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Abstract
Theoretical ‘‘necessary but not sufficient’’ statements are common in the organizational sciences.
Traditional data analyses approaches (e.g., correlation or multiple regression) are not appropriate
for testing or inducing such statements. This article proposes necessary condition analysis (NCA) as
a general and straightforward methodology for identifying necessary conditions in data sets. The
article presents the logic and methodology of necessary but not sufficient contributions of organi-
zational determinants (e.g., events, characteristics, resources, efforts) to a desired outcome (e.g.,
good performance). A necessary determinant must be present for achieving an outcome, but its
presence is not sufficient to obtain that outcome. Without the necessary condition, there is guar-
anteed failure, which cannot be compensated by other determinants of the outcome. This logic and
its related methodology are fundamentally different from the traditional sufficiency-based logic and
methodology. Practical recommendations and free software are offered to support researchers to
apply NCA.
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According to David Hume’s (1777) philosophy of causation:

We may define a cause to be an object, followed by another, and where all the objects, similar

to the first, are followed by objects, similar to the second. Or in other words, where, if the first

had not been, the second never had existed.
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This notion of causality can be interpreted as having two distinct logical parts (Abbott, 1974; Goertz,

2003; Lewis, 1973; Pizzi, 1993). The first quoted sentence reflects the common understanding of

causality, namely, that X is sufficient for Y: ‘‘If X, then Y.’’ Most people tend to understand ‘‘X

causes Y’’ in terms of sufficiency (Mandel & Lehman, 1998; Wasserman, Dorner, & Kao, 1990).

This may be the reason that hypotheses in organizational sciences frequently imply sufficiency. The

second quoted sentence reflects that X is necessary for Y: ‘‘No Y without X.’’ Such hypotheses are

rarely formulated and tested in organizational sciences (for an exception, see McLachlin, as dis-

cussed in Dul, Hak, Goertz, & Voss, 2010).

Although scholars often confuse necessity and sufficiency (Chung, 1969; Goertz & Starr, 2003),

the two are totally different.1 A necessary cause allows an outcome to exist; without the necessary

cause, the outcome will not exist. A sufficient cause ensures that the outcome exists; it produces the

outcome. A student who wants to be admitted to a U.S. graduate school (the outcome) needs to have

a high score on the Graduate Record Examinations (GRE) test: An adequate GRE score is necessary

for the outcome. Necessary causes are not automatically sufficient. An adequate GRE score is not

sufficient for admission because also other admission requirements play a role (e.g., the student’s

motivation letter, a good TOEFL score, reputation of the student’s bachelor program, recommenda-

tion letter). However, if the student’s GRE score is too low, there is guaranteed failure, indepen-

dently of the student’s performance on the other requirements. Therefore, a necessary cause is a

constraint, a barrier, an obstacle, a bottleneck that must be managed to allow a desired outcome

to exist. Each single necessary cause must be in place, as there is no additive causality that can com-

pensate for the absence of the necessary cause. Prevention of guaranteed failure and increased prob-

ability of success are core constituents of the ‘‘necessary but not sufficient’’ logic of ‘‘X causes Y.’’2

This article presents a new family of analytical approach that may be used to test or induce

hypotheses examining the necessary but not sufficient contributions of various organizational deter-

minants (e.g., events, characteristics, resources, efforts) to various outcomes (e.g., individual job

attitudes, firm performance). To be clear, this article is about a new data analytic tool, denoted nec-

essary condition analysis, or NCA, which may be used alongside traditional data analytic tools (e.g.,

multiple regression, structural equation model). Both traditional data analysis and NCA may be used

to draw causal inferences. However, the validity of any causal inference is predicated on the ade-

quacy of theory, quality of measurement, and particular research design used by researchers (cf.

James, Mulaik, & Brett, 1982; Mathieu & Taylor, 2006; Shadish, Cook, & Campbell, 2002;

Stone-Romero, 2002). Consequently, NCA (just as traditional analytical tools) is not immune to pro-

blematic theory, measurement (e.g., use of unreliable measures), or design (e.g., use of a weak

research design). With that important caveat in place, we may proceed with a comparison of tradi-

tional approaches with NCA. Traditional paradigms of multi-causality of outcomes presume that

each cause is sufficient to increase the outcome but none is necessary. In such paradigms, causality

is additive. Determinants add up to cause the outcome. This can be expressed as the additive model

Y ¼ a þ b1X1 þ b2X2 þ b3X3 þ . . . , which is common in multiple linear regression. If one deter-

minant becomes zero, the outcome will be reduced, and this effect can be compensated by increasing

the values of other determinants. In additive graduate school admission logic, this would mean that a

GRE score below the required level can be compensated for by having a higher TOEFL score. In the

necessary but not sufficient paradigm, absence of the necessary determinant immediately results in

outcome failure, independently of the value of the other determinants. In necessary condition grad-

uate school admission logic, this means that if the GRE score is below the required level, it makes no

sense to work hard on improving the TOEFL score. Necessary causality may be better expressed as a

multiplicative phenomenon: Y ¼ X1 � X2 � X3 . . . (Goertz, 2003).3 The dramatic sudden effect of

zero values for necessary conditions fits many everyday experiences. A car stops moving if the fuel

tank is empty; financial markets collapse if trust is gone. These bottlenecks must be taken away first,
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before the desired outcome can be achieved. In these examples, fuel and trust are necessary but not

sufficient for the outcome.

In the social sciences in general, and in the organizational sciences in particular, theoretical state-

ments in terms of necessary but not sufficient exist widely. This may be because necessary determi-

nants have great practical relevance and impact. Absence of the necessary determinants prevents the

organization from better performance. Table 1 presents results of a search for necessary but not suf-

ficient and necessary but insufficient statements in a leading organizational science journal (Acad-

emy of Management Journal). In research papers, such statements are commonly made when

developing hypotheses (e.g., in the introduction or a theory development section) or when evaluating

theoretical or practical consequences of the empirical test results (e.g., in the discussion section).

The table shows that researchers use traditional additive causality models and related data anal-

ysis approaches (e.g., correlation, regression) for empirically testing or inducing necessary but not

sufficient statements. I would like to add one important caveat with respect to the papers included in

Table 1. The authors of these papers are pursuing relevant research questions; unfortunately, the

existing library of data analytic tools was not specifically developed to address these types of ques-

tions. Consequently, the authors were restricted to using traditional analytical tools. Thus, my crit-

icism is not directed at the authors or how they approached their data analysis. My criticism is related

to the lack of tools that were available to these authors. One of the goals of the current paper is to

introduce a new set of analytical tools that may be of value to researchers pursuing questions such as

those summarized in Table 1.

With that caveat in place, many of the papers presented in Table 1 (and identified during my

review but not included in Table 1) tend to adhere to the following methodological sequence:

1. A theoretical necessary but not sufficient statement is introduced in the Introduction, Theory,

or Hypotheses section.

2. This statement is reformulated as a traditional hypothesis with an unspecified ‘‘positive asso-

ciation’’ (or similar) between determinant and outcome (i.e., without specifying that the

determinant is considered as necessary but not sufficient).

3. The obtained observational data are analyzed using traditional variants of the general linear

model (e.g., correlation or regression).

4. If the hypothesis is supported (e.g., a positive association found between determinant and

effect), the results are interpreted as a support of the necessary but not sufficient statement.

Consider a few illustrative examples from Table 1. Kirca et al. (2011) studied firm-specific assets

as a cause of multinationality of international firms (which is a driver of performance of such firms)

and stated in their Theory and Hypotheses section that R&D intensity and advertising intensity are

firm-specific assets that ‘‘constitute a necessary but not sufficient [italics added] condition for their

cross border transfer within an MNE’’ (p. 50). Subsequently, they reformulated this relationship as

‘‘the level of firm-specific assets is positively related [italics added] to firm multinationality’’ (p. 50)

and tested and confirmed this hypothesis using traditional correlation and regression analyses. In

another example, Rubin, Munz, and Bommer (2005) studied the effect on transformational leader-

ship behavior of a leader’s ability to recognize a follower’s emotion and formulated the hypothesis

that ‘‘leader emotion recognition ability is positively associated [italics added] with leader transfor-

mational leadership behavior’’ (p. 848). Using regression analysis, they found support for this

hypothesis and concluded in the Discussion section that ‘‘our results suggest that emotion recogni-

tion may be a necessary but insufficient [italics added] ability involved in the performance of trans-

formational leadership behavior’’ (p. 854). In yet another example, Hausknecht, Hiller, and Vance

(2008) studied effects of organizational commitment on work unit absenteeism and claimed in their

Theory and Hypotheses section that ‘‘organizational commitment may be a necessary but not
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sufficient condition for low absenteeism.’’ But then they reformulated the statement in sufficiency

terms as ‘‘when organizational commitment is low, higher levels of absenteeism may occur [italics

added]’’ (p. 1226), tested it by using traditional regression analysis, and claimed in the Discussion

section that ‘‘findings . . . show that high organizational commitment is necessary [italics added] to

avoid high levels of absenteeism’’ (p. 1239).

In each of the aforementioned examples, the authors were restricted in how they could go about

testing or inducing a hypothesis framed in terms of necessary but not sufficient relationships. The

aforementioned examples are simply illustrative and are not unique to this set of authors or this lit-

erature. Instead, they demonstrate how (across a wide range of management topics) researchers seek

to test or induce necessary but not sufficient hypotheses but lack the proper analytical tools for doing

so. Researchers are often unaware of the importance, special characteristics, and required methodol-

ogy of the necessary but not sufficient approach. In this article, such an alternative data analysis

approach is presented. Instead of drawing trend lines ‘‘through the middle of the data’’ in scatterplots

(e.g., regression lines), it searches for empty areas in scatterplots and draws ‘‘ceiling lines’’ that sep-

arate empty and full data areas (for a detailed discussion on ceiling lines, see subsection Ceiling

Techniques). I will distinguish between three types of necessary conditions, dichotomous, discrete,

and continuous, and will use three illustrative examples to explain their similarities and differences:

I will extend on the aforementioned dichotomous example of necessary GRE scores for admission

(Vaisey, 2009), present a discrete example from Table 1 about necessary representation in a colla-

boration team for successful collaboration (Martin & Eisenhardt, 2010), and discuss a continuous

example about necessary personality traits for sales performance (Hogan & Hogan, 2007). I inte-

grate earlier work and ideas on analyzing dichotomous necessary conditions (e.g., Braumoeller &

Goertz, 2000; Dul et al., 2010), discrete necessary conditions (e.g., Dul et al., 2010), and continuous

necessary conditions (e.g., Goertz, 2003; Goertz, Hak, & Dul, 2013) and combine these with new

ideas, for example, multivariate necessary condition, bottleneck technique, necessity inefficiency,

effect size of a necessary condition, and techniques for drawing ceiling lines. I also present practical

recommendations and software to guide researchers to perform an NCA analysis.

I consider NCA as a complement, not a replacement, of traditional approaches to analyze causal

relations. NCA may provide new insights that are normally not discovered with traditional

approaches: Multiple regression may spot determinants that (on average) contribute to the outcome

(i.e., determinants with large regression coefficients), whereas NCA may spot necessary (critical)

determinants that prevent an outcome to occur (constraints or bottlenecks). When bottlenecks are

present, performance will not improve by increasing the values of other determinants (e.g., determi-

nants with large regression coefficients) unless the bottleneck is taken away first (e.g., by increasing

the value of the critical determinant). Only in those situations when none of the determinants are

critical for reaching a desired outcome can traditional approaches inform us how to increase perfor-

mance. Therefore, NCA may precede traditional approaches. This necessary but not sufficient

approach is needed because critical determinants may or may not be part of lists of determinants

identified with traditional approaches. Furthermore, due to the fundamental difference between the

two approaches, determinants that show small or zero effects in traditional approaches may be iden-

tified as critical in the necessary but not sufficient approach (e.g., see the example presented in Figure 4),

and determinants that show large effects in traditional approaches may not be critical according

to the necessary but not sufficient approach. Indeed, both approaches are essential for a proper

understanding of organizational phenomena. The NCA approach also adds to insights obtained

from qualitative comparative analysis (QCA) (Ragin, 2000, 2008), which is another approach that

understands causality in terms of necessity and sufficiency rather than correlation or regression.

NCA focuses on (levels of) single determinants (and their combinations) that are necessary but

not automatically sufficient, whereas QCA focuses on combinations of determinants (configura-

tions) that are sufficient but not automatically necessary. Although QCA centers on sufficient
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configurations, it can also analyze single necessary conditions, but it does so in a limited way

(for a further discussion on the difference between NCA and QCA see subsection Comparison

NCA With QCA).

In what follows, I first discuss the logic of necessary conditions in more detail. Next, I present the

NCA methodology by discussing ceiling techniques, effect size of the necessary condition, necessity

inefficiency, the comparison of NCA with QCA, and limitations of NCA. Finally, I offer practical

recommendations and free software for applying NCA.

The Logic of Necessary Conditions

In the aforementioned examples, both the condition (GRE score, fuel, trust) and the outcome (admis-

sion, moving car, solid financial system) can have only two values: absent or present. This is the

dichotomous logic of necessary conditions, which is part of classic binary (or in mathematics, Boo-

lean) logic. However, many real-life situations are not inherently dichotomous (although they can be

dichotomized). In the discrete situation, the necessary condition and the outcome can have more than

two values (e.g., low, medium, high), and in the continuous situation, any value is possible. In this

section, I discuss the logic of necessary conditions by moving from the dichotomous, via the dis-

crete, toward the continuous necessary condition.

Dichotomous Necessary Condition

Figure 1 (top) shows two ways to graphically represent the dichotomous necessary condition. On the

left, possible observations for a necessary condition are plotted in the center of cells of a contingency

matrix (I will use the convention that the X axis is ‘‘horizontal’’ and the Y axis is ‘‘vertical’’ and that

values increase ‘‘upward’’ and ‘‘to the right’’4). The contingency matrix is a common way to present

dichotomous necessary conditions (e.g., Braumoeller & Goertz, 2000; Dul et al., 2010). On the right,

the possible observations are plotted on a grid of a Cartesian coordinate system. This representation

is used here to facilitate the generalization of necessary condition characteristics from dichotomous

logic toward discrete and continuous logic (described later in the article). The dashed lines are the

ceiling lines that separate the area with observations from the area without observations.

