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ABSTRACT
Introduction: A variety of medications are used for symptom control in palliative care, such as
morphine, midazolam and haloperidol. The pharmacokinetics of these drugs may be altered in these
patients as a result of physiological changes that occur at the end stage of life.
Areas covered: This review gives an overview of how the pharmacokinetics in terminally ill patients
may differ from the average population and discusses the effect of terminal illness on each of the four
pharmacokinetic processes absorption, distribution, metabolism, and elimination. Specific considera-
tions are also given for three commonly prescribed drugs in palliative care: morphine, midazolam and
haloperidol).
Expert opinion: The pharmacokinetics of drugs in terminally ill patients can be complex and limited
evidence exists on guided drug use in this population. To improve the quality of life of these patients,
more knowledge and more pharmacokinetic/pharmacodynamics studies in terminally ill patients are
needed to develop individualised dosing guidelines. Until then knowledge of pharmacokinetics and the
physiological changes that occur in the final days of life can provide a base for dosing adjustments that
will improve the quality of life of terminally ill patients. As the interaction of drugs with the physiology
of dying is complex, pharmacological treatment is probably best assessed in a multi-disciplinary setting
and the advice of a pharmacist, or clinical pharmacologist, is highly recommended.
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1. Introduction

In palliative care, when curation is no longer possible, the goal
is to maintain or improve the quality of life. To achieve this, a
variety of medications, such as morphine, midazolam, and
haloperidol, are used for symptom control.[1] Changes in the
pharmacokinetics of these drugs may cause increased or
decreased drug blood concentrations, which can result in
altered efficacy or increased risk of adverse drug reactions.
To optimize the use of these drugs, an understanding of
pharmacokinetics in this specific patient population is there-
fore essential.

Pharmacokinetic (Pk) parameters (e.g. drug clearance and
volume of distribution) are subject to interpatient variability
and may be altered in the palliative population, as patients
with cancer are known to differ from healthy volunteers with
regards to, for example, age, body weight, and plasma protein
levels.[2] In addition, several physiological changes (e.g.
decreased fluid intake, a catabolic state, inflammation, and
cachexia) occur at the end of life, which can also influence
pharmacokinetics.[3–5]

So far there is limited knowledge on how these changes
affect the different drugs used in palliative care, in particular in
the terminal phase, i.e. the last days before death in which a

patient is bedridden, semi-comatose, and are no longer able
to take oral medication. The aim of this review is to give an
overview of how the pharmacokinetics in terminally ill patient
differ from the average population, and how changes in the
palliative, and especially the terminal phase, can affect drug
exposure (Figure 1). We will discuss the effect of terminal
illness on each of the four pharmacokinetic processes: absorp-
tion, distribution, metabolism, and elimination (ADME) and
give some considerations for three drugs commonly pre-
scribed in the terminal phase (i.e. morphine, midazolam, and
haloperidol).[6]

2. Absorption

Terminally ill patients frequently suffer from gastro intestinal
(GI) problems, such as constipation, nausea, vomiting, and
diarrhea. In the case of orally administered drugs, which are
used in the palliative care setting when patients are still able
to take oral medication, these symptoms can influence both
the rate of absorption and bioavailability of a drug. Changes in
the absorption rate will affect time-to-peak concentrations
(Tmax), whereas changes in bioavailability will affect the initial
peak concentration (Cmax) and total exposure, expressed as
area under the curve (AUC). If and to what extent a drug is
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influenced by physiological changes will depend on the phy-
sicochemical properties of the drug and the pharmaceutical
formulation (e.g. drug solubility and extended release formu-
lations). An overview of the factors influencing absorption is
given in Table 1. For this review, we will focus on the most
commonly used routes of administration in palliative care,
which are oral administration in the palliative phase and sub-
cutaneous and transdermal administration in the terminal
phase.

2.1. Oral administration

The absorption of orally administered drugs is complex as a
drug has to dissolve in the stomach, pass through either the
stomach or gut wall, and pass the liver via the portal vein
before they reach the systemic circulation. Whether the trans-
portation of the dissolved drug into the bloodstream occurs in
the stomach or gut is dependent on the drug’s

physicochemical properties. Drugs that are weakly acidic are
best absorbed within the acid environment of the stomach.
Though most drugs are weak bases (e.g. morphine, haloper-
idol, and midazolam) and are therefore absorbed in the alka-
line environment of the small intestine.

2.1.1. GI symptoms
Absorption of oral drugs can be altered in terminally ill (can-
cer) patients as this population often suffers from GI symp-
toms, such as constipation, vomiting, diarrhea, or a delayed
gastric emptying due to cachexia. Constipation (i.e. decreases
GI motility) occurs in around 50% of the terminal cancer
patients and can be a result of dehydration, hypercalcaemia,
a bedridden state, and medication use (e.g. opiates).[7,8]
Decreased GI motility can result in a reduced absorption rate
as it takes longer for the drug to reach the site of absorption.
[9–11] In the case of a sustained release formulation or drugs
with an enterohepatic circulation, decreased GI motility can
increase the absorption as there is more contact time with the
GI mucosa.

Constipation can also cause nausea and vomiting. Vomiting
can evidently decrease the bioavailability of oral medication.
The same applies for unclamping the tube if medication is
administered via this tube. To what extend the bioavailability
is decreased will depend on the time between ingestion and
vomiting or releasing the clamp of the tube. The time it takes
for a drug to pass from the stomach to the intestine can range
from 1 h, for healthy persons up to 4 h, for patients with
delayed gastric emptying. As delayed gastric emptying is rele-
vant in this patient population, it has to be taken into account
that vomiting or unclamping the tube even several hours after
intake of medication the bioavailability can be decreased.

