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MEK and PI3K-AKT inhibitors synergistically block
activated IL7 receptor signaling in T-cell acute lymphoblastic
leukemia
K Canté-Barrett1, JAP Spijkers-Hagelstein2, JGCAM Buijs-Gladdines1, JCM Uitdehaag2, WK Smits1, J van der Zwet1, RC Buijsman2,
GJR Zaman2, R Pieters3 and JPP Meijerink1

We identified mutations in the IL7Ra gene or in genes encoding the downstream signaling molecules JAK1, JAK3, STAT5B, N-RAS,
K-RAS, NF1, AKT and PTEN in 49% of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Strikingly, these mutations
(except RAS/NF1) were mutually exclusive, suggesting that they each cause the aberrant activation of a common downstream
target. Expressing these mutant signaling molecules—but not their wild-type counterparts—rendered Ba/F3 cells independent of
IL3 by activating the RAS-MEK-ERK and PI3K-AKT pathways. Interestingly, cells expressing either IL7Ra or JAK mutants are sensitive
to JAK inhibitors, but respond less robustly to inhibitors of the downstream RAS-MEK-ERK and PI3K-AKT-mTOR pathways, indicating
that inhibiting only one downstream pathway is not sufficient. Here, we show that inhibiting both the MEK and PI3K-AKT pathways
synergistically prevents the proliferation of BaF3 cells expressing mutant IL7Ra, JAK and RAS. Furthermore, combined inhibition of
MEK and PI3K/AKT was cytotoxic to samples obtained from 6 out of 11 primary T-ALL patients, including 1 patient who had no
mutations in the IL7R signaling pathway. Taken together, these results suggest that the potent cytotoxic effects of inhibiting both
MEK and PI3K/AKT should be investigated further as a therapeutic option using leukemia xenograft models.

Leukemia (2016) 30, 1832–1843; doi:10.1038/leu.2016.83

INTRODUCTION
In the past two decades, T-cell acute lymphoblastic leukemia
(T-ALL) has been investigated extensively at the genetic level,
revealing several distinct T-ALL subtypes, each of which is
characterized by specific oncogenic lesions.1–5 Because these
lesions are generally considered to be the driving oncogenic
event, we call these aberrations type A mutations.5,6 Type A
mutations facilitate a differentiation arrest and are accompanied
by type B mutations,6,7 which can contribute to leukemogenesis
by disrupting a plethora of cellular processes (including the cell
cycle, epigenetic gene regulation and apoptosis), ultimately
resulting in the ectopic activation of several signaling pathways,
including the NOTCH1, JAK-STAT and PI3K-AKT pathways.5,8–14

Activating mutations in the IL7Ra gene, which encodes the
interleukin-7 receptor alpha chain, have been identified in
approximately 6% of pediatric ALL patients, with a slightly higher
prevalence reported in pediatric T-ALL patients (9%).15,16 The
majority of mutations in IL7Ra introduce a cysteine residue in the
juxta-membrane-transmembrane domain; this cysteine residue in
the mutant protein facilitates the formation of intermolecular
disulfide bonds, protein homodimerization and IL7-independent
signaling.15,16 The IL7Ra gene is one of many transcriptional
targets of NOTCH1; specifically, NOTCH1 binds to the distal IL7Ra
enhancer region.17 Under normal conditions, signaling through
the heterodimeric IL7 receptor (IL7Ra-common/γ-chain) is essen-
tial for the growth and survival of developing T cells.18,19 IL7R
activation leads to the recruitment, phosphorylation and activa-
tion of the Janus kinases JAK1 and JAK3, and to the activation of

the STAT5 and PI3K-AKT pathways.20 Ectopic expression of IL7 in
mice is oncogenic and results in the development of gamma-delta
T-cell lymphomas, which infiltrate the skin.21,22 In mice, the
development of IL7-induced T-cell lymphomas requires STAT5;23

in contrast, in human T-cell leukemias, IL7-dependent survival and
cell cycle progression require PI3K-AKT signaling.24,25 Thus, in
contrast to normal T cells, the role of IL7R-driven modulation of
JAK-STAT signaling in human T-ALL remains to be dissected.
Mutations in the JAK1 gene have been found in 4–27% of

primary T-ALL patients,13,14,26,27 as well as in acute myeloid
leukemia, pre-B-ALL and solid tumors.13,26–29 Mutant JAK1
molecules transform Ba/F3 pro-B cells and activate downstream
AKT and ERK signaling.13,14,29 Similar to the JAK2V617F mutation in
myeloid disorders,30–33 mutant JAK1 molecules must interact with
the IL7Ra chain to drive the ligand-independent activation of STAT
molecules.34,35 The JAK3 gene can also be mutated in T-cell
leukemias, as well as in acute megakaryoblastic leukemia;14,36–38

the majority of JAK3 mutations affect the protein’s pseudokinase
domain.38 JAK3 normally binds to the common γ-chain in the
IL7R39 and requires JAK1 to transform Ba/F3 cells.38 Mutations in
other IL7R signaling molecules have been identified in T-ALL,
including PTPN2,40 N/K-RAS,10 NF1,8 PTEN, PI3K and AKT.9,11,41,42

