cell

removal [19,58]. It must be noted that CD47 signaling can also be

regulated through binding to its ligand, thrombospondin-1(TSP-

1). This CD47-TSP-1 interaction has been shown to inhibit

response to nitric oxide and correspondingly increase radiosensi-

tivity. As a result, blocking such interactions could confer

therapeutic radioprotection of normal tissues [59,60,61].

Analysis of AML patients had revealed that higher levels of

CD47 are associated with a poor prognosis [17,18]. While the

results of these studies indicate that blocking of the interaction

between CD47 and SIRPa may be of interest from a therapeutic

perspective, our current results suggest that it may, perhaps even

simultaneously be beneficial to trigger SIRPa as well. Especially

since targeting the CD47–SIRPa phagocytic pathway alone is

likely to have toxic effects [58]. In fact, the ED9 antibody against

SIRPa that we have used herein appears both capable of

triggering programmed cell death as well as to block CD47-

SIRPa interaction [62]. Clearly, future studies are needed to

Figure 4. SIRPa upregulation in t(8;21) Kasumi-1 cells following treatment with inhibitors of epigenetic gene silencing. Kasumi-1 cells
were incubated with 1 mM Decitabine, 0.5 mM valproic acid, 1 mM Butyrate and 300 nM Trichostatin. Endogenous SIRPa protein level, determined by
Western blotting was upregulated at indicated time points. b-actin staining was used as a loading control.
doi:10.1371/journal.pone.0052143.g004
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generate the suitable agents that can trigger apoptosis via human

SIRPa and validate it as a potential treatment target in AML.

Supporting Information

Figure S1 Dose-response curve of ED9 antibody in-
duced apoptosis in Kasumi-1 cells. EV = kasumi cells

tranduced with empty vector, WT = kasumi cells tranduced with

wild type SIRPa. Apoptosis was measured after exposure to a

range of ED9 antibody concentrations. 10 mg/ml was selected as

optimal concentration for further studies. At this concentration no

effect was seen on cells only expressing the (human) constitutive

SIRPa.

(PPT)

Figure S2 SIRPa mRNA expression in adult AML
cohort. (A) SIRPa mRNA expression was determined in different

FAB subtypes of 285 adult patients. The dots represent individual

patients and the horizontal bar is the mean of the group (ND: not

determined). (B) Adapted correlation view of the 16 unsupervised

clusters (indicated on the left) of 285 adult AML specimens

identified by mRNA profiling [33], including the expression levels

of SIRPa using 3 independent probes on the right diagonal axes.

SIRPa expression is high in clusters 5, 9 and 16, but low in most

other clusters, including clusters 12 and 13, which contain almost

exclusively t(15;17) and t(8;21) AML, respectively.

(PPT)

Figure S3 SIRPa is not expressed in ALL patient
samples. Analysis of protein expression of SIRPa in pediatric

ALL patient samples by western blotting showed that SIRPa is not

expressed in these samples. b-actin staining was used as a loading

control.

(PPT)

Figure S4 Triggering SIRPa in the rat NR8383 macro-
phage cell line inhibits proliferation. NR8383 cells were

incubated for 18 hours with CD47-Fc protein or indicated anti-rat

SIRPa monoclonal antibodies (ED9, ED17 or OX41). 3H-

thymidine was added for 4 hours and proliferation was deter-

mined by incorporated radioactivity.

(PPT)

Figure S5 NB4 cells differentiate by ATRA exposure.
Differentiation of NB4 cells stably expressing chSIRPa and EV

was examined by flow cytometry after treatment with ATRA or

ED9. increased expression of CD11b was observed only after

ATRA but not by ED9 treatment.