Delayed gastric emptying by itself can also result in a
decreased absorption rate for drugs that are absorbed
through the small intestine.[11,12] In the case of a drug for
which formulation dissolution in the stomach is the rate-limit-
ing step in absorption, a decrease in gastric emptying time
may increase the overall extent of absorption and, hence,
systemic drug exposure.

Diarrhea can also influence the bioavailability of oral drugs.
It can cause a decrease in bioavailability due to increased
elimination from the gastro intestinal tract. On the other

Article highlights

● In terminally ill patients, pharmacokinetics may be altered as a result
of co-morbidities and physiological changes that occur at the end
stage of life.

● The absorption of orally administered drug, can be altered signifi-
cantly as a results of GI symptoms. In the palliative phase GI pro-
blems should be closely monitored, and medication (both dose and
route of administration) should be reassessed if changes in GI motility
occur.

● The volume of distribution of drugs can vary in terminally ill patients
due to changes in body composition and plasma proteins. This is
particularly relevant for drugs for which rapid response is desired.

● Drug metabolism can be diminished in case of liver disease, dehy-
dration, inflammation or cachexia. Care givers should be aware of
different reaction in patients with these symptoms and should look
out for signs of altered efficacy and side effects in these patients,
especially in the case of drugs with active metabolites.

● Renal eliminated drugs (or metabolites) can accumulate in the final
days of life if fluid intake is limited, which can cause side effects due
to accumulation of drugs or metabolites

● As the interaction of drugs with the physiology of dying is complex
pharmacological treatment is probably best assessed in a multi-dis-
ciplinary setting and the advice of a pharmacist, or clinical pharma-
cologist, is highly recommended.

This box summarizes key points contained in the article

Figure 1. Physiological changes that can influence pharmacokinetics in the terminally ill adult patient.
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hand, if the intestinal mucosa is damaged (for instance in the
case of an inflammatory process) it can also lead to increased
bioavailability. These concepts cause drugs with low bioavail-
ability generally have increased absorption in patients with
diarrhea while drugs with good intestinal absorption are more
affected by the increased GI motility and, therefore, will have
lower absorption.[13]

Furthermore, patients with a gastrointestinal malignancy
may have some of their small intestine resected. Small intes-
tine resections involving the loss of more than 100 cm of
ileum frequently lead to malabsorption, which could also
decrease drug absorption.[14] Absorption might also be
decreased by alterations in gut wall function, which is caused
by body wasting or cachexia, or decreased splanchnic perfu-
sion.[13,15]

2.1.2. First-pass metabolism
After absorption from the GI tract, the bioavailability of drugs
may be altered in terminal patients due to changes in hepatic
function or liver blood flow, which can occur in the case of
hepatic cirrhosis or congestive heart failure. A decrease in
hepatic blood flow can result in increased bioavailability of
drugs with a high first-pass metabolism, as was shown for
hydromorphone.[16]

2.2. Subcutaneous/transdermal administration

Other common routes to administer drugs in palliative care
are transdermal or by subcutaneous injection or infusion.
These routes are advantageous in the case of GI problems as
this route also bypasses the portal vein, first-pass metabolism
does not occur. Factors that may influence absorption of
subcutaneous or transdermal medication, however, are tissue
blood perfusion and amount of subcutaneous fat. In terminally
ill patients, reduced tissue blood perfusion, which can occur as

a result of dehydration or old age, can result in a decrease in
absorption rate or bioavailability after subcutaneous or trans-
dermal administration.[9,17,18] Alternatively a decrease in
subcutaneous fat mass, which is also commonly seen in term-
inally ill patients, can in theory lead to increased absorption
rate and possibly higher peak concentrations.[19]

2.3. Clinical considerations

For clinical practice, we recommend that in the palliative
phase GI problems should be closely monitored, and that
medication and doses should be reassessed if changes in GI
motility occur. As the effect of alterations in GI motility will
differ per drug, depending on their chemical properties, this
needs to be evaluated on a case by case basis. This assessment
is preferably performed in a multi-disciplinary setting and the
advice of a pharmacist, or clinical pharmacologist, is recom-
mended. In the presence of a nasogastric tube that decom-
presses the gut in case of an intestinal obstruction, the
administration of drugs through the oral route, or via the
tube, is not rational. In the terminal phase, switching to sub-
cutaneous administration, if possible, is preferred not only for
the prescribing physician but also for patient’s comfort. In the
case of subcutaneous or transdermal drug administration,
changes will occur more gradually and monitoring of the
clinical effect will probably suffice. If therapy is switched
from oral to subcutaneous administration, one should correct
for a difference in bioavailability, in addition, it is advisable to
look for signs of diminished tissue perfusion (cool extremities,
cyanosis, edema, and diminished or absent peripheral pulses)
as this could result in a decreases absorption. Finally, in
patients with an intestinal obstruction either anatomical or
functional administering drugs via a tube followed by 1 or
2 h of clamping the tube will not likely lead to drug absorp-
tion, as most drugs are absorbed in the small intestine and in

Table 1. Physiological changes affecting drug absorption.