Here, we investigated the prevalence of mutations in the IL7Ra
gene and its downstream signaling molecules in a pediatric T-ALL
cohort. After identifying several mutations, we examined their
ability to transform Ba/F3 cells and their potential to activate
downstream JAK-STAT, RAS-MEK-ERK and PI3K-AKT-mTOR path-
ways. To find improved treatment for T-ALL patients, we tested
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the cytotoxic therapeutic effects of inhibiting these pathways, and
we investigated the added value of using combined inhibitor
therapies. Our results show that blocking two major signaling
pathways downstream of the IL7R is synergistic and may be
beneficial for patients with IL7R signaling mutations.

MATERIALS AND METHODS
Patient samples
Written informed consent was obtained from the parents or legal
guardians of each patient to use excess diagnostic material for research
purposes. The study was performed in accordance with the Institutional
Review Board of the Erasmus MC Rotterdam and in accordance with the
Declaration of Helsinki. Leukemic cells were harvested from blood or bone
marrow samples and were enriched to ⩾ 90% purity.

Mutation screen
We screened 146 patients for mutations in the FERM (4.1 protein, ezrin,
radixin and moesin), pseudokinase and kinase domains in all four Janus
kinase family members (encoded by the JAK1, JAK2, JAK3 and TYK2 genes),
for STAT5BN642H, and for the mutation hotspots in the N-RAS and K-RAS
genes. In this cohort, mutations in IL7Ra, NF1, PTEN and AKT had been
identified previously.8,16,41,42 Detailed information can be found in the
Supplementary Materials and Methods.

Ba/F3 transfectants
The Gateway multi-site recombination system (Life Technologies, Carlsbad,
CA, USA) was used to simultaneously clone multiple DNA fragments into
our Gateway-adapted pcDNA3.1 destination vector, which contains either
an SV40-driven neomycin resistance cassette or an SV40-driven puromycin
resistance cassette. Ba/F3 cells were transfected by electroporation, and
bulk-transfected cells were enriched to495% purity using the CD271 (that
is, the low-affinity nerve growth factor receptor or LNGFR) MicroBead kit
and magnetic separation (Miltenyi Biotec, Bergisch Gladbach, Germany).

Doxycycline-inducible expression in Ba/F3 cells
We developed a doxycycline-inducible system using murine Ba/F3 cells
(DSMZ, Braunschweig, Germany), a cell line that normally requires IL3 for
survival and proliferation (Supplementary Figure S1). Cell line identity was
confirmed by DNA fingerprinting and cells were regularly tested for
mycoplasma contamination. IL3 was withdrawn from the medium at
regular intervals to ensure that all selected Ba/F3 lines remained IL3-
dependent. Each transfected line was exposed to doxycycline for 24 h,
after which IL3-independent proliferation and activation of signaling
molecules were measured. All growth curves (± s.d., n=3) and IC50
determination of the inhibitors ( ± s.d., n=3) have been performed in at
least three independent experiments and are representative.

Cell survival assay
Patient cells were thawed and immediately cultured in duplicate in 384-
well plates (10 000 cells/well) in RPMI medium containing 10% heat-
inactivated fetal calf serum. Plated cells were incubated in a humidified
atmosphere of 5% CO2 at 37 ºC. Inhibitors were added 2 h after plating the
cells. Survival of patient cells was determined 72 h after addition of the
inhibitor(s) by the intracellular ATP content as an indirect measure of the
number of viable cells using ATPlite 1 Step solution (Perkin Elmer,
Waltham, MA, USA). Detailed information can be found in the
Supplementary Materials and Methods.

Inhibitors
The following inhibitors were obtained from Selleck Chem (Munich,
Germany, unless otherwise indicated): JAK inh 1 (Merck Millipore, Billerica,
MA, USA; #420099), ruxolitinib (#S1378), pimozide (Sigma-Aldrich,
Zwijndrecht, The Netherlands; #P1793), Ly294002 (Cell Signaling Technol-
ogy, Leiden, The Netherlands; #9901), MK-2206 (#S1078), rapamycin
(#S1039), CI-1040 (Axon Medchem, Groningen, The Netherlands; #1368),
AZD6244 (#S1008) and GDC-0941 (#S1065).

Antibodies
The following antibodies used for western blot analyses were obtained
from Cell Signaling Technology (unless otherwise indicated): phospho-
AKTS473 (#9271), phospho-ERK1/2 (#4370), phospho-JAK1 (#3331),
phospho-JAK2 (#3771), phospho-MEK1/2 (#9154), phospho-mTOR (#2971),
phospho-p70S6Kinase (#9204), phospho-STAT1 (#9167), phospho-STAT3
(#9145), phospho-STAT5 (#9351), phospho-TYK2 (#9321), DYKDDDDK
(#2368), CD127 (anti-IL7Ra; R&D Systems, Minneapolis, MN, USA; #MAB306),
RAS (Merck Millipore; #05-516) and β-actin (Sigma-Aldrich; #2547). The
following antibodies used for flow cytometry were obtained from Miltenyi
Biotec: CD127-FITC (#130-094-888) and CD271-APC (#130-091-884).