The figure (top) shows that outcome Y ¼ 1 is only possible if X ¼ 1; however, if X ¼ 1, two

outcomes are possible, Y ¼ 0 and Y ¼ 1. Therefore X ¼ 1 is necessary but not sufficient for

Y ¼ 1. However, if X ¼ 0, then Y ¼ 0, the absence of X is sufficient for the absence of Y. The

necessity of the presence of X for the presence of Y and the sufficiency of the absence of X for the

absence of Y are logically equivalent. Hume’s (1777) statement mentioned in the introduction sec-

tion of this, namely, ‘‘if the first had not been, the second never had existed,’’ is the sufficiency of

absence version of the necessary condition formulation.

The sufficiency of absence formulation of the necessary condition allows the value of X¼ 0 to be

considered as a constraint or bottleneck for achieving the high value of the outcome (Y ¼ 1). The

empty cell for X¼ 0, Y¼ 1 indicates that a high value of Y¼ 1 cannot be achieved for the low value

of X ¼ 0. If the high Y value is to be achieved, the bottleneck must be removed by realizing a high

value of X. On the other hand, the necessity of presence formulation of the necessary condition

refers to the general organizational challenge of putting in place the right level of scarce resources

or (managerial) effort to be able to reach a desired level of organizational performance (the out-

come). Then X can be considered as an organizational ingredient (scarce event/characteristic/

resource/effort) that is needed and therefore allows the desired organizational outcome Y (good per-

formance) to occur.

The two versions of the same logic imply two possible ways of testing or inducing necessary con-

ditions with data sets of observations (Dul et al., 2010). In the first way, different to traditional
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correlation or regression analyses, only successful cases are purposively sampled (for an everyday

example, see Appendix A). Conversely, a correlation or regression analysis requires variance in the

dependent variable, hence, then both successful and unsuccessful cases must be randomly sampled,

and the analysis shows the extent to which determinants on average contribute to success. In NCA,

the presence or absence of the condition is determined in cases with the outcome present (successful

cases: Y¼ 1). The presence of the condition in successful cases is an indication of necessity of X¼ 1

for Y ¼ 1.5 If the condition is not present in the successful cases, then X is not necessary for Y. This

approach was used by the current editor of Organizational Research Methods (ORM) before he took

office as editor in July 2013. He performed a Google Scholar search to identify highly cited ORM

papers and their common characteristics and found, for example, that such papers give practical rec-

ommendations to the organizational researcher (LeBreton, personal communication June 26, 2014).

Additionally, in his first editorial, LeBreton (2014) states that ‘‘over the past 10 years, I have spent

considerable time pondering what makes an impactful methods article. I have concluded that such

articles share the following characteristics’’ (p. 114). The editor (implicitly) performed a necessary

condition analysis: selecting cases purposively on the basis of the presence of the dependent variable

(successful cases, i.e., highly cited papers) and identifying common determinants that were present

in these cases. This resulted in necessary conditions for a highly cited paper in ORM, and several of

these are listed in the editorial to stimulate authors, reviewers, and editors to produce impact papers

X (condi�on)

Present (1)

Y (outcome)

Absent (0)

Absent (0)

Present (1)

Quan�ta�ve GRE score

≥ 620

Admission

Failure

<620

Success 1 34

98 209

X (condi�on)

Absent (0) Present (1)

Y (outcome)

Absent (0)

Present (1)

Figure 1. The dichotomous necessary condition with possible observations shown in the center of the cells of
a contingency matrix (top left) and in the grid of a Cartesian coordinate system (top right).
Note: The dashed line is the ceiling line separating the area with and the area (virtually) without observations. At
the bottom is an example of a contingency table where X is low or high Quantitative GRE score and Y is
admission failure or success. In the center of the cells is the number of students applying for admission to the
Berkeley Sociology Graduate Program in 2009.
Source: Data from Goertz and Mahoney (2012) and Vaisey (2009).
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in ORM by ensuring that the necessary conditions are in place (although this does not guarantee

impact success). Necessary condition analysis is an effective and efficient way to find relevant vari-

ables that must be managed for success.

In the second approach to test necessary conditions, cases are selected in which the condition is

absent (X¼ 0). The absence of the outcome in cases without the condition is an indication of neces-

sity of X for Y. If success is present in cases without the condition, X is not necessary for Y. The

editor could have searched for papers without practical recommendations to organizational research-

ers and—if the necessary condition holds—would have found that these papers are not highly cited.

Normally, this second approach to test necessary conditions is much less efficient than the first one.

Two other approaches for selecting cases will not work. It is a common misunderstanding that

necessary conditions can be detected by selecting and evaluating failure cases. There is no point

in evaluating the characteristics of papers that are not highly cited. Figure 1 (top) shows that falsi-

fication of a necessary condition is not possible with failure cases (Y¼ 0) because the condition can

be both absent (X ¼ 0) and present (X ¼ 1). In a similar way, an analysis of cases where the con-

dition is present is not insightful either. A necessary condition is characterized by having no obser-

vations in the upper left corner. Therefore, the analysis of necessary but not sufficient conditions is

about ‘‘the search for empty space’’ in the upper left corner. This applies not only to the dichotomous

case but also to the discrete and continuous cases.6

Illustrative Example of the Dichotomous Necessary Condition

Figure 1 (bottom) shows an example of Quantitative GRE scores of 342 students applying for admis-

sion to the Berkeley Sociology Graduate Program in 2009 (Goertz & Mahoney, 2012; Vaisey, 2009).

A traditional data analysis to test the association between GRE score and admission would show a

high correlation between the two variables (tetrachoric correlation coefficient ¼ 0.6). The data jus-

tify the conclusion that success is more likely when the GRE score is at least 620 than when it is

below 620. However, the necessary but not sufficient interpretation of the data is that a score of

at least 620 is a virtual7 (only one exception) necessary condition for admission. The exception is

a student who was admitted based on a faculty member’s explicit testimony to the student’s quanti-

tative abilities, which was regarded as superior information to the quantitative GRE score (Vaisey,

personal communication, July 2, 2014). The upper left corner of Figure 1 is almost empty. Virtually

all students (99%) who scored below 620 failed to be admitted. But scoring at least 620 did not guar-

antee success: Only 14% of these students succeeded in being admitted. Having a score below 620 is

a bottleneck for being admitted. There may be other bottlenecks as well (e.g., a TOEFL score below

100). Advising students based on a traditional analysis would be to score high on GRE and TOEFL

to increase your chances for success, whereas advising them based on a necessary but not sufficient

analysis would add and make sure that you reach all minimum requirements to avoid guaranteed

failure because you cannot compensate an inadequate score for one requirement with a high score

for another one.

Discrete Necessary Condition

In the organizational sciences, variables are often scored by a limited number of discrete values,

which usually have a meaningful order (ordinal scale), for example, a value can be higher/more/bet-

ter than another value. Additionally, the differences between ordinal values can be meaningful, for

example, the difference between high and medium may be the same as the difference between

medium and low (interval scale). Many data in organizational sciences are obtained from measure-

ments with respondents or informants using standardized questionnaires with Likert-type scales. In

such an approach, a variable is usually represented by a group of items with several response
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categories. If interval properties are assumed, item responses can be combined (e.g., by adding or

averaging) to obtain a score for the variable of interest. If items are scored on a discrete scale, the

resulting score will be discrete as well. For example, if a variable is constructed from five items, each

having seven response categories from 1 to 7, the number of discrete values of the variable is 31.8

Figure 2 shows a trichotomous example of possible observations for a discrete necessary condi-

tion, where both X and Y have three possible values: low (0), medium (1), and high (2). The empty

area in the upper left corner indicates the presence of a necessary condition. In this article, it is

assumed that the ceiling line in a contingency table that separates the ‘‘empty’’ cells without obser-

vations from the ‘‘full’’ cells with observations as well as the ceiling line in a Cartesian coordinate

system through the points on the border between the empty and the full zone are piecewise linear

functions that do not decrease.9 The question then is: ‘‘Which minimum level of the determinant

X is necessary for which level of outcome Y’’? Figure 2 (top) shows that for an outcome (perfor-

mance) of Y ¼ 2, it is necessary that the determinant (resource/effort) has value X ¼ 2. However,

X ¼ 2 does not guarantee Y ¼ 2. Therefore, X ¼ 2 is necessary but not sufficient for Y ¼ 2. For an

outcome of Y ¼ 1, it is necessary that the determinant has value of at least X ¼ 1. However, X � 1

does not guarantee Y ¼ 1. Therefore, X � 1 is necessary but not sufficient for Y ¼ 1.

Figure 2 (top) shows that the value X ¼ 0 is a constraint for reaching both Y ¼ 1 and Y ¼ 2. The

value X ¼ 1 is a constraint for reaching only Y ¼ 2. If the middle medium/medium cell (top left) or

point (top right) were absent, the constraint of X ¼ 1 would be stronger because X ¼ 1 would then

also constrain Y ¼ 1. The size of the empty zone is an indication of the strength of the constraint of

X (condi�on)

High (2)

Y 
(o

ut
co

m
e)

Low (0) Medium (1) 

Low (0)

Medium (1)

High (2)

X (condi�on)

Low (0)
Low (0)

Medium (1)

Medium (1) High (2)

High (2)

Y 
(o

ut
co

m
e)

BU representa�on

High

Co
lla

bo
ra

�o
n 

pe
rf

or
m

an
ce

 

Low Medium

Low

Medium

High 5

31

1 2

Figure 2. The discrete necessary condition with three levels, low (0), medium (1), high (2), in a contingency
matrix (top left) and in the grid of a Cartesian coordinate system (top right).
Note: The dashed line is the ceiling line. At the bottom is an example of a contingency table with X is business
unit representation in a collaboration team (low, medium, or high) and Y is collaboration performance.
Source: Data from Martin and Eisenhardt (2010; see Appendix B).
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X on Y (more details follow in subsection Effect Size of the Necessary Condition). Also, for testing

or finding discrete necessary conditions, cases can be selected purposively on the bases of the pres-

ence of the dependent variable. If one is interested in necessary conditions for Y ¼ 2, then cases

where this outcome is present (successful cases: Y ¼ 2) are selected and the level of the condition

X is observed. If in all successful cases no X is smaller than X ¼ 2, X ¼ 2 can be considered as

necessary for Y ¼ 2. Similarly, if one is interested in necessary conditions for Y ¼ 1, then cases

with this outcome are selected. If in all these cases no X is smaller than X ¼ 1 (i.e., X � 1), then

it can be considered that X � 1 is necessary for Y ¼ 1. The aforementioned analyses of discrete

necessary conditions can be applied to both ordinal variables (with Figure 2, top left) and interval

variables (with Figure 2, top left or right; the Cartesian coordinate system assumes known order and

distances between the category values) and can be extended with more discrete categories. A dis-

crete necessary condition with a large number of categories nears a continuous necessary condition.

Illustrative Example of the Discrete Necessary Condition

In a multiple case study, Martin and Eisenhardt (2010) analyzed success of collaboration between

business units in multi-business firms. From their data, a discrete (trichotomous) necessary condition

on the relationship between ‘‘business unit [BU] representation’’ in the collaboration team and ‘‘col-

laboration performance’’ can be derived (see Appendix B), which is shown in Figure 2 (bottom). It

turns out that a ‘‘high’’ level of BU representation is necessary but not sufficient for a ‘‘high’’ level

of collaboration performance. All five highly successful cases (collaborations) have this high level

of BU representation. There are also five other cases with ‘‘high’’ level BU representation, but these

cases apparently did not achieve the highest level of performance. If only a ‘‘medium’’ level of col-

laboration performance were desired, then at least a ‘‘medium’’ level of BU representation is nec-

essary, but again this is not sufficient because two collaborations had higher than medium levels of

BU representation and showed ‘‘low’’ performance. This analysis results in two necessary (but not

sufficient) propositions: ‘‘A high level of BU representation is necessary but not sufficient for a high-

performing cross-business unit collaboration’’ and ‘‘At least a medium level of BU representation is

necessary but not sufficient for a medium level of cross-business unit collaboration performance.’’

These propositions are different and more specific than the corresponding traditional proposition

proposed by Martin and Eisenhardt (2010), which are implicitly formulated in terms of sufficiency:

‘‘BU representation is more likely to yield high collaboration performance.’’ Other examples of nec-

essary condition hypotheses derived from Martin and Eisenhardt’s (2010) data set are presented in

Appendix B.

In comparison to the dichotomous necessary condition analysis, the discrete necessary condition

adds more variable levels to the analysis and can therefore provide more specific propositions. The

trichotomous necessary condition in Figure 2 shows which levels of the determinant (medium or

high) are necessary for reaching the desired level of collaboration performance (medium or high).

Sometimes a medium level of the determinant may be enough for allowing the highest level of per-

formance. Then, a higher level of the determinant may be ‘‘inefficient’’ (a further discussion on

necessity inefficiency is presented in subsection Necessity Inefficiency).