Physiological change in
palliative care Potential pharmacokinetic change Consequence Example drugs

Decreased GI motility Increase in Tmax Drug concentration is unaffected yet the
effect may be delayed

Morphine and tramadol

Increase in F and AUC of sustained release formulations
and drugs with enterohepatic cycling

Increase in drug concentration and effect Oxycontin® and
lorazepam

Vomiting or administration
via tube

Possible decrease in F and AUC depending on the moment
of vomiting or declamping the tube

Possible decrease in drug concentration
and effect

All oral drugs

Delayed gastric emptying Increase in Tmax Drug concentration is unaffected yet the
effect may be delayed

Morphine and tramadol

Increase in AUC for drugs in which dissolution is the rate
limiting step

Increase in drug concentration and effect Oral haloperidol

Diarrhea Increase in AUC of drugs with low F Increase in drug concentration and effect Domperidon
Decrease in AUC of drugs with normal to high F Decrease in drug concentration and

effect
Haloperidol

Small intestine resections Decrease in F and AUC Decrease in drug concentration and
effect

Morphine and tramadol

Alterations in gut wall
function due to cachexia

Decrease in F and AUC Decrease in drug concentration and
effect

Morphine and tramadol

Decreased hepatic function
or liver blood flow

Decrease in first-pass effect, resulting in increased AUC Increase in drug concentration and effect Morphine

Decreased tissue perfusion Decrease in Tmax and possibly F of subcutaneously or
transdermal administered drugs

Decrease in drug concentration and the
effect may be delayed

Fentanyl patches,
subcutaneous
midazolam

Decreased subcutaneous fat Increased Tmax of subcutaneously or transdermal
administered drugs

Drug concentration is unaffected yet the
effect may be accelerated

Fentanyl patches,
subcutaneous
midazolam
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the case of delayed gastric emptying the drug may not have
passed from the stomach yet. Therefore, in the case of intest-
inal obstruction drug administration via the subcutaneous
route is preferred.

3. Distribution

The volume of distribution (Vd) of a drug is dependent on its
chemical properties (e.g. its hydrophilicity and its affinity with
plasma proteins). As a rule, hydrophilic drugs will diffuse into
the intravascular, extracellular, and possibly intracellular water,
and their Vd will not exceed the volume of total body water
(around 42 L for an average adult of 70 kg). Whereas lipophilic
drugs or drugs with high affinity to plasma proteins will have
low free plasma concentrations and, therefore, a large volume
of distribution. As the Vd is determined only by concentration
and dose, the plasma concentrations of a drug can be influ-
enced by body composition and amount of plasma protein.
Both of these can be altered in terminally ill patients and can
change over time, an overview of the factors influencing Vd is
given in Table 2.

3.1. Body composition

The main factors that influence body composition are loss of
body weight and fluid deficit. Loss of body weight and
cachexia are common in terminally ill patients, especially in
cancer patients. The incidence of weight loss however differs
between cancer types with the highest incidence (83–87%) for
pancreatic or gastric cancers and the lowest frequency (31–
40%) for favorable non-Hodgkin lymphoma, breast cancer,
acute non-lymphocytic leukemia, and sarcomas.[20] Fearon
et al. showed that in cachectic patients the reduction in
body weight is mainly caused by a reduction of adipose tissue
(by 80%) and muscle protein (by 75%).[21] A reduction of
adipose tissue will result in a lower Vd for lipophilic drugs
which will result in higher peak concentrations (Cmax).

Fluid deficit, which is also common among terminally ill
patients, can also affect the body composition as it results
in loss of total body water. The loss of water can be both
intracellular, in the case of dehydration, and extracellular in
the case of volume depletion.[5,17] A loss of water will
result in a lower Vd for hydrophilic drugs and, therefore,
initially lead to higher concentrations. Alternatively, the
volume of distribution of hydrophilic drugs can also be
increased as a result of ascites, pleural effusion, or general-
ized edema leading to a higher Vd and lower initial concen-
trations.[13,22–24]

3.2. Protein binding

Besides body composition, alterations in protein binding can
also affect Vd. The two main drug binding proteins are
albumin and α-1 acid glycoprotein (AAG). Albumin typically
binds to weakly acidic drugs (e.g. temazepam and propofol),
whereas AAG binds to weakly alkaline drugs (e.g. morphine
and fentanyl).[2] Changes in binding proteins can be caused
by inflammatory responses. A long-lasting inflammatory
response occurs in almost all types of solid tumors and
can also be the result of cachexia, infection, and degenera-
tive diseases.[17,25–27] As a result of the inflammatory
response, albumin is downregulated and AAG is increased.
[27] Hypoalbuminemia is, therefore, often seen in various
types of cancer, cachectic patients, and hospitalized or insti-
tutionalized elderly patients.[14,28–32] Increased plasma
levels of AAG have also been shown in various types of
cancer, acute illness, or chronic disease.[33,34] As a result,
highly AAG bound drugs will have decreased unbound con-
centrations while highly albumin bound drugs will have
increased unbound concentration. A decreased unbound
concentration can result in decreased elimination and due
to slow redistribution from the tissues, the effect can be
prolonged. The clinical relevance of increased amounts of
unbound drug on the other hand is limited as the elimina-
tion of a drug increases when the unbound concentration
increases. Still if the elimination is otherwise inhibited, for
example, in the case of renal failure, this might lead to
accumulation.

3.3. Clinical considerations

As volume of distribution mainly affects the initial peak con-
centration (and also the time needed to reach steady-state
concentrations), recommendations for clinical practice will pri-
marily be relevant for drugs where an immediate response is
desired. This is for instance the case in sedative or analgesic
medication. For these drugs, a higher initial (loading) dose
may be required if the volume of distribution in an individual
is increased. For instance, to achieve adequate sedation, an
obese patient will probably require a higher initial dose of
midazolam (a lipophilic drug) than a cachectic patient. In
addition, for pain management a patient with edema may
probably need a higher initial dose of morphine (a hydrophilic
drug) than a dehydrated patient.