Statistics
Statistical analyses were performed using SPSS version 15.0. The Pearson’s
chi-square test was used to test for differences in normally distributed
data. If the number of patients in the individual groups was fewer than five,
the Fisher’s exact test was used. Statistical significance for continuously
distributed data was tested using the Mann–Whitney U test. Differences
were considered to be significant at Po0.05 (two-sided).

RESULTS
IL7R signaling mutations in T-ALL are mutually exclusive
To measure the prevalence of mutations in IL7Ra—and/or its
downstream signaling molecules—in pediatric T-ALL, we com-
pared the mutations identified in JAK family kinase genes, STAT5B
and RAS genes with mutations that we previously identified in
the IL7Ra, NF1, PTEN and AKT genes8,16,41,42 (Table 1 and
Supplementary Figure S1a). We found no mutations in either
JAK2 or TYK2. In contrast, mutations were identified in the JAK1
and JAK3 genes of 10 patients; 2 of these patients had mutations
in both JAK1 and JAK3. The JAK1R724H, JAK3M511I and JAK3R657Q

mutations have been reported by others;13,14,26,36,38 the remaining
five JAK1 mutations were identified by us as part of this study and
recently modeled in the putative JAK1 protein structure.43

Mutations in either N-RAS or K-RAS were identified in 15 patients,
and inactivating deletions and mutations in NF1 had been
previously detected in three additional patients.8 NF1 is a RAS-
GTPase-activating protein that catalyzes the hydrolysis of active
RAS-GTP into inactive RAS-GDP. Three patients with a mutation in
N-RAS, K-RAS or NF1 also had a JAK1 and/or JAK3 mutation, three
patients had a mutation in IL7Ra, and four patients had a PTEN-
inactivating event. Aside from RAS, the overlap of mutations in
IL7Ra, JAK, STAT5B, PTEN and AKT is rare in T-ALL patients. Thus, in
our cohort, mutations in IL7Ra, JAK, STAT5B, PTEN and AKT were
mutually exclusive from each other, and occurred rarely with
mutations in either N-RAS or K-RAS. We found that patients with
the TLX subtype of T-ALL had a high prevalence of IL7Ra
mutations (P= 0.001), whereas patients with the proliferative or
ETP-ALL subtype had no mutations in IL7Ra (Table 2). Only one JAK
mutation was identified in the TALLMO patient group (P= 0.039),
and mutations in RAS or NF1 were most prevalent among ETP-
ALL14 and TLX patients (P= 0.016 and P= 0.044, respectively;
Table 2). Overall, activating mutations in the IL7Ra, JAK-STAT,
RAS-MEK-ERK or PI3K-PTEN-AKT-mTOR pathways were identified
in 49% of our pediatric T-ALL patients and were nearly mutually
exclusive, suggesting that these mutations are functionally
redundant in T-ALL.

Mutations in IL7R signaling molecules can transform cells
Next, we asked whether expressing the identified IL7R signaling
mutations could transform Ba/F3 cells, rendering the cells IL3-
independent. We generated doxycycline-inducible expression
constructs for C-terminal DDK-tagged mutant JAK1, JAK3 and
AKT, as well as non-tagged mutant IL7Ra and N-RAS proteins; for
each mutant protein, a construct encoding the corresponding
wild-type protein was also generated (Supplementary Figures S1b
and S1c). Stably transfected bulk cell lines were sorted based on
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the constitutive expression of truncated NGFR (Supplementary
Figure S1d); none of these bulk cell lines were able to proliferate in
the absence of doxycycline and IL3 (data not shown). Treating the
cells with doxycycline induced the expression of wild-type or
mutant IL7Ra (Supplementary Figure S1d), DDK-tagged JAK
(Supplementary Figure S1e), DDK-tagged AKT (Supplementary
Figure S1e) and RAS (Supplementary Figure S1f). The doxycycline-
induced expression of the mutant molecules IL7RaRFCPH (as a
representative for all cysteine-containing IL7Ra mutants),
JAK1R724H, JAK1T901G, JAK3M511I, JAK3R657Q, N-RASG12D and AKTE17K

transformed Ba/F3 cells, rendering them IL3-independent. In
contrast, inducing the expression of the respective wild-type
counterparts failed to transform any of the bulk cell lines
(Figures 1a and b). Importantly, all bulk lines grew equally well
in the presence of IL3 (Supplementary Figure S1g), indicating that
the observed differences in growth rates in the absence of IL3
reflect differences in the transforming potential of the mutant
molecules.
Interestingly, the cysteine-containing mutant IL7RaRFCPH was

able to form homodimers (Supplementary Figure S2), which
is required for interleukin-independent signaling and
transformation.15,16 In contrast, the non-cysteine-containing
IL7RaV253GPSL mutant did not transform Ba/F3 cells (Figure 1a),
nor did it form homodimers (Supplementary Figure S2). The cell
lines expressing either wild-type IL7Ra or the IL7RaGPSL mutant
grew in the presence of IL7 (data not shown), suggesting that
IL7RaGPSL forms a signaling-competent receptor in the presence of
IL7. The AKTE17K cell line proliferated at a slower rate than the
mutant JAK and IL7Ra lines. Lastly, although expressing N-RASG12D

did not provide an immediate proliferation advantage, within
7 days of doxycycline induction, these cells reached a rate of
proliferation that was on par with the mutant JAK and IL7Ra cell
lines (Figure 1b). The activating STAT5BN642H mutation transforms
Ba/F3 cells44 but was not functionally investigated as part of
this study.