Continuous Necessary Condition

In the case of a continuous necessary condition, the determinant X and the outcome Y are continuous

variables (ratio variables). This means that the condition and the outcome can have any value within

the limits of the lowest (0%) and highest (100%) values, allowing for even further detail.10 Figure 3

contains graphs that correspond to the continuous necessary condition. The empty zone without

observations is separated from the zone with observations by a straight ceiling line. In general, a
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ceiling is a boundary that splits a space in an upper part and a lower part, with only feasible points in

the lower part of the space. In the two-dimensional Euclidian space (XY-plane), the expression X is

necessary but not sufficient for Y is graphically represented by the ceiling line Y ¼ f(X), with inequal-

ity Y � f(X) representing the feasible points in the lower part of the space (on and below the ceiling

line). For the linear two-dimensional case, the ceiling line is a straight line Y ¼ aX þ b (a ¼ slope;

b¼ intercept) with Y� aXþ b representing the lower part with the feasible XY-points. In this article,

it is assumed that the ceiling line is linear and does not decrease.11

The continuous necessary condition logic implies that a certain desired level of the outcome

(Y ¼ Yc) can only be achieved if X � Xc. This means that Xc is necessary for Yc, but Xc is not suf-

ficient for Yc because there may be observations X ¼ Xc with Y < Yc, hence there are observations

0 NN
10 NN
20 NN
30 NN
40 NN
50 4
60 17
70 29
80 42
90 54
100 67

X (condi�on)

Low (0%)
Low (0%) High (100%)

High (100%)

Y (outcome)

Yc

Xc

X (condi�on)

Low (0%)
Low(0%) High (100%)

High (100%)

Y (outcome)

Yc

Xc Xcmax

Ycmin

Y
Sales ability (%)

X
Ambition (%)

Figure 3. The continuous necessary condition with a large number of X and Y levels between low (0%) and
high (100%), plotted in a Cartesian coordinate system.
Note: The dashed line is the ceiling line. Top left: Idealized (‘‘triangular’’) scatterplot; the ceiling line coincides
with the diagonal. Top right: Common (‘‘pentagonal’’) scatterplot; the ceiling line intersects X ¼ XLow and Y ¼
YHigh axes at other points than (XLow, YLow) and (XHigh, YHigh). The upper left area between the lines X¼ Xcmax

and Y¼ Ycmin is the necessary condition zone where each X constrains Y and each Y is constrained by X. Bottom
left: Example of a continuous necessary but not sufficient condition: Employee ambition is necessary but not
sufficient for sales ability. The selected ceiling line technique (ceiling regression with free disposal hull) allows
some data points above the ceiling line (see subsection Ceiling Techniques). The solid line through the middle of
the data is the ordinary least squares regression line. Bottom right: Bottleneck table for the example illustrating
what minimum level of the necessary conditions (X ¼ Ambition) is required for different desired levels of the
outcome (Y ¼ Sales Ability). NN ¼ not necessary.
Source: Data obtained from Jeffrey Foster, Vice President of Science, Hogan Assessments, July 9-11, 2014.
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below the ceiling line for a given Xc. Within the scope of possible XY-values, the feasible necessary

but not sufficient space in Figure 3 (top left) is the triangular space below the ceiling line: The ceil-

ing line coincides with the diagonal of the scope. Although it is frequently stated that the necessary

but not sufficient condition can be graphically represented by a triangular shape of the feasible area

(Goertz & Starr, 2003; Ragin, 2000), this shape is just a special case of the more common pentagonal

shape (Figure 3, top right). In the present article, we focus on the general linear ceiling line with a

typical pentagonal feasible space. In traditional approaches, heteroskedasticity in such scatter plots

(increasing variance with increasing X) is considered a concern for performing standard regression

analysis, whereas it is inherent to the necessary but not sufficient logic. Traditional approaches draw

average lines through the middle of the data (average trends), whereas NCA draws borderlines

between the zone with and the zone without observations in the left upper corner. Therefore, tradi-

tional approaches to analyze pentagonal scatterplots may disconfirm X causes Y because the regres-

sion line may be virtually horizontal, but the NCA approach may confirm X causes Y because there

is an empty zone in the upper left corner.

The presence and size of an empty zone is an indication of the presence of a necessary condition.

The empty zone in the upper left corner reflects the constraint that X puts on Y. For example, the

value X ¼ Xc is a constraint (bottleneck) for reaching level of Y > Yc. A higher level of Y is only

possible by increasing X. Also, for testing or inducing continuous necessary conditions, cases can be

selected purposively on the bases of the presence of the dependent variable. If one is interested in

necessary conditions for Y > Y*, then cases where this outcome is present (successful cases:

Y > Y*) are selected, the cases are plotted in a Cartesian coordinate system, and a ceiling line is

drawn to represent the necessary condition Xc for Yc (see the subsection Ceiling Techniques).

Illustrative Example of the Continuous Necessary Condition

The Hogan Personality Inventory (HPI) is a widely used tool to assess employee personality for pre-

dicting organizational performance (Hogan & Hogan, 2007). Figure 3 (bottom left) shows an exam-

ple of the relationship between the HPI ambition score (one’s level of drive and achievement

orientation) and supervisor rating of sales ability in a data set of 108 sales representatives from a

large food manufacturer in the United States. Employees completed the HPI and supervisors rated

employee’s performance in term of sales ability using a seven-item reflective scale (e.g., ‘‘seeks out

and develops new clients’’).

A traditional data analysis of the relationship between ambition and sales ability would consist of

an ordinary least squares (OLS) regression line through the middle of the data (solid line in Figure 3,

bottom left). This line runs slightly upwards, indicating a small positive average effect of ambition

on sales ability (R2¼ 0.07). The data justify the conclusion that on average more ambition results in

more sales ability, but this is possibly not practically relevant because of the small effect size. How-

ever, the necessary but not sufficient interpretation of the data is that the empty zone in the upper left

corner indicates that there is a necessary condition. The ceiling line indicates that there is a ceiling on

sales ability depending on the sales representative’s level of ambition. The CR-FDH technique (fully

explained in the Ceiling Techniques subsection) that is used in this example to draw ceiling lines

allows some data points above the ceiling line. For a desired sales ability Level 4, it is necessary

to have an ambition level of at least 30. About 20% of the sales representatives in the sample do not

reach this level of ambition, which suggests that people with ambition levels below 30 will certainly

fail to reach a sales ability level of 4 of higher. The other, about 80%, sales representatives who do

have an ambition level of at least 30 could reach such a high level of sales ability, but this is not

guaranteed; in fact, only about 10% of the sales representatives in the sample obtained this level

of sales ability. In other words, an ambition level of at least 30 is necessary but not sufficient for

a sales ability level of at least 4. An ambition level below 30 is a bottleneck for this high level of

Dul 23



sales ability. Figure 3 (bottom right) shows the bottleneck technique, which is a table that indicates

which level of the necessary condition (Ambition) is necessary for a given desired level of outcome

(Sales Ability in %), according to the ceiling line.

Multivariate Necessary Condition

Until now, the analysis was bivariate with one X that is necessary for one Y. In this subsection, a

more complex situation is considered: more than one necessary condition (X1, X2, X3, etc.) and one

Y. Multicausality is common in the organizational sciences. For example, Finney and Corbett (2007)

reviewed empirical research on Enterprise Resource Planning (ERP) implementation success and

identified 26 organizational determinants of success. Evanschitzky, Eisend, Calantone, and Jiang

(2012) performed a meta-analysis of empirical research and identified 20 determinants of product

innovation success. These examples can be extended with many other examples from virtually any

subfield in the organizational sciences: A large set of determinants contribute to the outcome, and

the underlying studies utilize traditional approaches such as correlation and regression to identify

these determinants. Then, the size of the correlation or regression coefficient indicates the impor-

tance of a determinant. In this traditional logic, several determinants (X1, X2, X3 . . . ) contribute

to the outcome and can compensate for each other. In necessary but not sufficient logic, each single

necessary determinant Xi always needs to have its minimum level Xic to allow Yc, independent of

the value of the other determinants. If Xi drops below Xic, the other determinants cannot compensate

it. After the drop, the desired outcome Yc can only be achieved again if Xi increases toward Xic. This

absence of a compensation mechanism once again shows the practical importance of identifying

necessary conditions: putting minimum required levels of it in place and keeping these levels in

place: ‘‘Satisfying necessary conditions . . . constitutes the foundation of achieving the goal’’

(Dettmer, 1998, p. 6).

Illustrative Example of the Multivariate Necessary Condition

As an example, the upper part of Figure 4 shows the scatterplots of four personality scores measured

with the Hogan Personality Inventory (HPI) in the same sample as presented earlier. The plot for the

first HPI score Ambition is the same as Figure 3 (bottom left). The other three scatterplots are for

HPI scores Sociability, Interpersonal Sensitivity, and Learning Approach. The regression lines (solid

lines through the middle) show that all four personality traits have a relatively small effect on Sales

Ability. Ambition and Sociability have a small positive effect. The Interpersonal Sensitivity regres-

sion line is nearly horizontal. The Learning Approach regression line is slightly negative (!),
indicating that on average Learning Approach has a small negative effect on Sales Ability. A tradi-

tional multiple regression analysis indicates that the four personality traits together hardly predict

performance (adjusted R2 ¼ 0.10). Yet, all four plots, including the plot for Learning Approach,

show an empty space in the upper left corner, indicating that each personality trait may be necessary

but not sufficient for Sales Ability. The necessary condition analysis predicts failure in these zones:

The level of Y cannot be reached with the corresponding level of X. This applies to each determinant

separately.

The empty zones have different shapes because the ceiling lines (dashed lines drawn by using the

CR-FDH ceiling technique, see Ceiling Techniques subsection) have different intercepts and slopes

(see the ceiling equations in Figure 4, top). It implies that the necessary determinants put different

constraints on the outcome.12 This is illustrated with the multivariate bottleneck technique. The bot-

tleneck table in the lower part of Figure 4 shows that for a desired level of outcome Yc¼ 80 (80% of

the range of observed values; 0%¼ lowest, 100%¼ highest), the necessary levels of X1, X2, X3, and

X4 are different: X1c ¼ 42, X2c ¼ 48, X3c ¼ 27, and X4c ¼ 35. A few important points are worth

24 Organizational Research Methods 19(1)



noting. First, we should recognize that each X variable must obtain these minimum ceiling values

(Xi � Xic) before it is possible to obtain Yc ¼ 80. Thus, if even one of the Xi values falls below its

ceiling value, Yc¼ 80 will not be reached. This contrasts with traditional applications of the general

linear model, where the X variables are allowed to operate in a compensatory manner (e.g., a low

score on X1 may be compensated for with a higher score on X2). Second, it is also important to

recognize that the ceiling values will change if we change the level of the desired outcome. For

Yc ¼ 100, X1c ¼ 67, X2c ¼ 98, X3c ¼ 51, and X3c ¼ 68. Finally, it is also possible that for a given

(lower) desired value of the outcome, one or more determinants are no longer necessary. For exam-

ple, for Yc ¼ 60 or lower, determinant X2 (Sociability) is no longer a bottleneck. For Yc ¼ 50 or

lower, also X3 (Interpersonal Sensitivity) and X4 (Learning Approach) are no longer a bottleneck,

and none of the determinants are necessary for Yc � 40.

It is typical for multivariate necessary conditions that no determinant is necessary at relatively

low levels of the desired outcome, whereas several determinants become necessary at higher levels

of desired outcome. Which specific determinant is the bottleneck depends on the specific levels of

the determinants and the desired outcome. For example, if each of the four determinants has a score

of 20, such an Ambition score and Sociability score allow a Sales Ability of at least 60, whereas such

an Interpersonal Sensitivity score and Learning Approach score allow a Sales Ability of at least 70.

Hence, a desired Sales Ability of 60 is possible with scores of 20 of the four HPI determinants, but a

desired Sales Ability of 70 is not possible with such scores: The Ambition and Sociability scores are

bottlenecks for such an outcome. The outcome of 70 is only possible if the Ambition score increases

from 20 to at least 29 and the Sociability score from 20 to at least 23. The bottleneck table also shows

that for a desired Sales Ability score below 40, no HPI score is a bottleneck, which illustrates ‘‘out-

come inefficiency’’ and indicates that the outcome could be higher, even with low HPI scores (for a

discussion on outcome inefficiency see subsection Necessity Inefficiency). The table also shows that

for the highest outcome level (Sales Ability¼ 100), condition inefficiency is present: All HPI scores

are smaller than100, with only the Sociability score close to 100. This indicates that for reaching the

highest level of outcome, only about half to two-thirds of the maximum HPI scores for Ambition,

Interpersonal Sensitivity, and Learning Approach are necessary, whereas for Sociability, the max-

imum HPI score is necessary (for a discussion on condition inefficiency see subsection Necessity

Inefficiency).

Multivariate necessary condition analysis with the bottleneck technique identifies which determi-

nants, from a set of necessary determinants, successively become the weakest links (bottlenecks,

constraints) if the desired outcome increases. In other words, for a given level of the desired out-

come, multivariate necessary condition analysis identifies the necessary (but not sufficient) mini-

mum values of the determinants to make the desired outcome possible.

Necessary Condition Analysis

The continuous necessary condition case can be considered as the general case that includes the

dichotomous and discrete cases (the graphs on the right sides in Figures 1 and 2 are essentially the

same as the graphs in Figure 3). Therefore, the general methodology necessary condition analysis is

developed for determining necessary (but not sufficient) conditions. This methodology consists of

two main parts: (1) determining ceiling lines and the corresponding bottleneck tables and (2) calcu-

lating several parameters such as accuracy of the ceiling line, effect size of the necessary condition,

and necessity inefficiency. First, I propose and evaluate two classes of ceiling techniques for draw-

ing ceiling lines (ceiling envelopment and ceiling regression), compare these techniques and some

other techniques, and present an example. Next, I develop an effect size measure for necessary con-

ditions and propose benchmark values, discuss necessity inefficiency, and compare NCA with QCA.

Finally, I discuss the limitations of NCA.
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Ceiling Techniques

The starting point for the necessary condition analysis is a scatter plot of data using a Cartesian coor-

dinate system, which plots X (the determinant and potential necessary condition) against Y (the out-

come) for each case. If visual inspection suggests the presence of an empty zone in the upper left

corner (with the convention that the X axis is ‘‘horizontal’’ and the Y axis is ‘‘vertical’’ and that val-

ues increase ‘‘upward’’ and ‘‘to the right’’), a necessary condition of X for Y may exist. Then a ceil-

ing line between the empty zone without observations and the full zone with observations can be

drawn. A ceiling line must separate the empty zone from the full zone as accurately as possible.

Accuracy means that the empty zone is as large as possible without observations in it. However,

drawing the best ceiling line usually requires making a trade-off decision between the size of the

empty zone and the number of observations in the empty zone (‘‘exceptions,’’ ‘‘outliers,’’ ‘‘counter-

examples’’). Because the ‘‘empty’’ zone may not always be empty, it is named ‘‘ceiling zone’’ (C).

The position of the data points around the ceiling line might suggest that the best ceiling line is not

linear or increasing. Additionally, the best ceiling line may be a smooth line or a piecewise (linear)

function. A ceiling function can be expressed in general terms as Yc ¼ f (Xc). For simplicity, the

focus in this article is on continuous or piecewise linear, nondecreasing ceiling lines, which appears

acceptable for first estimations of ceiling lines for most data sets. A nondecreasing (constant or

increasing) ceiling line is typical and allows for a formulation that X � Xc is necessary for Yc.