Table 2. Physiological changes affecting drug distribution.

Physiological
change in
palliative care

Potential
pharmacokinetic

change Consequence
Example
drugs

Loss of body
weight and
cachexia

Decrease in Vd
for lipophilic
drugs

Increase in drug
concentration and
effect

Midazolam

Fluid deficit Decrease in Vd
for hydrophilic
drugs

Increase in drug
concentration and
effect

Morphine

Ascites, pleural
effusion or
generalized
edema

Increase in Vd for
hydrophilic
drugs

Decrease in drug
concentration and
effect

Morphine

Hypoalbuminemia Increase in
unbound
fraction of
weakly acidic
drugs

No effect unless
elimination is
inhibited

Temazepam

Increased α-1 acid
glycoprotein

Decrease in
unbound
fraction of
weakly
alkaline drugs

Prolonged effect due to
decreased
elimination and slow
redistribution from
tissues

Morphine
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4. Metabolism

Conversion of drugs into metabolites primarily takes place in
the liver and largely determines the duration of a drug’s
action, elimination, and toxicity. Hepatic clearance (ClH), the
ability of the liver to remove drugs from the systemic circula-
tion, is dependent on both liver blood flow and hepatic
extraction ratio. The hepatic extraction ratio is the fraction of
drug that is removed from the blood after a single passage
through the liver. Drugs with a high extraction ratio will have a
ClH that is primarily dependent on the liver blood flow. While
for drugs with a low extraction ratio, this will be mainly
dependent on intrinsic clearance (i.e. liver function). In
patients with terminal illness, there are several factors that
might influence drug metabolism, an overview is given in
Table 3.

4.1. Liver blood flow

Liver blood flow reduces with age, and can also be decreased
in dehydrated patients due to decreased cardiac output, in
patients with liver cirrhosis due to intrahepatic and extrahe-
patic portal systemic shunting, or in patients with heart failure
as a result of passive congestion or low cardiac output.
[10,17,35,36] These patients can, therefore, have a decreased
metabolism of drugs with a high extraction ratio, such as
fentanyl, morphine, and propofol. As a result, the effect of
these drugs can be increased and prolonged.

4.2. Intrinsic clearance

Intrinsic clearance is determined by the enzymatic capacity.
There are two main enzymatic systems that are responsible for
drug metabolism, i.e. phase I and phase II metabolism. Phase I
metabolism includes oxidation, reduction, and hydrolysis and
occurs predominantly by enzymes of the cytochrome P450
(CYP450) family. Phase II metabolism consists of conjugation
with an endogenous substance (e.g. glucuronidation, acetyla-
tion, or sulfation). There are several factors that influence the
metabolic capacity including genetic variability, enzyme
induction, or inhibition (usually drug induced) and disease
states including malignancies.[14] Liver injury in terminally ill

cancer patients can be due to primary liver tumors or more
often due to the presence of liver metastases or as a result of
chemotherapy. In non-malignant terminally ill patients liver
function can also be affected, for instance in the case of
alcoholic liver cirrhosis or in Chronic Obstructive Pulmonary
Disease (COPD) patients, who have been also shown to be
more at risk for hepatobiliary diseases.[37]

The effect of liver pathology on metabolic capacity is, how-
ever, highly variable and difficult to predict. In fact, most liver
functions can be maintained with some degree of liver injury,
therefore liver pathology (including the presence of multiple
liver metastases) can exist without affecting liver function. It is
believed that unless liver cirrhosis is present, chronic liver dis-
eases have little significant clinical impact on pharmacokinetics.
In addition, phase II metabolism tends to be better preserved
than phase I metabolism, only in advanced cirrhosis this path-
way may also be impaired substantially.[18,38]

As the metabolic capacity depends on nutrients and co-
factors, it is probable that malnutrition can result in altered
metabolism. Indeed, some studies showed that deficiency of
specific nutrients (e.g. proteins, lipids, vitamin C, vitamin B6,
and vitamin E) can result in a decrease in metabolic rate.
However, some deficiencies, such as riboflavin and iron have
also shown to increase CYP450 metabolism by a still unknown
mechanism.[39] A reduction in the enzyme levels of some
CYP450 enzymes (CYP2C8/10 and CYP2E1) have been shown,
but this was not the case for some other CYP450 enzymes
(CYP1A2 and CYP3A).[40] Studies on the direct effect of mal-
nutrition/cachexia on plasma drug levels are sparse and
despite similar metabolic pathways, the influence of cachexia
was divergent. Most of the drugs showed increased plasma
levels after oral administration; however, with only plasma
levels of the drug it is not possible to differentiate between
changes in absorption, metabolism, or elimination. One study
on oxycodone in cachectic cancer patients also measured the
metabolite, noroxycodone, formed via the CYP3A enzyme and
did show higher plasma levels of oxycodone and a lower
noroxycodone/oxycodone ratio in patients with a higher GPS
score (a measurement for cachexia) indicating that cachexia
decreases the hepatic metabolism of oxycodone.[41] This sug-
gests a decrease in metabolic capacity, yet the overall effect of
malnutrition and cachexia on metabolism is still unclear.