Mutations in the IL7R pathway induce ligand-independent
downstream signaling
Next, we investigated the ability of the mutant and wild-type
molecules to activate downstream IL7R signaling (Figures 1c-e).
First, we confirmed that the STAT5, RAS-MEK-ERK and AKT-mTOR
pathways were activated in all bulk cell lines upon the addition of
IL3 following overnight IL3 starvation. Upon doxycycline induc-
tion, each cell line expressed its wild-type or mutant protein
within 2–4 h (Figures 1c-e, Supplementary Figure S3). In the
presence of IL7, the cell lines expressing wild-type IL7Ra, IL7RaGPSL

and IL7RaRFCPH activated downstream signaling pathways; in the
absence of IL7, only the cysteine mutant IL7RaRFCPH activated
downstream signaling. In addition to activating the JAK-STAT and
PI3K-AKT-mTOR pathways,16,45 IL7RaRFCPH can also activate MEK-
ERK signaling (Supplementary Figure S3). Expressing the
JAK1R724H, JAK1T901G, JAK3M511I or JAK3R657Q mutants—but not
wild-type JAK1 or JAK3—activated the MEK-ERK and PI3K-AKT-
mTOR pathways, as well as the downstream kinase S6K (Figures
1c-e and Supplementary Figure S3). N-RASG12D robustly activated
downstream MEK-ERK signaling, as well as AKT-mTOR and the
downstream target S6K (Figure 1e). Interestingly, inducing
the expression of wild-type N-RAS also activated the same
downstream molecules, albeit with a slower time course than
the N-RASG12D mutant (Supplementary Figure S3), even though
wild-type N-RAS did not transform Ba/F3 cells (Figure 1b). Similar
effects were observed with respect to the AKTE17K mutant and its
wild-type counterpart: induction of both proteins led to their self-
activation and the downstream activation of mTOR and S6K
(Supplementary Figure S3), whereas only the AKTE17K line was able
to transform Ba/F3 cells (Figure 1b).Ta
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A close examination of signaling strength revealed that the
JAK1 mutant molecules (that is, JAK1R724H and JAK1T901G)
activated downstream signaling more robustly than the
IL7RaRFCPH, JAK3M511I and JAK3R657Q mutants (Figure 1e). Indeed,
the JAK3 mutants only weakly activated downstream signaling
(Supplementary Figure S3), even though the transforming
efficiency of the JAK3 mutants was similar to—if not higher
than—the JAK1 mutants (Figure 1a). Thus, the signaling strength
of these molecules does not appear to be correlated with their
transforming potential.

Pharmacological inhibition of the IL7R pathway
Next, we tested a variety of pharmacological inhibitors for their
ability to block signaling and cell proliferation, as well as their
ability to induce cell death in cell lines expressing mutant
signaling molecules (Figures 2 and 3). Importantly, in the absence
of doxycycline (but in the presence of IL3), all cell lines were
equally responsive to the inhibitors. Upon addition of doxycycline
(and in the absence of IL3), the mutant IL7Ra, JAK1 and JAK3 lines
became sensitive to the selective JAK1/2 inhibitor ruxolitinib; in
contrast—and as expected—inducing the expression of the
mutant N-RAS and AKT molecules induced ruxolitinib resistance
(Figure 2a). Consistent with these results, ruxolitinib blocked the
activation of STAT5, MEK, ERK, AKT and mTOR in the IL7RaRFCPH

and JAK1T901G mutant lines, but not in the N-RASG12D or AKTE17K

mutant lines (Supplementary Figure S4).
Inhibiting STAT5 with pimozide had no effect on any of the