Goertz et al. (2013) made the first attempts at drawing ceiling lines. They visually inspected the

ceiling zone of a specific scatterplot and divided it manually into several rectangular zones. Rather

than defining the ceiling line, the combination of rectangles resulted in a piecewise linear ceiling

function with all observations on or below the ceiling. The advantage of this technique is that it

implicitly only uses the location of upper left observations (where the border exists) to draw the ceil-

ing line and that it can be made accurate with all observations on or below the ceiling line. One dis-

advantage of this technique is that it is informal and based on subjective selection of rectangles.

Additionally, Goertz et al. introduced quantile regression to systematically draw continuous linear

ceiling lines. Quantile regression (Koenker, 2005) uses all observations to draw lines. The 50th

quantile regression line splits the observation in about half above and half below the line. This line

is similar to a regular OLS regression line. However, for quantiles above, for example, 90, quantile

regression results in a ceiling line that allows some points above the line. The advantage of this tech-

nique is that it is an objective, formal methodology to draw ceiling lines. However, a disadvantage is

that it uses all observations below the ceiling line. For drawing a line between zones with and with-

out observations, it may not be appropriate to use observations far away from this line.

For NCA, the advantages of the two approaches are combined by proposing two alternative

classes of techniques, ceiling envelopment (CE) and ceiling regression (CR). Both are formal tech-

niques and use only observations close to the ceiling zone. CE is a piecewise linear line and CR a

continuous linear line (straight line).

Ceiling envelopment. In this article, ceiling envelopment is created for NCA on the basis of data envel-

opment analysis (DEA) techniques (Charnes, Cooper, & Rhodes, 1978). DEA is used in operations

research and econometrics to evaluate production efficiency of decision-making units. Here the

method is used to draw ceiling lines. Ceiling envelopment pulls an envelope along upper left obser-

vations using linear programming. Only a few assumptions need to be made regarding the shape of

the ceiling line, depending on the specific envelopment technique. The ceiling envelopment tech-

nique with varying return to scale (CE-VRS) assumes that the ceiling line is convex. It results in

a piecewise linear convex ceiling line. The envelopment technique with free disposal hull (CE-FDH)

is a more flexible technique (Tulkens, 1993). It does not require many assumptions regarding the

ceiling line. Because of its flexibility and intuitive and simple applicability to dichotomous, discrete,
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and continuous necessary conditions, CE-FDH is proposed as a default ceiling envelopment tech-

nique for NCA. It results in a piecewise linear function along the upper left observations. Drawing

the CE-FDH ceiling line can be formulated in words as follows:

1. Start at point Y ¼ Ymin for observation X ¼ Xmin.

2. Move vertically upward to the observation with the largest Y for X¼Xmin (there can be more

than one observation with the same X value, particularly for discrete variables).

3. Move horizontally to the right until the point with an observation on or above this horizontal

line (discard observations below this line).

4. Move vertically upward to the observation with the largest Y for this X (there can be more

than one observations with the same X value, particularly for discrete variables).

5. Repeat 3 and 4 until the horizontal line in 3 has reached the X ¼ Xmax line.

Ceiling regression. In this article, ceiling regression is created for NCA on the basis of the outcomes of

a CE analysis. Therefore, two versions exist: one based on the outcomes of CE-VRS and one based

on the outcomes of CE-FDH. Ceiling regression CR-VRS draws an OLS regression line through the

points that connect the linear pieces of the CE-VRS ceiling line, whereas CR-FDH draws an OLS

regression line through the upper-left edges of the CE-FDH piecewise linear function, namely, the

points where a vertical part of the CE-FDH line ends and continues as a horizontal line when X

increases. These approaches smoothen the piecewise linear ceiling lines from the ceiling envelop-

ment techniques by using a straight line. The straight line allows for further modeling and analyses

and for comparison of ceiling lines. For the same reasons that CE-FDH is preferred over CE-VRS,

CR-FDH is preferred over CR-VRS.

Comparison of ceiling techniques. Table 2 compares the four different ceiling techniques. It also

includes some other common techniques in operations research and econometrics for the estimation

of efficiency frontiers that could be used for drawing ceiling lines as well. Corrected ordinary least

squares (COLS) and stochastic frontier analysis (SFA) (e.g., Aigner & Chu, 1968; Bogetoft & Otto,

2011) have some disadvantages compared to the techniques selected previously. COLS shifts the

OLS regression line toward the most upper point and therefore uses all observations. SFA focuses

Table 2. Comparison of Techniques for Drawing Ceilings Lines.

Ceiling
Line
Technique

Observations
That Are Used

Predefined Ceiling
Function

Allows Points Above
Ceiling Drawing Procedure

CE-VRS Upper left Noa No Optimization
CE-FDH Upper left No No Optimization
CR-VRS Upper left Yes Yes Optimization þ statistical
CR-FDH Upper left Yes Yes Optimization þ statistical
COLS All Yes No Statistical
QR All Yes Yes Statistical
SFA All Yes Yes Statistical
LH Lowest left and

highest right
Yes Yes Mathematical

Note: LH ¼ low-high; COLS ¼ corrected ordinary least squares; QR ¼ quantile regression; CE-VRS ¼ ceiling envelopment
with varying return to scale; CE-FDH¼ ceiling envelopment with free disposal hull; CR-VRS¼ ceiling regression with varying
return to scale; CR-FDH ¼ ceiling regression with free disposal hull; SFA ¼ stochastic frontier analysis.
aConvexity required.
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on the observations around the ceiling line but includes a stochastic term based on a probability

assumption of the observations below the ceiling and thus also uses all observations. A last technique

called low-high (LH) was created for the purpose of NCA as a rough first estimation of the ceiling

line. It is the diagonal of the necessary condition zone defined by two specific observations in the

data set: the observation with the lowest X (with highest Y) and the observation with the highest

Y (with lowest X). However, this technique is sensitive to outliers and measurement error.

The table shows that only five techniques use upper left points (LH, CE-VRS, CE-FDH,

CR-VRS, and CR-FDH) to draw the border line between zones with and zones without observations.

Within this group, LH uses only two observations, whereas CE-VRS, CE-FDH, CR-VRS, and

CR-FDH use observations close to the border line. When comparing CE-VRS and CE-FDH, the lat-

ter has fewer limitations because it does not require convexity of the ceiling function and is therefore

preferred. Because CR-VRS and CR-FDH are based on CE-VRS and CE-FDH, respectively,

CR-FDH also has fewer limitations. Therefore, CE-FDH is the default as a nonparametric technique

(no assumption about ceiling line function), and CR-FDH is the default for a parametric technique

(linear ceiling line). When comparing CE-FDH and CR-FDH, the former is preferred when a straight

ceiling line does not properly represent the data along the border between the empty and full zone

and when smoothing considerably reduces the size of the ceiling zone. This holds particularly for

dichotomous variables and for discrete variables with a small number of variable levels (e.g., max

5; see Figure 2). This may also happen if the number of observations is relatively low, namely, in

small data sets. If a straight ceiling line is an acceptable approximation of the data along the border,

the CR-FDH technique is preferred. Compared to CE-FDH, CR-FDH usually has some observations

in the ceiling zone due to the smoothing approach, and the ceiling zone may be somewhat smaller.

By definition, CE-FDH does not have observations above the ceiling line; it is therefore more sen-

sitive to outliers and measurement errors than CR-FDH.

Accuracy. The accuracy of a ceiling line is defined as the number of observations that are on or below

the ceiling line divided by the total number of observations, multiplied by 100%. Then, by definition,

the accuracy for CE-VRS, CE-FDH, and COLS is 100%, and for the other techniques, the accuracy

can be below 100%.

Example. In Figure 5, the eight techniques are applied to a data set of 28 countries with data about a

country’s level of individualism according to Hofstede (1980) and a country’s innovation perfor-

mance according to the Global Innovation Index (Gans & Stern, 2003).

The scatterplot shows that there is an empty space in the upper left corner indicating the presence

of a necessary condition: Individualism (X) is necessary for innovation performance (Y). The ceiling

lines differ considerably across techniques. The techniques that use all 28 observations (i.e., COLS,

quantile regression [QR], and SFA) seem to underestimate (COLS and QR) or overestimate (SFA)

the size of the ceiling zone. From the remaining techniques that do not allow observations in the

ceiling zone (CE-VRS and CE-FDH), CE-FDH defines a considerably larger ceiling zone than

CE-VRS because it is not restricted by a convexity requirement. From the remaining techniques that

allow observations in the ceiling zone and have a predefined (linear) ceiling line (LH, CR-VRS,

CR-FDH), LH is less accurate than CR-VRS and CR-FDH but defines a larger ceiling zone. In this

example, CR-VRS and CR-FDH result in virtually the same ceiling line. For reference, the OLS line

is shown in Figure 5 as well (the lowest straight line). It is clear that a line through the middle of the

data that describes an average trend is not a proper candidate for a ceiling line (accuracy in this

example is only 64%).

Analyzing a number of empirical samples and using simulated data sets indicate that CE-FDH

and CR-FDH generally produce stable results with relatively large ceiling zones and with no

(CE-FDH) or few (CR-FDH) observations in the ceiling zone. CE-FDH is similar to Goertz
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et al.’s (2013) rectangular approach and produces a piecewise linear function with no observations in

the ceiling zone; CR-FDH is a technique developed for the present purpose of NCA. It produces a

smooth linear ceiling function with normally a few observations in the ceiling zone. The ceiling

techniques presented here are only linear nondecreasing ceiling lines. In future work, also nonlinea-

rities will be explored, for example, triangular or trapezoidal piecewise linear functions, or nonlinear

functions such as polynomials or power functions. The quality of ceiling lines needs to be system-

atically compared by evaluating fit, effect size, accuracy, and required assumptions.

Effect Size of the Necessary Condition

Perhaps in nearly all scatterplots, an empty space can be found in the upper left corner, which may

indicate the existence of a necessary condition if this makes sense theoretically. The question then is:

Is the necessary condition large enough to be taken seriously? Therefore, there is a need to formulate

an effect size measure. An effect size is a ‘‘quantitative reflection of the magnitude of some phenom-

enon that is used for the purpose of addressing a question of interest’’ (Kelley & Preacher, 2012, p.

140). Applied to necessary conditions, the effect size should represent how much a given value of

the necessary condition Xc constrains Y. The effect size measure for necessity but not sufficiency

proposed here builds on the suggestion by Goertz et al. (2013) that ‘‘the importance of the ceiling

. . . is the relative size of the no observation zone created by . . . the ceiling’’ (p. 4). The effect size

of a necessary condition can be expressed in terms of the size of the constraint that the ceiling poses

on the outcome. The effect (constraint) is stronger if the ceiling zone is larger. Hence, the effect size

of a necessary condition can be represented by the size of the ceiling zone compared to the size of the

entire area that can have observations. This potential area with observations is called the scope (S).

The larger the ceiling zone compared to the scope, the lower the ceiling, the larger the ceiling effect,

the larger the constraint, and therefore the larger the effect size of the necessary condition. The effect

size can be expressed as follows: d ¼ C/S, where d is the effect size,13 C is the size of the ceiling

zone, and S is the scope. Hence, d is the proportion of the scope above the ceiling. The scope can be

determined in two different ways: theoretically, based on theoretically expected minimum and

Ceiling
Technique

Size of
ceiling
zone

Number of
observations

in ceiling
zone

Accuracy

LH 6282 3 89%
COLS 2431 0* 100%*

QR 2534 0 100%
CE-VRS 3972 0* 100%*
CE-FDH 6467 0* 100%*
CR-VRS 4826 2 93%
CR-FDH 4773 2 93%

SFA 9438 8 71%
* by definition

Figure 5. Application of different ceiling techniques to a data set on a country’s individualism (X axis) and its
innovation performance (Y axis).
Note: The lowest solid line is the ordinary least squares (OLS) regression line. LH ¼ low-high; COLS ¼ cor-
rected ordinary least squares; QR ¼ quantile regression; CE-VRS ¼ ceiling envelopment with varying return to
scale; CE-FDH ¼ ceiling envelopment with free disposal hull; CR-VRS ¼ ceiling regression with varying return
to scale; CR-FDH ¼ ceiling regression with free disposal hull; SFA ¼ stochastic frontier analysis.
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maximum values of X and Y, and empirically, based on observed minimum and maximum values of

X and Y. Thus: S ¼ (Xmax – Xmin) � (Ymax – Ymin).

Similar to other effect size measures such as the correlation coefficient r, or R2 in regres-

sion, this necessary condition effect size ranges from 0 to 1 (0 � d � 1). An effect size can

be valued as important or not, depending on the context. A given effect size can be small in

one context and large in another. General qualifications for the size of an effect as ‘‘small,’’

‘‘medium,’’ or ‘‘large’’ are therefore disputable. If, nevertheless, a researcher wishes to have

a general benchmark for necessary condition effect size, I would offer 0 < d < 0.1 as a ‘‘small

effect,’’ 0.1 � d < 0.3 as a ‘‘medium effect,’’ 0.3 � d < 0.5 as a ‘‘large effect,’’ and d � 0.5 as

a ‘‘very large effect.’’14 Two recent papers with applications of necessary condition analysis

have effect sizes between 0.1 and 0.3. One of these is in political science (Goertz et al.,

2013), the other in business research (Van der Valk, Sumo, Dul, & Schroeder, 2015). In both

papers, these effect sizes were considered as theoretically and practically meaningful. If a

dichotomous classification is desired (e.g., for testing whether or not a necessary condition

hypothesis should be rejected or for making an in kind qualification of the absence or presence

of a necessary condition), I suggest to use effect size 0.1 as the threshold. Hence, an in kind

necessary condition hypothesis in the continuous case (X is necessary for Y) is rejected if the

effect size d is less than 0.1. A distribution of more than 150 continuous necessary conditions

effect sizes from different studies indicates that roughly 50% of the effect sizes are small

(d < 0.1), about 40% are medium (0.1 � d < 0.3), and about 10% are large (0.3 � d < 0.5).

Very large effect sizes (d � 0.5) can only be expected when the ceiling line is not a straight

line (see the example in Figure 6).

The effect size of the dichotomous necessary condition, as shown in Figure 1, can be either 0 or 1.

Without observations in the upper left hand cell, X is necessary for Y, and the effect size is 1. If there

Figure 6. Scatterplot of the relation between the number of white storks nesting pairs in a region (Storks)
during a given year and the number of human births during that year (Births).
Note: The dashed line is the CE-FDH ceiling line, and the solid line is the OLS regression line.
Source: Data from Van Maanen (2010).