Another possible method by which CYP450 metabolism
can be reduced in cancer patients is by inflammatory
response. This is mediated largely through downregulation
of gene transcription caused by pro-inflammatory cytokines.
[27] This effect has not been studied extensively but it has
been shown in some studies for the metabolism of CYP3A4
and CYP2C19.[42–44] In addition, there are also implications
that inflammation may reduce the metabolic capacity of
CYP1A2.[45–47] The clinical relevance of these reduction in
metabolism, however, remains to be further investigated.

4.3. Clinical considerations

For clinical practice, one should be aware that drug metabo-
lism can be altered in patients with heart failure or those that
suffer from decreased cardiac output due to dehydration
(resulting in decreased hepatic blood flow) or patients with

Table 3. Physiological changes affecting drug metabolism.

Physiological
change in
palliative care

Potential pharmacokinetic
change Consequence

Example
drugs

Decreased
liver blood
flow

Decrease in ClH of drugs
with a high extraction
ratio

Increase in drug
concentration
and effect

Morphine

Liver injury Possible decrease in ClH
mainly for drugs
metabolized by CYP450
enzymes

Possible increase
in drug
concentration
and effect

Midazolam

Malnutrition
or cachexia

Possible decrease in ClH, yet
still inconclusive

Possible increase
in drug
concentration
and effect

Midazolam

Acute phase
reaction

Possible decrease in ClH, yet
still inconclusive

Possible increase
in drug
concentration
and effect

Midazolam
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liver disease. In addition, drugs that are metabolized via the
CYP450 enzyme system are likely to be affected more than
drugs which are metabolized via phase II metabolism. As the
effect of liver disease, dehydration, inflammation, and cachexia
on liver metabolic capacity, is difficult to predict no specific
recommendations can be made. Instead, care givers should be
aware of the fact that patients with liver diseases can have a
different reaction to medication, and they should look out for
signs of altered efficacy and side effects in these patients,
especially in the case of drugs with active metabolites.

5. Elimination

The elimination of drugs and metabolites can occur through a
number of different routes (e.g. bile, sweat, and saliva); however,
the main route of elimination is via the kidneys through glomer-
ular filtration. Renal function, including glomerular filtration rate,
decreases with increasing age. This alone means that most term-
inally ill patients will have a reduced elimination, as they are
usually older (on average 63 years) than the healthy volunteers
in which most pharmacokinetic studies are performed (on aver-
age 25–29 years).[2,48] Renal elimination can also be decreased
in terminally ill patients as a result of renal insufficiency, which
occurs in a large portion (50–60%) of the cancer patients.[49]
Most terminally ill patients have a diminished fluid intake, which
will cause prerenal kidney failure. Co-administration of non-ster-
oidal anti-inflammatory drugs (NSAIDs) in this situation will
severely compromise renal function.[24]

It is important to note that although renal insufficiency is
common in this population, it might not be recognized using
the standard blood chemistry tests. This is because glomular
filtration is estimated using serum creatinine levels. In the case
of terminally ill patients, this can bemisleading as the production
of creatinine is reduced as muscle mass is decreased. Therefore,
glomular filtration rate can decrease without a change in serum
creatinine concentrations. It is therefore important to realize that
the eGFR provided by modification of diet in renal disease
(MDRD) formula gives an overestimation of the renal function
in patients with low muscle mass. For drugs that are not elimi-
nated via kidneys but undergo hepatic elimination, accumula-
tion can occur if the liver decompensates in the terminal phase.
This can also happen if the bile is the primary route of elimination
and the patient becomes icteric.[24] An overview of the factors
affecting elimination is given in Table 4.

5.1. Clinical considerations

In clinical practice, renal-eliminated drugs (or metabolites)
will accumulate in the final days of life, if fluid intake is

limited. Measuring renal function based on serum creatinine
will not be very helpful in these patients. It is therefore
recommended to either determine renal function using
other parameters that correct for the loss of muscle for
instance albumin or weight besides creatinine clearance or
to measure drug concentrations. As both these interventions
require blood sampling, it is probably of more practical value,
to be aware of the fact that accumulation of certain drugs
can occur and to monitor fluid intake and urinary output and
look out for (increased) side effects in patients where these
functions are diminished.

6. Conclusion

In conclusion, there are numerous ways by which comorbid-
ities and other physiological changes can alter pharmacoki-
netics in patients with terminal illness. The net effect of these
alterations and the clinical relevance will be dependent on
both the status of the individual patient and the properties of
the drug in question. For clinical practice, we will discuss three
commonly prescribed drugs in the terminal phase, i.e. mor-
phine, midazolam, and haloperidol.

7. Morphine

Morphine is widely used to treat pain and dyspnea in termin-
ally ill patients.[50] In a palliative setting, it is usually adminis-
tered either orally (as normal release liquid or modified release
tablets) or subcutaneously (as bolus injection or continuous
infusion). Morphine is a relatively hydrophilic drug and is only
partially bound (34–37.5%) to plasma proteins, predominantly
albumin.[51] The metabolism of morphine takes place primar-
ily in the liver. Morphine has a high extraction ratio and is
metabolized mainly by Uridine 5ʹ-diphospho-glucuronosyl-
transferase (UGT) enzymes into morphine-3-glucuronide
(M3G) for 60%, and morphine-6-glucuorinide (M6G) for 10%.
[52–54] The M6G metabolite is pharmacologically active and is
10–60 times as potent as morphine.[53–60] Its ability to cross
the blood–brain barrier is, however, far less (1/57th) than that
of morphine.[61] Nonetheless after chronic morphine admin-
istration, the gradual accumulation of M6G in the brain can
account for increased potency compared to single administra-
tion.[53,60,62,63] The M3G metabolite does not bind to the
opioid receptors and, therefore, does not possess analgesic
properties.[56,64–67] Conversely, it has been suggested that
M3G may be responsible for the side effects of morphine.
[54,68] Both glucuronide metabolites are eliminated through
renal excretion. Overall, this pharmacokinetic profile of mor-
phine means that its concentrations and effect may be

Table 4. Physiological changes affecting drug elimination.