mutant lines, with the exception of a moderate effect on the JAK1
mutant lines (data not shown); thus, signaling molecules other
than STAT5 are important for maintaining cell viability and
proliferation. Although the N-RASG12D mutant line was resistant to
the PI3K inhibitor Ly294002 and the AKT inhibitor MK-2206
(Figures 2c and d), this line was sensitive to the RAS inhibitor
tipifarnib (data not shown) and the MEK inhibitor CI-1040
(Figure 2b). In this cell line, tipifarnib reduced the levels of
phosphorylated MEK and phosphorylated ERK, whereas CI-1040
increased the levels of phosphorylated MEK but decreased the
levels of phosphorylated ERK (Supplementary Figure S4). Both JAK
mutant lines were also sensitive (to varying degrees) to the MEK
inhibitor CI-1040, whereas the IL7RaRFCPH and AKTE17K lines were
completely resistant to CI-1040 (Figure 2b). Moreover, inhibiting
MEK increased AKT phosphorylation in the IL7RaRFCPH and
JAK1T901G lines (Supplementary Figure S4); this effect is likely a
cellular escape mechanism used to activate an alternative survival
pathway. The JAK1 and JAK3 mutant lines were also sensitive to
inhibitors of PI3K and AKT (Ly294002 and MK-2206, respectively);
in contrast, the IL7RaRFCPH line was completely resistant to these
inhibitors (Figures 2c and d). Because most JAK mutants are very
sensitive to PI3K inhibition and respond to a lesser degree to MEK
inhibition, JAK mutants may preferentially signal via PI3K-AKT. As
expected, the AKTE17K line was highly sensitive to both Ly294002
and MK-2206 (Figures 2c and d, Supplementary Figure S4). Finally,

the N-RASG12D line retained S6K activity in the presence of PI3K,
AKT and mTOR inhibitors (Supplementary Figure S4), providing
further evidence that S6K is a common target downstream of
PI3K-AKT-mTOR and RAS-MEK-ERK pathways and can be used as a
measure of activity for both pathways (Figure 3a).
As shown above, the IL7Ra and JAK mutant proteins activated

both the RAS-MEK-ERK and the PI3K-AKT-mTOR pathways;
moreover, inhibiting MEK led to the activation of AKT. Therefore,
we tested the effect of treating cells with various combinations of
MEK, PI3K and AKT inhibitors, using phosphorylated S6K levels as a
measure of signaling activity (Figure 3b). Individually, none of
these inhibitors completely silenced downstream signaling in
either the IL7RaRFCPH or the JAK1T901G cell line. In contrast,
combining CI-1040 with Ly294002 or MK-2206 completely blocked
the activation of ERK, AKT, mTOR and S6K (Figure 3b). Thus, we
hypothesized that these combinations of inhibitors may exert
synergistic cytotoxic effects in cells carrying mutations in IL7
signaling molecules.

Synergistic inhibition using combinations of MEK and PI3K/AKT
inhibitors
To test the hypothesis that applying combinations of inhibitors
has a synergistic effect on cytotoxicity, we first exposed each
mutant cell line to serial dilutions of the MEK inhibitor AZD6244,
the PI3K inhibitor GDC-0941 and the AKT inhibitor MK-2206, each
of which is used clinically. After we obtained IC50 values for each
inhibitor, cytotoxicity was then measured using serial dilutions of
inhibitor combinations that were prepared at three different fixed
ratios (1:1, 4:1 and 1:4); for an example of this approach, see
Supplementary Figure S5. Synergy was then tested by calculating
the combination index for each inhibitor combination’s dose–
response curve relative to the respective single inhibitors’ dose–
response curves. For each mutant line (with the exception of
AKTE17K), the MEK+PI3K and/or MEK+AKT inhibitor combinations
were synergistic (Table 3). Interestingly, these two combinations
had a synergistic effect in the N-RASG12D line, in which AKT is
activated (Figure 1e, Supplementary Figure S3).
Lastly, to investigate the potential clinical relevance of these

findings, we tested the synergistic effects of MEK+PI3K and MEK
+AKT inhibitor combinations using primary leukemic cells
obtained from 11 T-ALL patients. Specifically, we tested the
efficacy of the MEK inhibitors AZD6244 and trametinib, the PI3K
inhibitor GDC-0941, the PI3K/mTOR inhibitor GDC-0980 and the
AKT inhibitor MK-2206, as well as various combinations of these
inhibitors (Table 4). Six of the 11 patient samples had a
measurable synergistic response to the inhibitor combinations
tested. Five cases were relatively resistant, because the IC50 of one
or both of the inhibitors could not be determined and/or the
maximum efficacy was lower than is necessary to determine the
effective dose for 50 or 75% of responding cells. Therefore, no
synergy could be determined in these five cases. Interestingly, one
(patient #3821) of the five samples in which we could not measure

Table 2. Co-occurrence of IL7Ra, JAK1 and/or JAK3, and N-RAS, K-RAS and/or NF1 mutations with unsupervised gene expression profile clusters or
T-ALL subtypes

T-ALL subtype IL7Ra cysteine mutations (n= 7) JAK1 and/or JAK3 mutations (n=9) N-RAS, K-RAS and/or NF1 mutations (n= 20)

P-value P-value P-value

ETP-ALL (n= 15) 0 (0%) 0.59 3 (20.0%) 0.09 6 out of 13 (46.2%) 0.016
TLX (n= 30) 6 (20.0%) 0.001 4 (13.3%) 0.23 9 out of 27 (33.3%) 0.044
Proliferative (n= 19) 0 (0%) 0.60 1 (5.3%) 1 0 out of 17 (0%) 0.038
TALLMO (n= 53) 1 (1.9%) 0.13 1 (1.9%) 0.039 5 out of 48 (10.4%) 0.047
Total (n= 117) 7 (6.0%) 9 (7.7%) 20 (17.1%)