(PPT)

Figure S6 PTPNS1 promoter region is not methylated.
Each circle indicates a CpG dinucleotide (open circles: unmethy-

lated, filled circles: methylated) and each line represents analyses of

a single amplified clone. SIRPa2p pseudogene, which is highly

highly homologous to PTPNS1 was used as a positive control with

high degree of methylation [49]. Methylation specific PCR and

bisulphate sequencing [63] of the Kasumi-1 cell line and four

Figure 5. Ligation of chSIRPa induces caspase 3-independent PCD in Kasumi-1 cells. (A) Flow cytometric analysis of SIRPa expression was
performed by using ED9 mAb in stable Kasumi-1 cells expressing chSIRPa and EV. (B) Kasumi-1 chSIRPa and EV cells were incubated with 10 mg/ml
ED9 mAb and the percentage of cell death was determined after 24 hrs. Annexin V and 7-AAD FACS staining defined that ligation of chSIRPa resulted
in increased cell death in chSIRPa Kasumi-1 cells compared to EV control cells. Data are means 6 SD calculated from 3 independent experiments
using triplicate samples (*: significant difference p,0.05). (C) Kasumi-1 cells expressing chSIRPa or EV were treated with 10 mg/ml ED9 for mentioned
time points. Caspase 3 staining shows no cleavage of the p32 subunit. As a positive control for caspase 3 cleavage, human neutrophils (PMN) were
incubated at room temperature for 0 and 24 hours.
doi:10.1371/journal.pone.0052143.g005

Figure 6. SIRPa-derived signal synergizes with different
antileukemic drugs. Inhibition of cell growth is depicted by
combination of ED9 mAb (10 mg/ml) with (A) Ara-C and DNR in NB4
cells expressing chSIRPa (B) Ara-C, DNR, VP16, DAC and imatinib in
Kasumi-1 cells expressing chSIRPa. Results are based on means of 3
experiments and are calculated using Calcusyn.
doi:10.1371/journal.pone.0052143.g006
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t(8;21) AML patients did not reveal methylation of the PTPNS1

promoter region.

(PPT)

Figure S7 SIRPa ligation results in inhibition of prolif-
eration in Kasumi-1 cells. Kasumi-1 cells expressing chSIRPa
or EV, were incubated with ED9 mAb for 7 days and cell

proliferation was evaluated by daily cell counting. Data are means

6 SD calculated from 3 independent experiments using triplicate

samples.

(PPT)

Figure S8 Blocking anti-CD47 antibody cannot mimic
ED9 effects in Kasumi-1 cells. (A) Flow cytometry data of

DAPI and Annexin-V staining and (B) Summary graph illustrates

the quantified flow cytometric data. Kasumi-1 cells expressing

chSIRPa or EV were incubated with ED9 mAb or B6H12 as

blocking anti-CD47 antibody. Percentage of cell death was

increased significantly in the case of ED9 treatment compared to

EV but B6H12 anti-CD47 incubation did not have this effect.

(PPT)

Methods S1 Detailed method description of the DNA bisul-

phate sequencing.

(DOC)

Author Contributions

Provided patient samples and patients’ characteristic: ES PK UC DR EdB

CMZ MvdHE. Statistical analysis: JC EC PV RD. Experimental

performance: AB MA KS MI EvB IH JAZ. Conceived and designed the

experiments: TvdB JC MI IH EvB GK AvdL. Performed the experiments:

AB MA KS MI EvB IH JAZ. Wrote the paper: MI JC TvdB IH JAZ.

References

1. Hann IM, Stevens RF, Goldstone AH, Rees JK, Wheatley K, et al. (1997)

Randomized comparison of DAT versus ADE as induction chemotherapy in

children and younger adults with acute myeloid leukemia. Results of the Medical

Research Council’s 10th AML trial (MRC AML10). Adult and Childhood

Leukaemia Working Parties of the Medical Research Council. Blood 89: 2311–

2318.

2. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, et al.

(2001) Attempts to improve treatment outcomes in acute myeloid leukemia

(AML) in older patients: the results of the United Kingdom Medical Research

Council AML11 trial. Blood 98: 1302–1311.

3. Rowe JM, Neuberg D, Friedenberg W, Bennett JM, Paietta E, et al. (2004) A

phase 3 study of three induction regimens and of priming with GM-CSF in older

adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology

Group. Blood 103: 479–485.