30 Organizational Research Methods 19(1)



were observations in the upper left hand cell, X would not be necessary for Y, and the effect size

would be 0. However, if there are only a few observations in the upper left cell in comparison to

the total number of observations, two interpretations are possible. In the deterministic interpretation,

X is still not necessary for Y. In the more flexible stochastic interpretation, which I adopt in this

article, after evaluation of the outliers in the ‘‘empty’’ cell, X could be considered as necessary. Out-

liers can be ‘‘substitutes,’’ as in the example of the GRE score in Figure 1 (bottom), or can simply

represent error. With a few outliers and depending on the context, one may decide to denote the con-

dition as ‘‘virtually’’ necessary. No general rule exists about the acceptable number of cases in the

‘‘empty’’ upper left cell. Dul et al. (2010) suggest (arbitrarily) that a maximum number of 1 out of 20

observations (5%) is allowed in the ‘‘empty’’ cell. Hence, this decision rule is not based on effect

size but on accuracy: Below 95% accuracy, the in kind necessary condition hypothesis in the dichot-

omous case is rejected.15

In the dichotomous case, no other effect size values than 0 or 1 are possible. Yet, the left side of

Figure 1 suggests that the ceiling zone equals 1 (one empty cell) and that the scope equals 4 (four

cells with possible observations), hence that the effect size is one-fourth. This is incorrect. The actual

effect size of the dichotomous case can be observed more easily from the right side of Figure 1. This

figure shows that the scope equals 1� 1¼ 1. Also, the area of the empty space equals 1� 1¼ 1, and

therefore the effect size is 1. Similarly, in the discrete case of Figure 2 without medium-medium

observations, both the empty space and the scope would be (2 – 0) � (2 – 0) ¼ 4, thus the effect

size equals 1. With medium-medium observations, the scope would be (2 – 0) � (2 – 0) ¼ 4, and

the ceiling zone is (1 – 0) � (2 – 0) þ (2 – 1) � (2 – 1) ¼ 3, hence, the effect size is three-

fourths (and not three-ninths as suggested by the left side of Figure 2).16

In the example shown in Figure 5, the minimum and maximum observed values of X (18, 91) and

Y (1.2, 214.4) result in an empirical scope of 15,563.6. Consequently, the effect size calculated with

CE-FDH is 0.42, and the effect size calculated with CR-FDH is 0.31.

Necessity Inefficiency

The effect size is a general measure that indicates to which extend the ‘‘constrainer’’ X constrains Y,

and the ‘‘constrainee’’ Y is constrained by X. However, normally, not for all values of X, X con-

strains Y, and not for all values of Y, Y is constrained by X. When the feasible space is triangular,

as in Figure 3 (top left), X always constrains Y, and Y is always constrained by X. But when the

feasible space is pentagonal, as in Figure 3 (top right), the ceiling line intersects the Y ¼ YHigh axis

and the X ¼ XLow axis at other points than (XLow, YLow) and (XHigh, YHigh). As a result, for

X > Xcmax, X does not constrain Y, and for Y < Ycmin, Y is not constrained by X. The upper left

area between the lines X ¼ Xcmax and Y ¼ Ycmin in Figure 3 (top right) is the ‘‘necessary condition

zone’’ where X always constrains Y and Y is always constrained by X. Within this zone, it makes

sense to increase the level of the necessary condition in order to allow for higher levels of the out-

come. Outside this zone, increasing the necessary condition level does not have such an effect. The

area outside the necessary condition zone can be considered as ‘‘inefficient’’ regarding necessity.

Necessity inefficiency has two components. Condition inefficiency (denoted here as ix) specifies

that a level of resource/effort X > Xcmax is not needed even for the highest level of performance

Y.17 Condition inefficiency can be calculated as ix ¼ (XHigh – Xcmax)/(XHigh – XLow) � 100% and

can have values between 0 and 100%. Outcome inefficiency (iy) indicates that for a level of outcome

Y < Ycmin, any level of X allows for a higher value of the outcome (e.g., higher performance ambi-

tion). Outcome inefficiency can be calculated as iy ¼ (Ycmin – YLow)/(YHigh – YLow) � 100%, with

values between 0 and 100%. The effect size is related to inefficiency as follows: d¼½ (1 – ix/100%)

� (1 – iy/100%). The larger the inefficiencies, the smaller the effect size. When both inefficiency

components are absent, the idealized situation of Figure 3 (top left) is obtained, and the effect size
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is 0.5, which is the theoretical maximum for a straight ceiling line. When one of the inefficien-

cies equals 100%, there is no ceiling, and thus no necessary condition and zero effect size.

When the X and Y axes are standardized (e.g., XLow and YLow are 0 or 0% and XHigh and YHigh

are 1 or 100%), the angle of the ceiling line is 45 degrees if both inefficiencies are equal. When

condition inefficiency is larger than outcome inefficiency, the ceiling line is steep (>45

degrees). A slope that is less steep (<45 degrees) indicates that outcome inefficiency is larger

than condition inefficiency. In Figure 3 (bottom left), the condition inefficiency is 33%. This

means that for an Ambition level (X) above 67% of 100 ¼ 67, Ambition is not necessary for

even the highest level of Sales Ability. In Figure 3 (bottom left), outcome efficiency is 46%.

This means that for a desired Sales Ability level (Y) that is below 46% of 5.5 (the maximum

observed level) ¼ 2.5, Ambition is not necessary for Sales Ability. Because outcome ineffi-

ciency (46%) is larger than condition inefficiency (33%), the slope of the ceiling line is less

than 45 degrees.18

Comparison of NCA with QCA

Multicausal phenomena can also be analyzed with other approaches that use the logic of necessity

and sufficiency. For example, qualitative comparative analysis (Ragin, 2000, 2008; for an introduc-

tion, see Schneider & Rohlfing, 2013) is gaining growing attention in organizational sciences

(Rihoux, Alamos, Bol, Marx, & Rezsohazy, 2013). It aims to find combinations of determinants that

are sufficient for the outcome while separate determinants may not be necessary or sufficient for the

outcome (Fiss, 2007). NCA and QCA are similar in the sense that they both approach causality in

terms of necessity and sufficiency and not in terms of correlation or regression. However, two major

differences are that NCA focuses on (levels of) single determinants (and their combinations),

whereas QCA focuses on combinations of determinants (configurations), and that NCA focuses

on necessary determinants that are not automatically sufficient, whereas QCA focuses on sufficient

configurations that are not automatically necessary (equifinality with several possible causal

paths).19 Although QCA centers on sufficient configurations, it is also used for necessary condition

analysis (e.g., Ragin, 2003). But the QCA approach for ‘‘continuous’’ necessary condition analysis

(fuzzy set QCA) is fundamentally different than the NCA approach presented here (Vis & Dul,

2015). Instead of a ceiling line, QCA uses the bisectional diagonal through the theoretical scope

as the reference line for evaluating the presence of a necessary condition. Thus, QCA presumes that

necessary conditions are only present in triangular scatter plots.20 If all observations are on and

below the diagonal, the QCA reference line is the same as the NCA ceiling line. However, when

a substantial number of data points show up above the reference line (e.g., because of inefficiencies,

see examples in Figure 3 [top right and bottom] and in Figure 4), NCA ‘‘moves the ceiling line

upward,’’ possibly with rotation, while the QCA reference line remains the same (the diagonal).

Then NCA concludes that X is necessary for Y at lower levels of X, whereas QCA concludes that

X is ‘‘less consistent’’ with necessity (necessity ‘‘consistency’’; Bol & Luppi, 2013; Ragin, 2006)

without specifying values of X where X is necessary for Y or where X is not necessary for Y. As

a consequence, QCA normally finds considerably less necessary conditions in data sets than NCA

Dul (2015a). Another difference is that QCA only analyzes in kind necessary conditions (condition

X is necessary for outcome Y), whereas NCA can also analyze in degree necessary conditions (level

of X is necessary for level of Y). NCA and QCA are also different with respect to evaluating the

‘‘importance’’ of a necessary condition. In NCA, importance is defined as the size of the empty zone

in comparison to the scope, whereas in QCA (and other analytic approaches; e.g., Goertz, 2006a21),

importance of a necessary condition is defined as the extent to which the necessary condition is also

sufficient (necessity ‘‘coverage’’). In this view, a necessary condition is more important if it is more

sufficient.22 However, a fundamental notion in the current article is that single organizational

32 Organizational Research Methods 19(1)



ingredients are not sufficient for multicausal organizational phenomena, which explains and justifies

the necessary but not sufficient expression. For a further discussion on the differences between NCA

and QCA, see Vis and Dul (2015) and Dul (2015a).

Applying NCA instead of QCA for analyzing necessity can result is different conclusions. For

example, Young and Poon (2013) applied QCA to identify the necessity of five IT project success

factors: top management support, user involvement, project methodologies, high-level planning, and

high-quality project staff. Using a sufficiency view of importance of necessity (Goertz, 2006a), they

found importance levels of 0.97, 0.64, 0.70, 0.69, and 0.61, respectively. Applying the NCA

approach to Young and Poon’s data set using CE-FDH gives necessary condition effect sizes of

0.30, 0.25, 0.19, 0.33, and 0, respectively. Comparing the rank orders of these two approaches shows

that top management support is the most important in the sufficiency view, followed by project

methodologies and high-level planning. However, in the necessary but not sufficient view, high-

level planning has the largest effect size, followed by top management support and user involve-

ment. The bottleneck analysis indicates that only project methodologies is necessary for a medium

success level of 0.5 (the observed success levels ranged from 0.1 to 0.9), and the other four deter-

minants are not. Yet, if the desired level of success increases, more conditions become necessary,

and four out of five conditions are necessary for the maximum observed outcome level (0.9), with

required levels of the five determinants of at least 88%, 67%, 25%, 100%, and 0% of the maximum

range of observed levels of these determinants, respectively (the last determinant is not necessary).

These percentages show necessity inefficiencies for all four determinants that are necessary, except

for high-level planning that needs a level of 100% for maximum outcome. This NCA analysis adds

to Young and Poon’s insights that top management support ‘‘is significantly more important for

project success than factors emphasized in traditional practice’’ (p. 953). The NCA analysis shows

that top management support is needed if maximum performance is desired, but not at maximum

level. Top management support is not needed if only medium performance is desired (then project

methodologies is needed). More importantly, for maximum performance, adequate levels of the

other determinants, which Young and Poon call the ‘‘factors emphasized in traditional practice,’’ are

also needed. Hence, high outcomes will not occur without properly balancing the minimum levels of

the four necessary determinants. Therefore, NCA analysis does not support Young and Poon’s con-

clusion that ‘‘current practice emphasizing project methodologies may be misdirecting effort’’

(p. 953) because considerable levels of four necessary determinants including project methodologies

are needed for high performance. This example of an additional NCA analysis is presented for pur-

poses of illustration, and it is typical for the necessary but not sufficient approach. It may provide

new insights about how organizations can efficiently put and keep organizational ingredients in

place to achieve a desired outcome and by which level.

Limitations of NCA

Just like any other data analysis approach, NCA has several limitations. One fundamental limitation

that it shares with other data analysis techniques is that NCA cannot solve the problem of ‘‘observa-

tional data cannot guarantee causality.’’ Observational studies are widespread in organizational

research. All examples in Table 1 and all the examples used for illustration in this article are from

observational studies. Observing a data pattern that is consistent with the causal hypothesis is not

evidence of a causal connection. Hence, it is important that identified necessary conditions are the-

oretically justified, namely, that it is understood how X constrains Y and Y is constrained by X.

Requirements for causal inference in empirical studies for building or testing necessary cause-

effect relations are the same as for any other type of cause-effect relation. For example, a necessary

cause is more plausible if the cause precedes the outcome and is related to the outcome and if an

observed outcome cannot be explained by another cause (Shadish et al., 2002). If such requirements
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are not met, a necessary condition outcome that is empirically observed may, for example, be spur-

ious, namely, caused by another variable (Spector & Brannick, 2010). This can be illustrated with a

revision of the classic example of the relation between the number of storks in a region and the num-

ber of human newborns in that region (Box, Hunter, & Hunter, 1978).23 Figure 6 shows a scatterplot

of the relationship between the annual number of white stork nesting pairs and the number of human

births in the Oldenburg region in Germany over one decade. The scatterplot shows that there is an

empty area in the upper left corner. The ceiling line is drawn with the CE-FDH rather than with the

CR-FDH ceiling technique because the observations along the border between the empty zone and

the full zone cannot be well represented by a straight line.

The data suggest the existence of a necessary condition with a very large effect size (0.73): A high

number of human births in the region is only possible if the number of stork nesting pairs in the

region is large. It is clear (unless one believes in fables or in the Theory of the Stork; Höfer & Przyr-

embel, 2004) that a theoretical explanation is missing in this example. A necessary relationship that

is observed between X and Y can be spurious if a variable Z is sufficient for X and necessary for Y

(Mahoney, 2007). In the storks example, one could state that when more people (Z) settle in a region

and build houses with chimneys and other high human-made constructions, the number of stork nest-

ing pairs (X) increases because storks favor high nesting places: Z produces X, hence is a sufficient

cause of X. Additionally, Z is a necessary cause of Y because a high increase of the number of births

is only possible when there are more people. In other words, the variable Z is the reason of the pre-

sumed ‘‘necessary’’ relation between storks and births.24 This example shows again that without the-

oretical support, a necessary condition cannot be presumed from observational data. This is not

different from any other data analysis approach using observational data.