Abbreviations: T-ALL, T-cell acute lymphoblastic leukemia. The bold is used for significant values. Note: we reported previously that PTEN and AKT mutations
predominantly fall in the TALLMO subgroup.41,42
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Figure 1. Transforming potential of activating mutations in IL7R signaling molecules in Ba/F3 cells. (a, b) Growth curves of Ba/F3 cell lines
expressing the indicated IL7Ra, JAK1, JAK3, N-RAS and AKT constructs (n= 3 experiments per group) following induction with doxycycline.
N-RASG12D ‘Dox-grown’ represent the growth curve of N-RASG12D mutant Ba/F3 cells after full adaptation to the mutant molecule. Each culture
was started with 2 ×105 cells on day 0 after extensive washing to remove IL3. The inset in panel b shows an expanded view of the first 12 days
of culture. (c–e) Western blot analysis of DDK-tagged and phosphorylated/total proteins from Ba/F3 cells treated in the presence or absence of
IL3 or doxycycline (DOX). β-Actin was used as a loading control.
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a synergistic response had no mutations in NOTCH1, IL7Ra, JAK1,
JAK3 or RAS and was resistant to all inhibitors tested, suggesting
that the survival and proliferation of these leukemic cells do not
require these signaling pathways.

DISCUSSION
Here, we report that activating mutations in the signaling
molecules IL7Ra, JAK1/3,STAT5B, PTEN and AKT were mutually
exclusive in a cohort of 146T-ALL patients, indicating that these
mutations have shared mechanisms for cell survival and/or
proliferation. Ten out of 24 N-RAS/K-RAS/NF1 mutations occurred
in combination with other IL7R pathway mutations. In Down
Syndrome ALL, RAS and JAK2 mutations are mutually exclusive.46

Some of our mutations—for example, mutations in the IL7Ra, JAK
and RAS genes—were more prevalent in patients with the TLX and
ETP-ALL subtypes of T-ALL. These cases frequently also carry
mutations in NOTCH1 and/or FBXW7; in particular, most patients
with the TLX subtype carry strongly activating mutations in
NOTCH1.47 A similar association with Notch1 mutations was also

reported in mouse models of T-ALL induced by mutations in K-Ras
and RasGRP1.48–50

The majority of mutations in the IL7Ra gene introduce a
cysteine residue, which facilitates receptor homodimerization and
IL7-independent signaling.15,16 Although the cysteine mutant
IL7RaRFCPH confers IL7-independent growth and signaling,
the function of non-cysteine mutations (for example,
IL7RaGPSL) is not currently understood. We found that the non-
cysteine IL7RaGPSL mutant supports the growth of Ba/F3 cells
better than the wild-type IL7Ra; thus, non-cysteine IL7Ra muta-
tions may promote leukemogenesis by increasing the IL7
response.
Activating mutations in the IL7R signaling pathway can act at

different levels and to varying degrees. For example, the JAK3
mutant Ba/F3 lines grew robustly in the absence of IL3, but their
potential to activate downstream signaling molecules was
relatively weak compared with the JAK1 and IL7Ra mutants. The
strongest level of activation was conferred by the JAK1 mutations,
conferring even stronger activation than the IL7RaRFCPH mutant.
These differences in activation strength may be due to different
properties of the mutant molecules. JAK3 mutant Ba/F3 cells
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signal to STAT5 and ERK, but this signaling was generally weaker
than that in the JAK1 mutant.38 Furthermore, IL7Ra mutations that
facilitate the formation of IL7Ra homodimers primarily recruit JAK1
molecules rather than JAK3 molecules, activate JAK1 but not JAK3
and also require JAK1 (but not JAK3) to activate STAT5.16,51

Conversely, mutant JAK3 molecules require a functional cytokine
receptor complex, likely via binding to the common γ-chain;39,52

however, they also require JAK1 for ligand-independent
signaling.38 This may explain why two of our patients with JAK3
mutations also have a JAK1 mutation. Weak signaling by JAK3
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Table 3. MEK and PI3K/AKT pathway inhibitors display synergy in most Ba/F3 mutant lines

Ba/F3 line Inhibitor 1 Inhibitor 2 Inhibitor 1+2

MEK1/2 inhibitor IC50 (μM) PI3K or AKT inhibitor IC50 (μM) CI at ED50 (mean ± s.d.) Synergy