4. Kaspers GJ, Zwaan CM (2007) Pediatric acute myeloid leukemia: towards high-

quality cure of all patients. Haematologica 92: 1519–1532.

5. Ravindranath Y (2003) Recent advances in pediatric acute lymphoblastic and

myeloid leukemia. Curr Opin Oncol 15: 23–35.

6. Hann IM, Webb DK, Gibson BE, Harrison CJ (2004) MRC trials in childhood

acute myeloid leukaemia. Ann Hematol 83 Suppl 1: S108–112.

7. Martens JH, Stunnenberg HG (2010) The molecular signature of oncofusion

proteins in acute myeloid leukemia. FEBS Lett 584: 2662–2669.

8. Goyama S, Mulloy JC (2011) Molecular pathogenesis of core binding factor

leukemia: current knowledge and future prospects. Int J Hematol 94: 126–133.

9. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, et al. (2003) Acute

myeloid leukemia fusion proteins deregulate genes involved in stem cell

maintenance and DNA repair. J Clin Invest 112: 1751–1761.

10. Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Dopp

EA, et al. (1998) Signal-regulatory protein is selectively expressed by myeloid

and neuronal cells. J Immunol 161: 1853–1859.

11. Seiffert M, Cant C, Chen Z, Rappold I, Brugger W, et al. (1999) Human signal-

regulatory protein is expressed on normal, but not on subsets of leukemic

myeloid cells and mediates cellular adhesion involving its counterreceptor CD47.

Blood 94: 3633–3643.

12. Fukunaga A, Nagai H, Noguchi T, Okazawa H, Matozaki T, et al. (2004) Src

homology 2 domain-containing protein tyrosine phosphatase substrate 1

regulates the migration of Langerhans cells from the epidermis to draining

lymph nodes. J Immunol 172: 4091–4099.

13. Han X, Sterling H, Chen Y, Saginario C, Brown EJ, et al. (2000) CD47, a ligand

for the macrophage fusion receptor, participates in macrophage multinucleation.

J Biol Chem 275: 37984–37992.

14. Saginario C, Sterling H, Beckers C, Kobayashi R, Solimena M, et al. (1998)

MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol

18: 6213–6223.

15. Jiang P, Lagenaur CF, Narayanan V (1999) Integrin-associated protein is a

ligand for the P84 neural adhesion molecule. J Biol Chem 274: 559–562.

16. Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands.

Trends Cell Biol 11: 130–135.

17. Barclay AN, Brown MH (2006) The SIRP family of receptors and immune

regulation. Nat Rev Immunol 6: 457–464.

18. Tsai RK, Discher DE (2008) Inhibition of ‘‘self’’ engulfment through

deactivation of myosin-II at the phagocytic synapse between human cells.

J Cell Biol 180: 989–1003.

19. Chao MP, Majeti R, Weissman IL (2012) Programmed cell removal: a new

obstacle in the road to developing cancer. Nat Rev Cancer 12: 58–67.

20. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, et al. (2009) CD47 is an

adverse prognostic factor and therapeutic antibody target on human acute

myeloid leukemia stem cells. Cell 138: 286–299.

21. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, et al. (2009) CD47 is

upregulated on circulating hematopoietic stem cells and leukemia cells to avoid

phagocytosis. Cell 138: 271–285.

22. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, et al. (2011)

Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic

leukemia. Cancer Res 71: 1374–1384.

23. Uno S, Kinoshita Y, Azuma Y, Tsunenari T, Yoshimura Y, et al. (2007)

Antitumor activity of a monoclonal antibody against CD47 in xenograft models

of human leukemia. Oncol Rep 17: 1189–1194.

24. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, et al. (2010) Anti-

CD47 antibody synergizes with rituximab to promote phagocytosis and

eradicate non-Hodgkin lymphoma. Cell 142: 699–713.

25. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, et al. (2009) Identification,

molecular characterization, clinical prognosis, and therapeutic targeting of

human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106: 14016–

14021.

26. Edris B, Weiskopf K, Volkmer AK, Volkmer JP, Willingham SB, et al. (2012)

Antibody therapy targeting the CD47 protein is effective in a model of aggressive

metastatic leiomyosarcoma. Proc Natl Acad Sci U S A.

27. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, et al. (2012) The

CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target

for human solid tumors. Proc Natl Acad Sci U S A.

28. Seiffert M, Brossart P, Cant C, Cella M, Colonna M, et al. (2001) Signal-

regulatory protein alpha (SIRPalpha) but not SIRPbeta is involved in T-cell

activation, binds to CD47 with high affinity, and is expressed on immature

CD34(+)CD38(2) hematopoietic cells. Blood 97: 2741–2749.

29. Damoiseaux JG, Dopp EA, Neefjes JJ, Beelen RH, Dijkstra CD (1989)

Heterogeneity of macrophages in the rat evidenced by variability in

determinants: two new anti-rat macrophage antibodies against a heterodimer

of 160 and 95 kd (CD11/CD18). J Leukoc Biol 46: 556–564.

30. Hatherley D, Harlos K, Dunlop DC, Stuart DI, Barclay AN (2007) The

structure of the macrophage signal regulatory protein alpha (SIRPalpha)

inhibitory receptor reveals a binding face reminiscent of that used by T cell

receptors. J Biol Chem 282: 14567–14575.

31. Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL, et al. (2000)

CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP

(OX41) and human SIRPalpha 1. Eur J Immunol 30: 2130–2137.

32. Zhao XW, van Beek EM, Schornagel K, Van der Maaden H, Van Houdt M, et

al. (2011) CD47-signal regulatory protein-alpha (SIRPalpha) interactions form a

barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A

108: 18342–18347.

33. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van

Doorn-Khosrovani S, et al. (2004) Prognostically useful gene-expression profiles

in acute myeloid leukemia. N Engl J Med 350: 1617–1628.

34. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, et al. (1985)

Proposed revised criteria for the classification of acute myeloid leukemia. A

report of the French-American-British Cooperative Group. Ann Intern Med

103: 620–625.

35. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, et al. (1994)

Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested

for cellular drug resistance using the methyl-thiazol-tetrazolium assay.

Br J Cancer 70: 1047–1052.

36. Roos D, Voetman AA (1986) Preparation and cryopreservation of cytoplasts

from human phagocytes. Methods Enzymol 132: 250–257.

37. Heemskerk MH, Hooijberg E, Ruizendaal JJ, van der Weide MM, Kueter E, et

al. (1999) Enrichment of an antigen-specific T cell response by retrovirally

transduced human dendritic cells. Cell Immunol 195: 10–17.

38. Kinsella TM, Nolan GP (1996) Episomal vectors rapidly and stably produce

high-titer recombinant retrovirus. Hum Gene Ther 7: 1405–1413.

Role of SIRPa in Acute Myeloid Leukemia

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e52143



39. Kaspers GJ, Zwaan CM, Pieters R, Veerman AJ (1999) Cellular drug resistance

in childhood acute myeloid leukemia. A mini-review with emphasis on cell
culture assays. Adv Exp Med Biol 457: 415–421.

40. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the

combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:
27–55.

41. Hubeek I, Comijn EM, Van der Wilt CL, Merriman RL, Padron JM, et al.
(2008) CI-994 (N-acetyl-dinaline) in combination with conventional anti-cancer

agents is effective against acute myeloid leukemia in vitro and in vivo. Oncol

Rep 19: 1517–1523.
42. Balgobind BV, Van den Heuvel-Eibrink MM, De Menezes RX, Reinhardt D,

Hollink IH, et al. (2011) Evaluation of gene expression signatures predictive of
cytogenetic and molecular subtypes of pediatric acute myeloid leukemia.

Haematologica 96: 221–230.
43. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, et al.

(2008) An 86-probe-set gene-expression signature predicts survival in cytoge-

netically normal acute myeloid leukemia. Blood 112: 4193–4201.
44. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ,

et al. (2009) Double CEBPA mutations, but not single CEBPA mutations, define
a subgroup of acute myeloid leukemia with a distinctive gene expression profile

that is uniquely associated with a favorable outcome. Blood 113: 3088–3091.