Physiological change in palliative care Potential pharmacokinetic change Consequence
Example
drugs

Renal insufficiency or pre renal failure
due to dehydration

Decrease in renal elimination Increase in drug concentration and effect for renal-
eliminated drugs or metabolites

Morphine–
metabolites

Liver decompensation Possible decrease in hepatic elimination Increase in drug concentration and effect for hepatic
eliminated drugs or metabolites

Midazolam

Icterus Possible decrease in elimination of drug
that are excreted via bile

Increase in drug concentration and effect for drugs or
metabolites that are excreted via bile

Lorazepam
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influenced by changes in total body water (by influencing Vd),
liver blood flow (by influencing metabolism and also via first-
pass absorption), and renal function (by influencing elimina-
tion of the metabolites).

The effect of total body water on the Vd of morphine have
been shown by Baillie et al. [69]. Their results showed a
decreased volume of distribution in elderly patients when
compared to younger adults, which is in line with the fact
that total body water declines with age. The clinical relevance
of this will, however, be limited for terminally ill patients as the
volume of distribution only determines the initial peak con-
centration and most patients will receive multiple doses of
morphine.

An increased interpatient variability in morphine metabo-
lism in terminally ill patients has been shown. This has been
suggested to be due to reduced hepatic blood flow and
subsequent reduction in morphine clearance in these
patients.[69] As a result of variability in metabolism, interpa-
tient variability in oral bioavailability (between 15% and 49%)
has also been shown.[70,71] The fact that this is caused by
liver metabolism instead of absorption in the GI tract is sup-
ported by the fact that patients with icterus had an even
higher oral bioavailability of 64%.[70] In addition, the fact
that first-pass metabolism determines its bioavailability also
means that the ratio of morphine to its metabolites will differ
for different routes of administration.[72–74] This can be rele-
vant as the metabolites of morphine can influence both its
efficacy and side effects.

As the kidneys are responsible for the elimination of the
glucuronide metabolites, renal function is an important aspect
in morphine pharmacokinetics. This is especially relevant in
terminally ill patients as renal insufficiency is common in this
population. Accumulation of M3G and M6G in patients with
renal insufficiency has been shown in several studies.[72,73,75–
77] This can be advantageous due to the increased levels of the
active M6G metabolite. It has indeed been shown that patients
with renal insufficiency had an increased response to morphine
and that they required lower doses.[77–80] Another advantage
is that M6G has a lower risk of respiratory depression or hypoxia
compared to morphine itself.[67,81–83] However, other side
effects, such as delirium, myoclonus, and hyperalgesia/allodynia
have been related to higher metabolite levels in terminally ill
patients and are probably caused by accumulation of the M3G
metabolite.[84–91]

In clinical practice, this means that physicians and nurses
should be aware that if renal function declines (for instance if
fluid intake ceases) delirium and myoclonus can occur. At the
same time, the pain symptoms can both increase (hyperalge-
sia due to M3G accumulation) or decrease (due to M6G accu-
mulation). If the pain is not increased, a reduction in morphine
dose can be considered, otherwise switching to an analgesic
without active metabolites (for instance fentanyl) may be an
option. Furthermore, dosing forms that bypass the portal vein
and, therefore, do not undergo first-pass metabolism (e.g.
intravenous or subcutaneous injections) will probably have
less side effects as the morphine–metabolites ratio is higher.
This might therefore also be beneficial in patients with renal
insufficiency.

8. Midazolam

Midazolam can be used intermittently for the night times and
is the drug of choice for palliative sedation in terminally ill
patients.[6,92–94] It is commonly administered via subcuta-
neous infusion but can also be administered orally to treat
anxiety or insomnia. Midazolam is a highly permeable drug
and is, therefore, believed to be completely absorbed through
the GI tract, if given orally.[95] However, midazolam has lim-
ited bioavailability due to first-pass metabolism via CYP3A
enzymes in the liver and gut wall. As midazolam is a highly
permeable drug, the extent of first-pass metabolism can be
influenced by variability in intestinal blood flow.[95] In addi-
tion, it has also been proposed that midazolam bioavailability
can be influenced by CYP3A metabolizing activity in the intes-
tine.[96] Midazolam is highly lipophilic at physiological pH and
is also highly bound to albumin (96–97%), resulting in a large
volume of distribution.[97,98] It is metabolized in the liver,
mainly by CYP3A into 1-hydroxymidazolam, which is then
glucuronidated and excreted via the kidneys. 1-
Hydroxymidazolam is pharmacologically active, although to a
lesser extent than midazolam.[97] Midazolam has an inter-
mediate extraction ratio its metabolism is, therefore, depen-
dent on both liver blood flow and enzymatic activity.[99–101]
Overall, this pharmacokinetic profile of midazolam means that
its concentrations and effect may be influenced by changes in
total body fat and albumin levels (by influencing Vd), liver
blood flow, intestinal blood flow and CYP3A activity (by influ-
encing metabolism and also via first-pass absorption) and
renal function (by influencing elimination of the metabolites).