IL7Ra_RFCPH AZD6244 20.9 GDC-0941 9.2 0.33± 0.15 +
AZD6244 20.1 MK-2206 4.4 0.68± 0.12 +

JAK1_R724Q AZD6244 24.2 GDC-0941 3.9 0.28± 0.08 + +
AZD6244 20.6 MK-2206 7 0.57± 0.18 +

JAK1_P815S AZD6244 65.6 GDC-0941 1.6 0.56± 0.08 +
AZD6244 41.8 MK-2206 1.9 0.46± 0.06 +

JAK1_T901G AZD6244 4.1 GDC-0941 1.4 0.79± 0.06 +
AZD6244 3 MK-2206 1.1 1.32± 0.79 −

JAK3_M511I AZD6244 17.8 GDC-0941 1.7 0.45± 0.15 +
AZD6244 12.2 MK-2206 3.2 0.46± 0.17 +

JAK3_R657Q AZD6244 22.9 GDC-0941 4 0.27± 0.02 + +
AZD6244 20.1 MK-2206 7.9 0.56± 0.08 +

N-RAS_G12D AZD6244 2.7 GDC-0941 1.1 0.70± 0.05 +
AZD6244 2.2 MK-2206 1.3 0.68± 0.08 +

AKT_E17K AZD6244 ND (o20%) GDC-0941 0.4 0.71± 0.17 +
AZD6244 ND (o20%) MK-2206 0.05 0.80± 0.58 −

IC50 of each inhibitor in μM, with ~ 100% efficacy (except where indicated) ND (o20%): IC50 could not be determined and the inhibitor had low maximum
efficacy (o20%) CI: mean Combination Index of the 1:1, 1:4 and 4:1 combinations at the 50% effective dose (ED50) − : CI 41.0 (no synergy); +: CI o1.0
(synergy); ++: CI o0.3 (strong synergy).

Table 4. MEK and PI3K/AKT pathway inhibitors display synergy in approximately half of the tested primary T-ALL samples

Mutations AND ID T-ALL patients Inhibitor 1 Inhibitor 2 Inhibitor 1+2 Synergy

MEK1/2
inhibitor

IC50 (nM)
(% efficacy)

PI3K, mTOR, or
AKT inhibitor

IC50 (nM)
(% efficacy)

CI at ED50
(mean ± s.d.)

CI at ED75
(mean ± s.d.)

TLX3tr, mutations in IL7Ra, NRAS, NOTCH1 (HD domain), WT1, BCL11B, CDH9, STIL
6 AZD6244 79 (73%) GDC-0941 346 (63%) 0.39± 0.02 N/A +

trametinib 2 (80%) GDC-0980 210 (64%) 0.79± 0.18 0.36± 0.17 +

HOXA (Inv(7)), mutations in IL7Ra, NOTCH1 (PEST domain), WT1, ZNF717
7 AZD6244 214 (51%) GDC-0941 848 (87%) 0.29± 0.15 0.11± 0.05 + +

trametinib 132 (79%) GDC-0980 156 (86%) 0.76± 0.06 0.47± 017 +

TLX3tr, TCRyd+, mutation in WT1, no mutations in NOTCH1, IL7Ra, JAK1, JAK3, N/K-RAS
3976 AZD6244 143 (56%) GDC-0941 540 (62%) 0.33± 0.01 0.39 +

AZD6244 143 (56%) MK-2206 2594 (73%) 0.49± 0.23 0.61± 0.18 +
3543 AZD6244 ND (o20%) GDC-0941 925 (84%) 0.79± 0.07 0.81± 0.09 +

trametinib ND (o20%) GDC-0980 322 (93%) 0.82± 0.09 0.79± 0.07 +
9175 AZD6244 101 (44%) GDC-0941 351 (85%) 0.65± 0.02 0.39± 0.07 +

AZD6244 101 (44%) MK-2206 105 (68%) 0.49± 0.08 N/A +
9791 AZD6244 95 (31%) GDC-0941 195 (87%) 0.52± 0.23 0.28± 0.09 +

AZD6244 64 (34%) MK-2206 72 (60%) 0.54± 0.10 N/A +
trametinib 53 (64%) GDC-0980 54 (78%) 0.34± 0.08 0.07± 0.04 + +

HOXA, mutations in IL7Ra, NOTCH1 (JM domain), FREM2, RUNX1
11 AZD6244 32 (22%) GDC-0941 164 (o20%) N/A N/A N/A

trametinib 175 (45%) GDC-0980 404 (52%) N/A N/A N/A

LMO3-TCRBtr, mutations in PTEN, BCL11B, no mutations in NOTCH1, IL7Ra, JAK1, JAK3, N/K-RAS
53 AZD6244 ND (o20%) GDC-0941 473 (60%) N/A N/A N/A

AZD6244 ND (o20%) MK-2206 125 (49%) N/A N/A N/A

TCRyd+, no mutations in NOTCH1, IL7Ra, JAK1, JAK3, N/K-RAS
3821 AZD6244 ND (o20%) GDC-0941 2005 (20%) N/A N/A N/A