45. Nagahara M, Mimori K, Kataoka A, Ishii H, Tanaka F, et al. (2011) Correlated
expression of CD47 and SIRPA in bone marrow and in peripheral blood

predicts recurrence in breast cancer patients. Clin Cancer Res 16: 4625–4635.
46. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, et al. (2004) Use of

gene-expression profiling to identify prognostic subclasses in adult acute myeloid
leukemia. N Engl J Med 350: 1605–1616.

47. Warrell RP, Jr., de The H, Wang ZY, Degos L (1993) Acute promyelocytic

leukemia. N Engl J Med 329: 177–189.
48. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, et al. (1990) All-

trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies:
structure-function relationship. Blood 76: 1710–1717.

49. van Beek EM, Cochrane F, Barclay AN, van den Berg TK (2005) Signal

regulatory proteins in the immune system. J Immunol 175: 7781–7787.
50. Gozzini A, Santini V (2005) Butyrates and decitabine cooperate to induce

histone acetylation and granulocytic maturation of t(8;21) acute myeloid
leukemia blasts. Ann Hematol 84 Suppl 1: 54–60.

51. Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, et al. (2007) Targeting
AML1/ETO-histone deacetylase repressor complex: a novel mechanism for

valproic acid-mediated gene expression and cellular differentiation in AML1/

ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther 321: 953–

960.
52. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, et al. (2001) Valproic

acid defines a novel class of HDAC inhibitors inducing differentiation of

transformed cells. Embo J 20: 6969–6978.
53. Kircher B, Schumacher P, Petzer A, Hoflehner E, Haun M, et al. (2009) Anti-

leukemic activity of valproic acid and imatinib mesylate on human Ph+ ALL and
CML cells in vitro. Eur J Haematol 83: 48–56.

54. Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, et al. (2005)

Signal regulatory protein alpha ligation induces macrophage nitric oxide
production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/

NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol 25: 7181–7192.
55. Larizza L, Magnani I, Beghini A (2005) The Kasumi-1 cell line: a t(8;21)-kit

mutant model for acute myeloid leukemia. Leuk Lymphoma 46: 247–255.
56. Galbaugh T, Feeney YB, Clevenger CV (2010) Prolactin receptor-integrin cross-

talk mediated by SIRPalpha in breast cancer cells. Mol Cancer Res 8: 1413–

1424.
57. Carter BZ, Kornblau SM, Tsao T, Wang RY, Schober WD, et al. (2003)

Caspase-independent cell death in AML: caspase inhibition in vitro with pan-
caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or

prognosis. Blood 102: 4179–4186.

58. Chao MP, Weissman IL, Majeti R (2012) The CD47-SIRPalpha pathway in
cancer immune evasion and potential therapeutic implications. Curr Opin

Immunol 24: 1–8.
59. Isenberg JS, Maxhimer JB, Hyodo F, Pendrak ML, Ridnour LA, et al. (2008)

Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury.
Am J Pathol 173: 1100–1112.

60. Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, Degraff WG, et al.

(2009) Radioprotection in normal tissue and delayed tumor growth by blockade
of CD47 signaling. Sci Transl Med 1: 3ra7.

61. Soto-Pantoja DR, Miller TW, Pendrak ML, Degraff WG, Sullivan C, et al.
(2012) CD47 deficiency confers cell and tissue radioprotection by activation of

autophagy. Autophagy 8.

62. de Vries HE, Hendriks JJ, Honing H, De Lavalette CR, van der Pol SM, et al.
(2002) Signal-regulatory protein alpha-CD47 interactions are required for the

transmigration of monocytes across cerebral endothelium. J Immunol 168:
5832–5839.

63. Olek A, Oswald J, Walter J (1996) A modified and improved method for
bisulphite based cytosine methylation analysis. Nucleic Acids Res 24: 5064–

5066.

Role of SIRPa in Acute Myeloid Leukemia

PLOS ONE | www.plosone.org 13 January 2013 | Volume 8 | Issue 1 | e52143