The effect of total body fat on the volume of distribution of
midazolam has been studied primarily in obese patients. As
expected, obese patient had a larger volume of distribution
for midazolam.[96,102–104] We would therefore expect the
opposite in terminally ill patients, and a study on cancer
cachexia in rats did indeed show a decrease in Vd after the
animals became cachectic. Increased plasma concentrations as
a result of a decrease in Vd can be further enhanced as a result
of hypoalbuminemia. Increased plasma concentrations as
result of decreased Vd or hypoalbuminemia can have an
impact on the onset of sedation after first administration.
Halliday et al. showed that hypoalbuminemia was associated
with shorter time to induction suggesting that higher levels of
free midazolam will give a more rapid response.[105] On the
other hand, if midazolam is given continuously over a longer
period of time the higher free plasma levels will also result in a
higher elimination.

Midazolam metabolism can be reduced in terminally ill
patients as a result of reduced liver blood flow. This has
been shown in elderly patients who compared to younger
adults had a decreased midazolam clearance.[102] As midazo-
lam is primarily metabolized by CYP3A, a reduction of CYP3A
activity can also lead to decreased midazolam metabolism.
Reduced CYP3A activity as a result of cachexia has been
suggested to occur in cachectic patients and decreased mid-
azolam clearance has also been shown in an animal model of
cancer cachexia.[41,106] Reduced CYP3A activity can also
occur as a result of liver disease and a correlation between
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midazolam clearance and liver failure has been shown in
intensive care unit (ICU) patients.[107] In palliative patients,
no correlation was found between midazolam concentrations
and liver disease, probably because liver diseases in this popu-
lation are not as severe as in ICU patients.[108] Finally, CYP3A
metabolism can also be affected by the use of other drugs. In
the palliative setting, there might be a relevant interaction
with dexamethasone. Dexamethasone is used for a variety of
symptoms in the terminal phase, and there are suggestions
that it may induce CYP3A.[109,110] However, the extent by
which dexamethasone induces CYP3A has not been comple-
tely clarified.

Finally, the elimination of the glucuronidated metabolites
by the liver is reduced in patients with renal insufficiency,
resulting in accumulation. Although glucuronidated 1-hydro-
xymidazol has only 1/10th of the potency of midazolam itself,
this can result in prolonged sedation.[111]

In clinical practice, the onset of sedation can be different
between patients due to changes in Vd. Patients with higher
body weight may, therefore, require a higher initial dose,
whereas hypoalbumineamic patients may require a lower
initial dose. Patients who have used a CYP3A inducer, such
as carbamazepine, in the past week may need higher mid-
azolam doses to achieve accurate sedation. Finally, in
patients with renal insufficiency, the sedative effect may be
prolonged. This will probably be of little clinical relevance in
the case of palliative sedation as most patients will only
require sedation for less than 48 h. Nevertheless, it is some-
thing to keep in mind if midazolam is given for anxiety or
insomnia.

9. Haloperidol

Haloperidol is a typical antipsychotic drug that is used in
palliative care to treat delirium and might also be prescribed
to treat nausea and vomiting.[1,112] In terminally ill patients, it
is administered either orally or as a subcutaneous injection.
[113] If given orally, it has a bioavailability of 60–70% due to
first-pass metabolism.[112,114,115] For the subcutaneous
route, there is no information available but bioavailability is
probably around 100% as it diffuses from the subcutaneous
tissue directly to the systemic circulation. Haloperidol is a
lipophilic drug, and it is bound to albumin for more than
90%. Therefore, haloperidol has a large volume of distribu-
tion.[116,117] The hepatic metabolism of haloperidol is exten-
sive (<1% is excreted unchanged) and includes both
irreversible and reversible metabolic biotransformation. The
main metabolic pathway is glucuronidation by UGT, which
accounts for 50–60% of the total metabolism.[118] An esti-
mated 20–30% of haloperidol is metabolized via CYP3A4 and
CYP2D6.[119] Both these pathways are irreversible. The rever-
sible part of the haloperidol metabolism is its conversion into
reduced haloperidol by carbonyl reductase, which accounts
for approximately 23% of the total metabolism.[120–122] The
reduction of haloperidol is reversible as reduced haloperidol
can be converted back into haloperidol through oxidation by
CYP3A4.[119,123,124] Haloperidol has an intermediate extrac-
tion ratio therefore its metabolism is dependent on both
enzymatic activity and liver blood flow.[114] Haloperidol

metabolites are eliminated both with the urine and via the
bile.[125,126] Overall, this pharmacokinetic profile of haloper-
idol means that its concentrations and effect may be influ-
enced by changes in body fat and albumin levels (by
influencing Vd), liver blood flow and metabolic activity (by
influencing metabolism and also via first-pass absorption).

In terminally ill patients, a reduction in body fat, and con-
sequently Vd, can result in higher initial plasma concentrations.
Furthermore, hypoalbuminemia can also result in higher free
haloperidol concentrations and thereby possibly shorter the
time-to-peak plasma concentrations. These changes can be
clinically relevant as a rapid onset of action is desired in
treating delirium. A large interpatient variability in time-to-
peak plasma concentrations, between 2 and 6 h, has been
shown in patients taking oral haloperidol.[114,127] It is, how-
ever, not known if this is due to changes in plasma albumin if
there are other explanations, for instance delayed gastric
emptying.