If the cause can be manipulated, a research design based on randomized experiments may be bet-

ter equipped to fulfill requirements for causality than an observational study. A potential necessary

cause of a multicausal phenomenon (e.g., storks for birth) can be tested in a randomized experiment

where instances (cases) with the cause (regions with storks) are selected randomly from a defined

population (all regions with storks) and then randomly assigned to the experimental group (regions

that get a treatment) or control group (regions that do not get a treatment). In the experimental group,

the presumed necessary causal condition is manipulated by taking it away (e.g., storks are chased

away), whereas in the control group, the presumed causal condition is unchanged. Then we observe

whether the effect disappears in the experimental group (reduction of birth rate) but not in the control

group (birth rate constant). Such a design provides strong evidence for the (non)existence of a nec-

essary cause. This type of experiment contrasts the common ‘‘sufficiency’’ experiment in which first

cases without the cause (regions without storks) are randomly selected from a population (all regions

without storks) and randomly assigned to the experimental or control group. Then the cause is added

to the experimental group (storks are introduced), and we observe if the effect appears in the experi-

mental group (increase of birth rate) and not in the control group (birth rate constant).25 The neces-

sity experiment can be rephrased as a sufficiency experiment because a necessary condition that is

formulated as ‘‘the presence of the cause is necessary for the presence the effect’’ can also be for-

mulated as ‘‘the absence of the cause is sufficient for the absence of the effect.’’ Then in the suffi-

ciency approach for testing a necessary cause, the ‘‘absence of the cause’’ (no storks) is added to the

experimental group and we observe if the ‘‘absence of the effect’’ (reduction of births) appears. If the

necessary cause cannot be manipulated (cannot be taken away), nonexperimental research designs

such as natural experiments (where the necessary cause disappears naturally, and we observe if the

effect disappears) or observational studies (where we observe if the necessary cause is present in

cases with the effect or if the effect is absent in cases without the necessary cause) can be applied.

Such approaches rely more on solid theoretical reasoning in order to infer necessity causality.

A limitation of NCA is that it may be more susceptible for sampling and measurement error

than traditional data analysis approaches. The reason is that the proposed ceiling techniques
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(CE-FDH and CR-FDH) only use a small proportion of the observations in the sample for draw-

ing the ceiling line (the observations near the ceiling line). The ceiling line (and therefore other

quantities derived from it, e.g., effect size, accuracy) may be sensitive to selection bias and mea-

surement error in the cases around the ceiling line. This particularly holds if the number of cases

around the ceiling line is relatively small. Therefore, the accuracy of the ceiling line depends on

having representative cases around the ceiling line with accurate measurement of the variables.

Measurement precision and validity need to be ensured, in particular for the cases that are

expected to be around the ceiling line (e.g., relatively successful cases). The ceiling line may also

be susceptible to exceptions, outliers, or counterexamples in the upper left corner of the scatter-

plot. Therefore, observations near the ceiling line need to be evaluated before conclusions can be

drawn. Exceptions (high outcome without the necessary condition) may be due to measurement

error, unexplained stochasticity in the data, the case not being part of the theoretical domain

where the necessary theory is supposed to hold, or the existence of a substitute condition that

reflects the underlying concept (see example of Figure 1 [bottom] where GRE score and opinion

of faculty member both indicate a student’s quantitative ability). The evaluation of cases near the

ceiling line is not only desirable for reasons of internal validity; it also gives insight in ‘‘peers,’’

‘‘best practices,’’ or ‘‘most efficient’’ cases. Cases near the ceiling line have the highest outcome

in comparison with other cases with the same level of the necessary condition. These cases are

therefore most efficient in the sense that they have the highest possible outcome for the given

level of the necessary condition (outcome efficiency) and the lowest possible level of the neces-

sary condition for the given outcome (condition efficiency).

NCA is a data analysis tool for calculating ceiling lines, effect sizes, and other relevant quan-

tities. If the researcher is only interested in the specific data set, without a need for generalization

to a wider population, this is perfectly acceptable. Also, if the data set is a census (all members of

the population are in the data set), the calculated quantities are true representations of the pop-

ulation. However, if for reasons of statistical inference the data set is a probability sample from a

population, the NCA quantities are only point estimates. Currently, NCA does not take sampling

error into account (e.g., the NCA estimates have no confidence intervals). Future research could

focus on adding confidence intervals to point estimates of NCA parameters. Building on devel-

opments within the field of production frontiers estimation, such confidence intervals could be

based on resampling approaches such as jackknifing and bootstrapping (e.g., Simar & Wilson,

1998) or on Bayesian approaches (e.g., Pendharkar & Pai, 2013). Another sampling related lim-

itation is introduced if purposive sampling is applied. Purposive sampling is an efficient way to

select samples for calculating NCA quantities (see the example of selecting successful cases in

Appendix A). The intention is that the sample is representative only for cases that are around the

ceiling line (relatively successful cases). Then, relatively unsuccessful cases are not well repre-

sented in the sample, and therefore general sample descriptives (e.g., mean values of variables)

or average sample trends (regression) do not represent the whole population. It should also be

noted that a necessary condition may be trivial. When in a data set obtained by purposive or ran-

dom sampling a necessary condition is identified, it is possible that this condition is trivial. Tri-

vialness is the extent to which observations, on average, are clustered toward the maximum value

of the necessary condition; hence, low values of the condition are rare. For example, if the

required GRE score for admission would be for example 200, virtually all students would reach

that score. Then such score would still be necessary for admission, but it would be trivial because

a score below 200 hardly exists. Similarly, references are necessary for an impactful paper in

ORM, but this condition is trivial because nearly all papers have references. A check on trivial-

ness requires the identification of the existence of cases without (or with low levels of) the nec-

essary condition (Dul et al., 2010).
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Recommendations for Applying NCA

NCA can be applied in any branch of organizational research (and elsewhere) in which theoretical

necessary (but not sufficient) statements are (or can be) formulated. Table 1 gives examples of such

statements in strategy, organizational behavior, and human resource management. Also, many

examples exist in other organizational research fields such as operations management (Dul et al.,

2010; McLachlin, 1997; Van der Valk & Wynstra, 2012; Van der Valk et al., 2015) and business

history (Westerhuis, Dul, De Jong, & Hak, 2012), in other social sciences including political science

(Goertz, 2003), and even beyond that in medical and technical sciences.26 The examples show that

depending on the focal unit of the theory, necessary conditions can be formulated at any organiza-

tional level: individual, team, project, work unit, business unit, firm, country, and so on. What is

common in these formulations is that the necessary condition is a nontrivial characteristic, event,

resource, or effort that is relatively unique, scarce, or costly and that must be designed, controlled,

or managed to bring or keep it in place in order to allow a certain desired outcome to occur. Without

the necessary condition, there is guaranteed failure of that desired outcome. One may expect to find

necessary conditions in data sets with variables that are plausibly causally related because it seems

rare that a desired outcome occurs for free, hence without keeping in place a nontrivial, unique,

scarce, or costly condition. Therefore, I recommend that researchers should always search for nec-

essary conditions in data sets with presumed causal relations between X and Y and to acknowledge

that necessary causes are different from sufficient causes and that traditional data analysis tech-

niques (correlation, regression) focus on sufficiency, whereas NCA focuses on necessity. The NCA

analysis may complement (e.g., precede) traditional analyses.

Just like traditional data analysis techniques, NCA is a data analysis technique and not a data col-

lection and measurement technique. It assumes that the scores of X and Y are reasonably valid (i.e.,

measurement instruments measure what they intended to measure) and reliable (precise). Current

techniques to check the quality of measurements may be applied. It also assumes that the basic

requirements to make it plausible that X can cause Y are met (e.g., X preceeds Y). Furthermore, the

instances (cases) in the database are considered to represent the group of instances (cases) that is of

interest to the researcher, namely, a specific group of instances (cases) with certain characteristics, a

representative sample obtained by probability sampling from a population of interest, or a census of

a population of interest.

Building on suggestions provided in Dul et al. (2010), I recommend the following:

� Recognize that traditional analysis (correlation, regression, ‘‘average line through the mid-

dle’’) and necessary conditions analysis (ceiling line) are fundamentally different and equally

valid for their own purposes.

� Recognize that the managerial relevance of a necessary condition analysis (without X there is

guaranteed failure of Y, and this cannot be compensated by other determinants) might be

stronger and more relevant for practical decision making than that of a traditional analysis

(more X on average results in more Y).

� Recognize that it is not uncommon that necessary conditions exist in data sets, although effect

sizes may vary.

� Recognize that when traditional data analyses do not show strong traditional relationships,

there still may be strong necessary conditions (see example of Figure 4).

� Do not formulate theoretical necessary condition statements (X is necessary for Y or X is nec-

essary but not sufficient for Y) as traditional hypotheses (e.g., X affects Y), as was done in the

examples in Table 1.

� Test necessary condition hypotheses with NCA, not with traditional analysis (correlation,

regression), as was done in the examples in Table 1.
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� Formulate results of a traditional analysis in traditional terms, not in terms of necessary con-

ditions, as was done in the examples in Table 1.

� Formulate results of a necessary condition analysis in necessary condition terms, not in tra-

ditional terms (see Dul et al., 2010, for examples).

In the following, I provide some extended recommendations for researchers wanting to use NCA

to analyze their data. These recommendations focus on (1) performing a data analysis with NCA and

(2) reporting NCA results. Finally, I describe a software tool for conducting NCA.

Recommendations for Performing a Data Analysis With NCA Using a Stepwise Approach

Tables 3 and 4 show six steps for performing a necessary condition analysis. Table 3 refers to a sit-

uation where both X and Y are continuous variables or discrete variables with a large number (e.g.,

>5) of variable levels. Then the analysis is illustrated with a scatterplot as in Figures 3, 4, 5, and 6.

Table 4 refers to a situation where both X and Y are dichotomous variables or discrete variables with

a small number (e.g., <5) of variable levels. Now the analysis is illustrated with a contingency table

as in Figures 1 and 2. Steps 1 and 2 and Steps 5 and 6 are relatively easy in both the scatterplot

approach and the contingency table approach. Step 3 (draw ceiling line) and Step 4 (quantify NCA

parameters) are relatively easy in the contingency table approach but more complex in the scatter-

plot approach. The NCA software tool has been developed (see the following) to assist in performing

these steps. All steps in the contingency table approach can be performed by ‘‘manual/visual’’ anal-

ysis of the contingency table. This is particularly easy when the number of levels of the discrete vari-

ables is relatively low. The analysis for situations with dichotomous variables or discrete variables

with a small number (e.g., <5) can also be done with the NCA software. Then the alternative data

visualization with a Cartesian coordinate system (as in the right sides of Figures 1 and 2) and the

scatterplot approach with the CE-FDH ceiling line technique must be used. This alternative analysis

with NCA software (Table 3) gives the same results as the manual/visual contingency table approach

(Table 4).

Recommendations for Reporting NCA Results

In addition to the common standards for reporting research results, specific elements need to be

added for describing the details of a necessary condition analysis. When a necessary but not suffi-

cient theoretical statement is made, it is recommended that researchers should consistently formulate

the theory to be tested or built as a necessary (but not sufficient) causal theory (e.g., by formulating

propositions/hypotheses in terms of X is necessary [but not sufficient] for Y or by formulating a

research question to which extend X is necessary but not sufficient for Y). Contrary to common prac-

tice (see Table 1), such theoretical statements should not be formulated (implicitly) as a sufficiency

theory (e.g., by formulating traditional general propositions/hypotheses such as X affects Y or X has

a positive effect on Y). In the Methods section of the report, it can be stated that a necessary con-

dition analysis was applied to evaluate (test) or formulate (build) a necessary but not sufficient the-

oretical statement, and it could be specified how the six steps (Table 3 or 4) were performed. In the

scatterplot approach, the specific ceiling technique (e.g., ceiling regression or ceiling envelopment)

needs to be specified. Also, specification of the criteria for evaluation of the practical or theoretical

significance of the effect size of the necessary condition is required. If specific criteria for the

study’s specific context are not feasible, the general benchmark for necessary condition effect size

may be selected (i.e., 0 < d < 0.1 ‘‘small effect’’, 0.1� d < 0.3 ‘‘medium effect,’’ 0.3� d < 0.5 ‘‘large

effect,’’ and d� 0.5 ‘‘very large effect’’), and for a dichotomous classification, an effect size thresh-

old of 0.1 could be used. In the Results section of the report, first the contingency table or the scatter
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plot (including ceiling line) could be provided. Next an NCA results table with basic information

about the NCA parameters (Step 4 in Tables 3 and 4) could be formulated for each necessary con-

dition. As a minimum, this table should include: ceiling zone, scope, effect size, and accuracy. For

discrete and continuous necessary conditions, also condition inefficiency and outcome inefficiency

could be included. Table 5 shows the NCA results tables of the three illustrative examples in this

article. In these examples, the general benchmark for effect size is used to appraise the results (see

the asterisks). If the effect size is considered large enough, the necessary condition can be formulated

in kind: X is necessary for Y. Subsequently, the ceiling line or bottleneck table can be used to for-

mulate the necessary condition in degree: Level of X is necessary for level of Y.

Additionally, the bottleneck table can be provided, in particular in the multivariate situation,

showing which levels of the condition is a bottleneck for certain desired levels of the outcome. Fig-

ure 3 (bottom right) and Figure 4 (lower part) give examples of such tables. For convenience to the

readers, the researcher can interpret the bottleneck table and the ceiling line as follows. First the

Table 5. Necessary Condition Analysis (NCA) Result Tables for the Three Illustrative Examples.

Dichotomous Examplea

(Figure 1)
Discrete Exampleb

(Figure 2)
Continuous Examplec

(Figure 3)

In kind formulation: A GRE
score is necessary but
not sufficient for
admission.

In degree formulation: A
GRE score of at least
620 is necessary but not
sufficient for admission
success.

In kind formulation:
Business unit (BU)
representation is
necessary but not
sufficient for cross-
business unit
collaboration
performance.

In degree formulation:
(1) A high level of BU
representation is
necessary but not
sufficient for a high level
of cross–business unit
collaboration
performance. (2) At
least a medium level of
BU representation is
necessary but not
sufficient for a medium
level of cross–business
unit collaboration
performance.

In kind formulation:
Ambition is necessary
but not sufficient for
Sales Ability.

In degree formulation: At
least a level Xc of
Ambition is necessary
but not sufficient for a
level of Yc of Sales
Ability, according to
Yc ¼ 0.045Xc þ 2.53.

Ceiling zone 1 3 98.2
Scope 1 4 549.2
Ceiling line Piecewise linear Piecewise linear Yc ¼ 0.045Xc þ 2.53
Accuracy (%) 99.7 100 96
Effect size 1*** 0.75*** 0.18*
Condition inefficiency (%) NA 0 33
Outcome inefficiency (%) NA 0 46

aN ¼ 342.
bN ¼ 12.
cN ¼ 108.
*d � 0.1. ***d � 0.5.
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researcher can classify the outcome (first column of the bottleneck table) into several classes, for

example three classes (low, medium, and high outcome) on the basis of theoretical or practical con-

siderations, measurement scale values (e.g., for a 7-point Likert scale low, <3; medium, 3-5; high,

>5), the statistical distribution of the data (e.g., low, <25th percentile; medium, 25th-75th percentile;

high, >75th percentile), or the structure of the data. Then for each class it can be indicated how many

and which levels of determinants are required to allow that outcome. For example in Figure 4, based

on the structure of the data, three classes are distinguished. In the low range outcome values (<50%),

no determinant is necessary. In the middle outcome values (50%-60%), some but not all determi-

nants are necessary and their levels need to be up to 20%. In the high range with outcome >70%,

all four determinants are necessary for a high outcome with required condition levels of 15% to

73%. For the highest outcome (100%), all determinants must have a value of least 50% (and one

nearly 100%). When the required condition percentage is below 100%, there is condition inefficiency.