AZD6244 ND (o20%) MK-2206 ND (33%) N/A N/A N/A
7267 AZD6244 ND (o20%) GDC-0941 278 (75%) 0.87 N/A −

AZD6244 ND (o20%) MK-2206 72 (51%) 1.17 N/A −
10880 AZD6244 ND (o20%) GDC-0941 537 (56%) 1.04± 0.08 N/A −

trametinib ND (66%) GDC-0980 226 (65%) 1.09± 0.32 0.29± 0.08 − /+

Note that patients # 6, 7, 11 and 46 correspond to those in Table 1. IC50 of each inhibitor in nM, with % efficacy indicated ND (o20%): IC50 could not be
determined and the inhibitor had low maximum efficacy (o20%). CI: Mean Combination Index of the 1:1, 1:4 and 4:1 combinations at the 50% and 75%
effective doses (ED50 and ED75) − : CI 41.0 (no synergy); +: CI o1.0 (synergy); ++: CI o0.3 (strong synergy); N/A, not applicable.
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mutants cannot be explained by low endogenous expression of
the IL7Ra/IL2cγ heterodimeric receptor in Ba/F3 cells, as these
JAK3 mutations also result in weaker downstream signaling
compared with JAK1 and IL7Ra mutations when measured in
SUPT1 and P12 Ichikawa T-ALL cell lines (both of which express
IL7Ra/IL2cγ receptors; data not shown).
Mutations in the IL7R signaling pathway may provide a

therapeutic window of opportunity. We used the Ba/F3 model
system to measure cellular responses to a variety of signaling
inhibitors in the context of specific individual mutations. Strikingly,
the IL7Ra, JAK and RAS mutant lines had different responses to
MEK, PI3K and AKT inhibitors. For example, JAK mutants seem to
be more sensitive to PI3K inhibition and less to MEK inhibition,
suggesting JAK mutants preferentially signal through PI3K-AKT.
Moreover, inhibiting MEK increased the activation of AKT in some
cell lines, possibly because of a cellular escape mechanism.
Combining a MEK inhibitor with either a PI3K inhibitor or an AKT
inhibitor robustly blocked downstream signaling and had a
synergistic cytotoxic effect in nearly all Ba/F3 lines tested. This
synergy underscores the importance of both MEK-ERK and PI3K-
AKT-mTOR downstream pathways, as well as the need for
combined inhibition of these pathways. Interestingly, none of
the lines responded to the STAT5 inhibitor pimozide, suggesting
that activation of STAT5 may not be a common survival pathway
downstream of mutant IL7Ra or JAK molecules. Ba/F3 cells are
transformed by the activating STAT5BN642H mutation,44 but this
mutation was not functionally investigated as part of this study;
nonetheless, it would be interesting to assess the sensitivity of
STAT5BN642H mutant cells to the inhibitors tested here.
Combined therapy using MEK and PI3K inhibitors has been

suggested as a viable treatment option for several solid
tumors.53–56 With respect to acute myeloid leukemia, MEK and
AKT inhibitors have been combined in a current phase II study
(trial NCT01907815). This combination of inhibitors may prevent
the cross-activation of one pathway upon inhibition of the
other,57,58 for example, as suggested for the activation of AKT
by RAS (this study) and for the activation of ERK by the PI3K-
dependent feedback loop involving mTORC1.59 More than half of
the primary T-ALL patient samples that we tested had a synergistic
response to inhibitors of the RAS-MEK and PI3K-AKT pathways,
suggesting that these patients will benefit from compounds that
inhibit downstream IL7R signaling. Historically, our laboratory and
others have correlated in vitro cytotoxicity to in vivo response for
many chemotherapeutics and many patients, so it seems that the
in vitro data are a good indicator of in vivo response,60–64

especially in T-ALL.65 Patient cells only survive in culture for
several days, but do not proliferate. The in vitro cytotoxicity assay
measures cell survival over the course of 3 days in the absence of
cytokines and stromal cell support. This assay was chosen because
cytokines and stromal support conditions may induce cell growth,
which would lead to results in which the potential effects of
inhibitors on cell survival versus cell growth could not be
separated. The efficacy of inhibitors should not reflect the efficacy
of cell cycle inhibition but should reflect the potential to kill
leukemia cells. Moreover, cytokine addition or stromal support
does not consistently support growth of all patient samples,
adding an extra variable in the results. Interestingly, one primary
T-ALL patient (case #3976) lacks mutations in IL7R signaling, but
leukemic cells from this patient had a synergistic response to MEK
+PI3K and MEK+AKT inhibitor combinations, suggesting the
presence of additional mutations and/or oncogenic mechanisms
that apparently depend on the MEK-ERK and PI3K-AKT-mTOR
signaling pathways. This finding also underscores the importance
of performing in vitro inhibitor testing in addition to screening for
mutations; this dual diagnostic strategy can be used to stratify
patients in specific treatment groups.
Finally, our results may also be relevant to precursor B-ALL

patients with mutations in IL7R signaling molecules.14,15

Furthermore, the incidence of RAS mutations is higher in relapsed
patients with ALL, and this is likely due to selection of RAS mutant
subclones during therapy.66

In conclusion, we report that combining MEK inhibitors with
PI3K or AKT inhibitors has synergistic cytotoxic effects in leukemic
cells carrying mutations at various levels in the IL7R signaling
pathway. In addition, this combination of inhibitors may also be
toxic to cells without apparent IL7R pathway mutations. Therefore,
the cytotoxic effects of combining MEK inhibitors with PI3K and/or
AKT inhibitors warrant further study of in vitro and in vivo models
using leukemic cells from primary and relapsed ALL patients.
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