Haloperidol metabolism might be reduced in terminally ill
patients as a result of reduced liver blood flow. It has been
shown that elderly patients had higher steady-state plasma
concentrations than younger patients.[127] As steady-state
concentrations are only influenced by changes in clearance
(not in Vd) a decrease in liver blood flow, which is common in
elderly, might explain this.

Finally, differences in metabolic capacity might also influ-
ence haloperidol metabolism and thereby plasma concentra-
tions. Interpatient variability in metabolism is unlikely to be
caused by changes in UGT activity, as its capacity is relatively
large compared to the other metabolic pathways.[114] The
conversion of haloperidol into reduced haloperidol is also
unlikely to cause much interpatient variability as little variation
in enzyme activity has been shown for carbonyl reductase.
[114] Changes in CYP3A4 or CYP2D6 activity on the other
hand may lead to altered plasma concentrations. In the case
of CYP3A4, it has been shown that co-administration of halo-
peridol with carbamazepine, a CYP3A4 inducer, resulted in
significantly lower haloperidol concentrations.[128–131] The
combination of carbamazepine and haloperidol might be rele-
vant in patients with brain tumors or metastases. Another
drug that might induce CYP3A is dexamethasone, this is com-
monly used in palliative care but the relevance of this combi-
nation remains to be determined.[109,110] A decrease in
haloperidol metabolism in terminally ill patients is also possi-
ble as result of reduced CYP3A activity due to cachexia.[41]
Variability in CYP2D6 metabolic capacity may also influence
haloperidol concentrations. This has been shown by Mihara
et al. for patients with a genetic variation in CYP2D6 enzyme.
[132] In terminally ill patients, this could be relevant in the
case of co-administration of haloperidol with CYP2D6 inhibi-
tors, like fluoxetine or paroxetine. Although these drugs are
not commonly given in the terminal phase. There have been
some studies on the effect of fluoxetine on haloperidol levels
and this showed a 20–35% increase in plasma levels. However,
this was not associated with clinical effects.[133–136] So far,
the effect of alteration in haloperidol metabolism due to
cachexia, dexamethasone use or fluoxetine, or paroxetine
use are merely theoretical and more research on its clinical
relevance is needed.
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In clinical practice, it may be the case that patients with
hypoalbuminemia or loss of body fat will have a more rapid
onset of action, and a lower initial dose might be sufficient. In
addition, patients with reduced liver blood flow, or co-admin-
istration of dexamethasone might also need a lower dose.
While patients with cachexia or fluoxetine or paroxetine use
might need higher doses, it is not yet possible to make any
real recommendations as there has been very little research on
haloperidol pharmacokinetics in terminally ill patients, espe-
cially about the use of the subcutaneous injections.

10. Expert opinion

The pharmacokinetics of drugs in terminally ill patients can be
complex due to the pathophysiological changes that occur
near the end of life. Although there are several guidelines for
symptom management in terminally ill patients, limited evi-
dence exists on guided drug use in these patients. Even for
the most commonly used medications in this population (i.e.
morphine, midazolam, and haloperidol) much is still unknown.
The medication dose is therefore usually guided by experience
and clinical effect, resulting in adaptation of a universal start-
ing dose rather than defining a personalized dose beforehand
based on solid PK characteristics.

Besides comorbidities, co-medication can also influence the
action of drugs (both on the level of pharmacokinetics as
pharmacodynamics). If a new drug, which could potentially
interfere with the current medication, is added to the regimen
caution is essential and short acting formulations are preferred
when treatment is initiated and polypharmacy should be
avoided. This may be more relevant in the pre-terminal
phase as medication is reassessed in the terminal phase and
most medication (besides analgesic and anxiolytics) is usually
discontinued.

Such personalized treatment may significantly improve the
quality of life for these patients and their family members,
especially in the final days of life. To achieve this not only
more knowledge but also more studies on the pharmacoki-
netics in terminally ill patients are necessary. A growing num-
ber of pharmacokinetic studies are being performed in special
patient populations (e.g. ICU patients), yet these studies in
terminally ill patients are still lacking to a large extent. In
addition, there is also a need for pharmacodynamic (Pd) stu-
dies in this population as pharmacokinetics will give informa-
tion on the achieved drug concentrations but not on the
preferred clinical effect. Pd studies that measure the effect
on for instance pain, sedation, or delirium would be of great
clinical importance. The fact that so little studies are being
performed in terminally ill patients might be because termin-
ally ill patients are considered a vulnerable population, and it
has been argued that including them in clinical research is
inappropriate or even unethical. These ethical concerns are,
however, often unjustified and studies in this population, if
carefully designed and executed, can be very valuable.[137] A
crucial aspect is to minimize the burden for patients and their
families. Population Pk/Pd studies using limited sampling stra-
tegies may therefore provide a solution and may eventually
lead to individualized dosing guidelines.

While Pk/Pd studies are lacking, there are several studies
on factors predicting death in terminally ill patients.
[19,25,26,138] These studies give valuable insight in the
changes in body functions that occur in the final days of
life. Together with the knowledge of pharmacokinetics men-
tioned in this review this should provide a base on which
pharmacological interventions can be made which will
improve the quality of life of terminally ill patients. The
difficulty in this is, however, that although a common final
pathway is hypothesized, the terminally ill population can
be very heterogeneous, they require different types of med-
ication and will have different comorbidities. As the net
result of drug concentrations is dependent on both physio-
logical changes as well as chemical drug properties, these
are probably best assessed by a multi-disciplinary team with
a specialist pharmacist or clinical pharmacologist with spe-
cific knowledge of the last phase of life.
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