A Software Tool for Necessary Condition Analysis

An NCA software tool is made available to identify necessary conditions in data sets. The tool was

developed to facilitate the process of drawing ceiling lines, calculating NCA parameters, and creat-

ing bottleneck tables. The software, called NCA, is a package that runs with open source program-

ming language R (Culpepper & Aguinis, 2011). The software can be obtained freely from http://

cran.r-project.org/web/packages/NCA/index.html (Dul 2015b). A quick start guide is available at

http://ssrn.com/abstract=2624981 or http://repub.eur.nl/pub/78323/ (Dul 2015c), which allows

novice users without knowledge of R or NCA to perform an analysis within 15 minutes.

The NCA package does three main things:

� It draws NCA plots, which are scatter plots with ceiling lines. The user can select up to eight

different ceiling line techniques presented in Table 5. The defaults are CE-FDH (piecewise

linear function) and CR-FDH (straight line).

� It calculates the NCA parameters: ceiling zone, scope, accuracy, effect sizes, condition ineffi-

ciency, and outcome inefficiency for each selected ceiling technique. The default scope is the

empirical scope calculated from the minimum and maximum values of X and Y in the data set.

� It calculates the values of variables in the bottleneck table to analyze which X is the bottle-

neck for a given Y.

The output includes scatterplots with ceiling line(s), a table with the NCA parameters (as well as

other relevant information), and the bottleneck table. For running the NCA package, the user can

change several parameters to fit the software to the specific situation.

Conclusion

This article presents the necessary but not sufficient interpretation of X causes Y. Such statements

are common in the organizational sciences (and beyond), but the traditional correlation- and

regression-based data analysis frameworks and tools do not fit such interpretations. The necessary

condition analysis methodology provides a solution. It is new in the organizational sciences and is

particularly useful in situations with multicausality in which several known and unknown determi-

nants (e.g., events, characteristics, resources, efforts) contribute to a desired outcome (e.g., good per-

formance) but none is sufficient. In such situations, the proposed new approach can identify the

‘‘critical’’ (levels of) determinants that are necessary for achieving the outcome and that must be put

and kept in place in order to make it possible to achieve the desired outcome. Therefore, organiza-

tional researchers are encouraged to apply NCA methodology to their research and data sets. Scat-

terplots that show heteroskedasticity, or relatively low average effects of X on Y, are no reasons for
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not applying NCA: In such situations, X might be necessary but not sufficient for Y. With the NCA

approach and the freely available NCA software, it is relatively easy to perform such analyses. It

may bring new insights to organizational phenomena.

Appendix A: Necessary Ingredients of a Caesar Salad

Imagine a novice cook planning to prepare a classic Caesar salad.27 A quick look at recipes reveals

that such a salad must have Parmesan cheese. A salad without Parmesan is not a Caesar salad. But a

salad with Parmesan does not make it a Caesar salad; Parmesan is necessary but not sufficient for a

salad being classified as a Caesar salad. Other ingredients (croutons, romaine lettuce) are necessary

as well, but ingredients such as chicken or bacon are not always added and just contribute to some

Caesar salads. A single necessary ingredient or the set of identified necessary ingredients are not

sufficient for the outcome, but they increase the probability of success. However, not using the nec-

essary ingredients will result in guaranteed failure.

How can a novice cook find out which ingredients define a Caesar salad? A traditional approach

to answer this question implies an analysis of a large sample of salad recipes in which ingredients are

determinants and a Caesar salad or not is the outcome. A Google search on January 10, 2014, with

the keywords recipes and salad resulted in more than 150 million hits. The 82nd hit was the first

Caesar salad. Hence a large N would be required to perform a regression analysis for estimating the

contribution of the observed ingredients to the outcome of yes/no Caesar salad. The necessary con-

dition analysis (NCA) approach, on the other hand, can do purposive sampling of cases on the basis

of the presence of the outcome (Caesar salad). It evaluates which ingredients are present in these

cases. Using the keywords recipe, Caesar, and salad results in more than 3 million hits, and for sim-

plicity I analyzed only the first 10 hits, which all were recipes of Caesar salads. This resulted in the

main ingredients presented in Table 6.

It turns out that Romaine lettuce, croutons, and Parmesan are present in these recipes of Caesar

salad. Hence these ingredients are candidate necessary conditions: The outcome (Caesar salad) is not

possible without them. Anchovy is included in nearly all Caesar salads except for case 6 where it is

optional, hence it is virtually necessary. The other ingredients (bacon, chicken) are not necessary:

The outcome (Caesar salad) is possible without them. Having the identified necessary ingredients

in place will result in a larger probability that the outcome will be a Caesar salad. This can be illu-

strated as follows. Entering the words recipe and salad together with one necessary condition

Table 6. Main Ingredients of a Caesar Salad (Recipes on Internet).

Case Number (Hit)a Baconb Chicken Anchovy Romaine Lettucec Croutons Parmesan Cheesed

1 x x x x x
2 x x x x
3 x x x x
4 x x x x x
5 x x x x
6 xe x x x
7 x x x x
8 x x x x x
9 x x x x x x

aOne hit was deleted because it comprised a large set of cases including case 5.
bIncluding speck and prosciutto.
cAlso called cos lettuce.
dAccepted alternatives: reggiano or grana padano.
eOptional.
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(Romaine lettuce, croutons, or Parmesan) in a Google search resulted for the first 10 hits in 0, 1, and

0 recipes of Caesar salad, respectively; hence, the average probability that with one necessary ingre-

dient in place a salad is a Caesar salad is 1/30 ¼ 0.03. When two ingredients are in place, the search

with the three possible combinations of two necessary ingredients resulted in an average probability

of 0.33 that the salad is a Caesar salad, and with all three ingredients in place, the probability that

recipes with this set of necessary ingredients results describe a Caesar salad is 0.90 (9 of the 10 first

hits were Caesar salads). When including anchovy as a ‘‘virtually necessary ingredient’’ (when

allowing some stochasticity), all first 10 hits were Caesar salads (the 13th hit was not a Caesar salad).

This example shows that it is relatively easy to find necessary but not sufficient conditions in data

sets by focusing on the conditions that are common in cases with high outcome and that the prob-

ability of the high outcome increases when more necessary conditions are in place but the set of

identified necessary conditions is not automatically sufficient for the outcome.

Appendix B: Necessary Conditions for Successful Business Unit
Collaboration

Martin and Eisenhardt (2010) analyzed success of collaboration between business units in multi-

business firms. Table 7 summarizes the data of the 12 cases (collaborations) in this study. From

Table 7. Data Matrix on Determinants of Collaboration Performance of 12 Collaborations in Multi-Business
Firms (Adapted from Martin & Eisenhardt, 2010).

Performance

Determinants

Preparation Decision Implementation

Case P1 P2 P3 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1BH H 10 H H 3 H H H H H H H H H

2AuH H 9 H H 2 H H H M H H H H H

3SH H 9 H H 2 H H H H H H H H H

4VH H 9 H H 2 H H H H M H L H H

5DH H 8 H H 3 H H H H H H H H H

6AdH H 7 M H 4 L H H H H H H H H

7SL L 6 M L 0 L M L M M M L L L

8AdL L 4 M L 0 L L L L M H L M L

9DL L 4 M L 0 L L L L M H L L L

10AuL L 2 L L 0 L L L H L L H H L

11BL L 2 L L 0 L L L M L H L M L

12VL L 2 L L 0 L L L H M H L M L

Note: P1¼ initial original authors’ rating of collaboration performance, H¼ high, L¼ low. P2¼ corporate executive rating of
collaboration performance, 0 ¼ unsuccessful, 5 ¼ moderately successful, 10 ¼ highly successful. P3 ¼ trichotomous classification
of performance measure P2 by author of current paper, H ¼ high, M ¼ medium, L ¼ low. D1 ¼ origin of collaboration, H ¼
business unit, L¼ corporate. D2¼ number of deliberate learning activities prior to collaboration decision. D3¼who decided,
H ¼ multi-business team, L ¼ corporate executive. D4 ¼ general manager participation, H ¼ high, M ¼ medium, L ¼ low.
D5 ¼ choice process, H ¼ consensus, L ¼ corporate directive. D6 ¼ general manager ends agreement, H ¼ high, M ¼
medium, L ¼ low. D7 ¼ general manager means disagreement, H ¼ high, M ¼ medium, L ¼ low. D8 ¼ business unit repre-
sentation in collaboration team, H ¼ all, M ¼ some, L ¼ no. D9 ¼ full-time team leader, H ¼ yes, L ¼ no. D10 ¼ full-time
dedicated team, H¼ yes, M¼ some, L¼ no. D11¼ loose coupling, H¼ yes (three to five coordinating mechanisms), L¼ no.
Source: Adapted from Martin and Eisenhardt (2010).
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Table 8. Alternative (Necessary but Not Sufficient) Versus Traditional (Sufficiency, i.e., More Likely to Yield)
Propositions Derived From the Data Matrix Presented in Table 7.

Proposition
Alternative Propositions Based on
Necessary Condition Analysis (NCA)

Propositions Formulated by Martin and
Eisenhardt (2010)

1 (D1)

Business unit (BU) origin (rather than
corporate origin) is necessary but not
sufficient for high-performing cross–
business unit collaboration.

‘‘Proposition 1. Business-unit origin is more
likely to yield a high-performing cross–
business-unit collaboration than is
corporate origin.’’

2 (D2)

Deliberate learning activities conducted
prior to a collaboration decision (at least 2)
are necessary but not sufficient for a high-
performing cross–business unit
collaboration.

‘‘Proposition 2. Deliberate learning activities
conducted prior to a collaboration decision
are more likely to yield a high-performing
cross–business unit collaboration than are
other activities.’’

3 (D3)

A multi-business team decision (rather than
a corporate decision) is necessary for a high-
performing cross–business unit
collaboration. ‘‘Proposition 3. A multi-business-team

decision (i.e., one with high GM
participation and high consensus) is more
likely to yield a high-performing cross–
business-unit collaboration than is a
corporate decision.’’

4 (D4)

A high level of general manager (GM)
participation is necessary but not sufficient
for a for a high-performing cross–business
unit collaboration.

5 (D5)

Consensus decision making (rather a
corporate directive) is necessary but not
sufficient for a high-performing cross–
business unit collaboration.

6 (D6)

At least a medium level of GM ends
agreement is necessary but not sufficient for
a high-performing cross–business unit
collaboration.

7 (D7)

At least a medium level of GM means
disagreement is necessary but not sufficient
for a high-performing cross–business unit
collaboration.

8 (D8)

8a. A high level of business unit
representation is necessary but not
sufficient for a high-performing cross–
business unit collaboration.

8b. At least a medium level of business
unit representation is necessary but not
sufficient for a medium level of cross–
business unit collaboration performance.

‘‘We assessed the presence of reconfigured
teams by whether (1) a specific group was
assigned to implement a collaboration, (2)
that group included at least one person from
every relevant BU who was transferred on a
full-time basis to the group, and (3) the
group had a full-time leader to whom all
members reported.’’

‘‘Proposition 4. A reconfigured team with
a few coordination ties is more likely to yield
a high-performing collaboration than are
other types of teams.’’

9 (D10)
A full-time dedicated team is necessary but
not sufficient for a high-performing cross–
business unit collaboration.

10 (D11)
Loose coupling is necessary but not
sufficient for a high-performing cross–
business unit collaboration.

(continued)

44 Organizational Research Methods 19(1)



interviews with corporate and business unit informants, the authors obtained discrete (mainly dichot-

omous and trichotomous) scores for collaboration performance (variables P1-P2) and presumed

determinants of collaboration success (variables D1-D11).

The table shows, for example, that determinant ‘‘origin of the collaboration’’ (determinant D1) is

scored at two levels (H ¼ business unit, L ¼ corporate) and that determinant business unit represen-

tation, which is the extent to which all relevant business units are represented in the collaboration

team (determinant D8) is scored at three levels: H ¼ high representation, M ¼ medium representa-

tion, and L ¼ low representation. For their purposive sampling strategy, the authors initially scored

the outcome variable (performance in terms of collaboration success) dichotomously (H¼ high per-

forming, L ¼ low performing) based on preliminary interviews with a firm’s corporate executive

(performance measure P1). Afterward, collaboration performance was rated by corporate executives

using an 11-point scale from 0 ¼ unsuccessful, to 5 ¼ moderately successful, to 10 ¼ highly

successful (performance measure P2). For illustration purposes, I trichotomized these performance

Table 8. (continued)

Proposition
Alternative Propositions Based on
Necessary Condition Analysis (NCA)

Propositions Formulated by Martin and
Eisenhardt (2010)

11 Business unit origin, deliberate learning
activities, multi-business team decisions are
temporally ordered necessary but not
sufficient conditions for a high-performing
cross–business unit collaboration (details
about temporally ordered necessary
conditions can be found in Hak, Jaspers, &
Dul, 2013).

‘‘Rewiring begins with BU members
originating potential cross-BU
collaborations. Such a BU origin then
triggers deliberate learning activities that
provide new experience-based information
that helps GMs and other BU executives to
decide whether and how to collaborate. If
the collaboration looks promising, these
deliberate learning activities then set the
stage for a multibusiness team decision by:
(1) providing shared information about the
specifics and value of the collaboration and
(2) creating agreement among GMs about
the need for the collaboration. This
agreement on ends is essential because it
motivates very busy GMs to personally take
time to move the collaboration forward. But
since no single GM has the authority to
force collaboration, the GMs are compelled
to enter a participative, consensual
negotiation in order to proceed. Once the
GMs have decided on collaboration, since
they are highly committed to it, they are
willing to engage in disruptive change,
including giving up control and their own
employees, to ensure collaboration success.
Implementation is accomplished via a
reconfigured team with a few coordinating
ties. Overall: Proposition 5. Rewiring—a
business-unit-centric process—is more
likely to yield a high-performing
collaboration than is a corporate-centric
process.’’

Note: After Martin and Eisenhardt (2010).
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scores such that scores 0, 1, 2, 3 reflect ‘‘low’’ collaboration performance; scores 4, 5, 6, 7

‘‘medium’’ performance; and scores 8, 9, 10 ‘‘high’’ performance (performance measure P3).

Table 8 (middle column) shows potential necessary but not sufficient conditions that can be easily

derived from Table 7 by visual inspection: looking at the common determinants in successful cases.

These hypotheses were not identified by the authors. Instead, they derived traditional sufficiency-

based hypotheses, namely, that the determinant ‘‘is more likely to yield’’ a high outcome (Table

8, right column).
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Notes

1. By using ‘‘Or, in other words,’’ Hume suggests that the first sentence is equivalent to the second one, which

may indicate that also Hume confused necessity and sufficiency. Hume’s intentions regarding this ‘‘two

causal definitions’’ issue is subject to much philosophical debate (e.g., Marques, 2011).

2. In Appendix A, the difference between necessity and sufficiency is further illustrated with an everyday

example of the necessary but not sufficient ingredients of a Caesar salad. This example also shows that

a necessary condition analysis (NCA) approach for finding necessary ingredients is straightforward.

3. This expression presumes that all Xis are necessary and jointly sufficient. In subsection Continuous Nec-

essary Condition, the inequality Y � f(X) is introduced to represent the necessary but not sufficient

condition.

4. No (inter)disciplinary convention seems to exist regarding the direction of axes in causality contingency

matrices. In most studies, the X axis is ‘‘horizontal’’ and the Y axis is ‘‘vertical,’’ but exceptions exist

(Mandel & Vartanian, 2009). In political science, higher values (from absent to present) are upward/to the

right (e.g., Most & Starr, 2003; Ragin, 2003) or downward/to the right (e.g., Braumoeller & Goertz, 2000;

Harvey, 2003). In psychology of causal reasoning, higher values are usually upward/to the left (e.g.,

Klayman & Ha, 1987; Mandel & Lehman, 1998). In organizational sciences, Dul, Hak, Goertz, and Voss

(2010) use higher values upward/to the right, which I use as the convention in this article because of its

similarity to conventions of Cartesian coordinate systems. I presume that X is the condition that needs to

be managed (e.g., event, characteristic, resource, effort) and that Y is an outcome that is desired (e.g.,

good performance).

5. This approach corresponds to the Method of Agreement in John Stuart Mill’s classic ‘‘A System of Logic’’

(Mill, 1843).

6. An empty space in the upper left corner corresponds to X is necessary for Y. An empty space is in the upper

right corner corresponds to –X is necessary for Y. An empty space in the lower left corner corresponds to X

is necessary for –Y. An empty space is in the lower right corner corresponds to –X is necessary for –Y. This

last statement is equivalent to X is sufficient for Y (‘‘floor’’).
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7. This example introduces the notion of a ‘‘virtually necessary condition’’ (Goertz & Mahoney, 2012). The

reason is that in practice exceptions may exist, such that truly deterministic interpretations of necessary

conditions do not apply. Dion (1998), Ragin (2000), and Dul and Hak (2008) refer to this phenomenon

as ‘‘probabilistically necessary,’’ ‘‘almost always necessary’’ or ‘‘usually necessary,’’ and ‘‘pragmatic

determinism,’’ respectively. Thus, when a necessary condition is not in place, there is ‘‘guaranteed’’ failure,

by which I mean that in practice there is ‘‘almost always’’ or ‘‘usually’’ failure.

8. The general expression for the number of levels of a discrete variable constructed from separate discrete

items is: L ¼ Lmax � Lmin þ 1, with Lmax ¼
PN

i¼1 NmaxðiÞ and Lmin ¼
PN

i¼1 NminðiÞ, where L ¼ number

of levels of the constructed variable, Lmax ¼ highest level of the constructed variable, Lmin ¼ lowest level of

the constructed variable, N¼ number of items from which the variable is constructed, i ¼ item number,

NmaxðiÞ ¼ highest level of the ith item, NminðiÞ ¼ lowest level of the ith item.

9. If theory or data permit, the piecewise linear function could also be a decreasing function. In this article, the

focus is on (piecewise) linear, nondecreasing ceiling lines.

10. It is assumed that X and Y have lower and upper limits, hence, cannot be infinite.

11. If data permit, the line could also be nonlinear or a decreasing function. In this article, the focus is on (pie-

cewise) linear, nondecreasing ceiling lines.

12. The multidimensional ceiling combines the two-dimensional ceiling lines of the separate conditions and is

obtained by taking the minimum ceiling value Yc for a given combination of the four conditions X1, X2, X3,

and X4; thus, the ceiling Yc for X1, X2, X3, X4 in the multidimensional space is the minimum of ([Y1c ¼ 0.

045 X1 þ 2.530], [Y2c ¼ 0.022 X2 þ 3.347], [Y3c ¼ 0.046 X3 þ 3.161], [Y4c ¼ 0.033 X4 þ 3.301]). If

necessary conditions are correlated, multivariate NCA will identify each as necessary, although correlated

necessary conditions may have the same underlying meaning. In the GRE example, several admission cri-

teria may be correlated (e.g., the GRE score, the TOEFL score), but each condition is individually neces-

sary and can produce failure.

13. Effect size names and symbols in the literature are inconsistent. Cumming (2012) discusses names and

symbols for Cohen’s d effect size of the difference between means. Cohen (1988) originally used the sym-

bol d for population effect size, whereas currently most researchers use d for sample effect size. I follow

Cumming’s approach to use d for sample effect size and reserve d for population effect size, although my d

for necessary condition effect size is unrelated to ‘‘Cohen’s d’’ for the effect size of the difference between

means.

14. When the ceiling line is linear, the maximum effect size is 0.5. Only for piecewise linear ceiling lines (e.g.,

the envelopment technique with free disposal hull [CE-FDH]) and for nonlinear ceiling lines (e.g., power

function Y ¼ X10) can the maximum effect size approach 1.

15. In the multivariate case, the decision rules for rejecting in kind necessary condition hypotheses applies to

each separate necessary condition. Although it is uncommon in the organizational sciences to formulate in

degree hypotheses, in degree necessary condition hypotheses could be formulated as ‘‘(level) X is neces-

sary for (level) Y’’, where (level) Y is for example a desired level of performance and (level) X is the min-

imum level of X that is expected to be necessary for that desired level of Y. In the multivariate situation,

several of such in degree hypotheses could be formulated separately. In degree necessary conditions can be

tested or induced with the bottleneck technique.

16. If one wishes to use a contingency table for calculating effect size in terms of number of cells, then the

ceiling zone is the number of empty cells in the upper left corner (in Figure 2, left: 3), and the scope is the

total number of cells (9) minus the number of cells from one column (3) minus the number of cells in one

row (3) plus 1. Hence, the effect size calculated from Figure 2, left is 3/(9 – 3 – 3 þ 1) ¼ 3=4.

17. The value X¼ Xcmax cannot be found with a ‘‘line through the middle’’ regression approach. For example,

the X value of the breakpoint in piecewise linear regression and the X value of the optimum point in non-

linear regression normally do not coincide with X ¼ Xcmax because the breakpoint and optimum point

depend on the distribution of observations below the ceiling line.
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18. ‘‘Trivialness’’ of a necessary condition is related to necessity inefficiency. Condition trivialness is the

extent to which the observations from a representative sample in the necessary condition zone, on average,

are clustered toward the maximum value of the necessary condition in that zone (Xcmax). Outcome trivial-

ness is the extent to which observations from a representative sample that are in the necessary condition

zone, on average, are clustered toward the minimum value of the outcome in that zone (Ycmin).

19. In the multivariate analysis presented in this article, combinations of necessary levels of determinants can

be considered as a necessary ‘‘AND’’ configuration. In a necessary configuration, each single determinant

is necessary, but the number and levels of necessary determinants can change depending on the level of the

outcome. Additionally, a configuration of necessary conditions may be part of a chain of necessary condi-

tions: X1 is necessary for X2, and X2 is necessary for X3, and so on, and the conditions may need to occur in

a specific temporal order for the outcome to exist (Hak, Jaspers, & Dul, 2013).

20. In qualitative comparative analysis (QCA), original (raw, base) data for X and Y are transformed

(‘‘calibrated’’) into fuzzy set membership scores between 0 and 1 (2 scores for ‘‘crisp’’ QCA and many for

‘‘fuzzy set’’ QCA). Therefore, the theoretical scope always equals 1. The empirical scope can be smaller if

the minimum and maximum observed scores are not 0 and 1, respectively. The reference line is the diag-

onal of the theoretical scope.

21. Goertz (2006a) also considers trivialness as an indication of (non)importance of a necessary condition.

22. The effect size measure of a necessary condition proposed in the present paper can be compared with

Goertz’s (2006a) ‘‘relevance’’ measure and Ragin’s (2006) ‘‘coverage’’ measure for the importance of a

necessary condition. When the ceiling line coincides with QCA’s reference line (no inefficiencies) and

when there are no observations above the ceiling line (Xi � Yi and therefore QCA’s ‘‘consistency’’ ¼
1), the effect size is 0.5, independent of the distribution of the observations below the ceiling line. However,

the relevance and coverage measures depend on this distribution: relevance ¼ 1
N

PN
i¼1ð

YðiÞ
XðiÞÞ and coverage

¼
PN

i¼1
YðiÞ

PN

i¼1
XðiÞ

, where N is the number of observations. Relevance and coverage reflect the level of sufficiency

of the necessary condition, with values between 0 and 1. A value of 1 indicates that all observations are on

the ceiling line and that the necessary condition is also sufficient.

23. The example is inspired by an article of the Dutch science writer, Hans van Maanen, who analyzed

the much cited statistical textbook example of the spurious relation between number of white storks

and the size of the population during the period 1929 to 1938 (Schüz, 1940; Van Maanen, 2010). He

showed that the data presented in this common example are incomplete (which resulted in a more

stylized example with fewer scattered data points) and that the selected outcome measure (population)

is not compatible with the hypothesis that storks bring babies. In my example, I used the complete

data set received from Van Maanen (January 19, 2014) with the number of newborns as the outcome

variable.

24. A more plausible explanation for the increase of the number of births is provided by Van Maanen (2010).

He suggests that this increase is due to the birth encouragement policy of the German regime prior to World

War II and that the increase of stork nesting pairs is a natural fluctuation.

25. In (genetic) biology, the ‘‘necessity’’ experiment is called a ‘‘loss-of-function’’ or ‘‘knock-out’’ experi-

ment, and a ‘‘sufficiency’’ experimental approach is called a ‘‘gain-of-function’’ or ‘‘knock-in’’ experiment

(e.g., Gilbert, 2000, p. 43). In medicine, an ‘‘elimination diet’’ (Rowe, 1944) is an example of a ‘‘necessity

experiment’’ to discover foods or ingredients that cause food allergy.

26. For example, in medicine it is accepted that pathogenic microorganisms, such as bacteria and viruses,

can be necessary but not sufficient causes of infectious diseases. For instance, the tubercle bacillus is a

necessary but not sufficient cause of tuberculosis (Stehbens, 1987), the Human Immunodeficiency Virus

(HIV) is a necessary but not sufficient cause of AIDS (Madsen, Hodge, & Ottman, 2011), and the

Human Papilloma Virus (HPV) is a necessary but not sufficient cause of cervical cancer (Walboomers

et al., 1999).
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27. Although the relationship between ingredients and Caesar salad is ontological (defining the concept,

Goertz, 2006b) and not causal, this example easily illustrates the fundamental difference between necessity

and sufficiency.
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Schüz, E. (1940). Bewegungen im Bestand des weissen Storches seit 1934. Ornithologische Monatsberichte,

48, 104-120.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for gen-

eralized causal inference. Boston, MA: Houghton Mifflin.

Simar, L., & Wilson, P. W. (1998). Sensitivity analysis of efficiency scores: How to bootstrapping nonpara-

metric frontier models. Management Science, 44(11), 49-61.

Spector, P. E., & Brannick, M. T. (2010). Common method issues: An introduction to the feature topic in orga-

nizational research methods. Organizational Research Methods, 13, 403-406.

Stehbens, W. E. (1987). On the ‘‘cause’’ of tuberculosis. Pathology, 19, 115-119.

Stone-Romero, E. F. (2002). The relative validity and usefulness of various empirical research designs. In S. G.

Rogelberg (Ed.), Handbook of research methods in industrial and organizational psychology (pp. 77-98).

Malden, MA: Blackwell.

Tulkens, H. (1993). On FDH efficiency analysis: Some methodological issues and applications to retail bank-

ing, courts, and urban transit. Journal of Productivity Analysis, 4(1), 183-210.

Vaisey, S. (2009). QCA 3.0: The ‘‘Ragin Revolution’’ continues. Contemporary Sociology 38(4), 308-312.

Dul 51

http://www.nedsi.org/proc/2013/proc/p121026014.pdf
http://www.nedsi.org/proc/2013/proc/p121026014.pdf
http://smr.sagepub.com/content/early/2013/03/21/0049124113481341/suppl/DC1
http://smr.sagepub.com/content/early/2013/03/21/0049124113481341/suppl/DC1


Van der Valk, W., Sumo, R. A. F., Dul, J., & Schroeder, R. (2015). When contracts and trust are both necessary

for innovation in buyer-supplier relationships (Working paper). Tilburg, The Netherlands: Tilburg

University.

Van der Valk, W., & Wynstra, F. (2012). Buyer-supplier interaction in business-to-business services: A typol-

ogy test using case research. Journal of Purchasing and Supply Management, 18(3), 137-147.

Van Maanen, H. (2010). Worden baby’s door ooievaars gebracht? [Are babies brought by storks?]. Nieuw

Archief voor Wiskunde, 5(11), 134-135.

Vis, B., & Dul, J. (2015). Analyzing relationships of necessity not just ‘‘in kind’’ but also ‘‘in degree’’:

Complementing fsQCA with NCA (Working paper). Amsterdam, The Netherlands: VU University

Amsterdam.

Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., . . . Muñoz, N.
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