
Brain cholesterol in normal and pathological aging

Aberrations in cerebral cholesterol
homeostasis can lead to severe neuro-
logical diseases and have recently been
linked to Alzheimer’s Disease (AD)
(Maxfield and Tabas, 2005; Tint et al.,
1995;Marx, 2001; Puglielli et al., 2004).
AD is a slowly progressing neurodege-
nerative disease that is neuropathologi-
cally characterized by senile plaques,
with amyloid-b as a key protein, neuro-
fibrillary tangles, loss of synapses, and
often by vascular dysfunction and
inflammatory processes. Recent find-
ings strengthen the link between brain
cholesterol metabolism and factors
involved in synaptic plasticity, a process
essential for learning and memory
functions. A number of the known risk
factors for AD are related to cholesterol
metabolism. APOE4, one of the three
common isoforms of APOE, is the
strongest known genetic risk factor for

AD (Corder et al., 1993). Apolipoprotein
E (apoE) is best known for its role in
cholesterol trafficking in the periphery
and it is thought to exert a similar
function within the central nervous
system (Pitas et al., 1987). Additionally,
hypercholesterolemia atmiddle age and
a high fat intake have been associated
with an increased risk of AD, and use of
statins, cholesterol synthesis lowering
agents, have been associated with
a reduced risk (Haag et al., 2008;
Wolozin, 2004) Although, the latter
remains controversial and it is unlikely
that statins exert their effects via an
inhibition of the cholesterol synthesis
rate within the brain. Moreover, the
lipid composition of membranes,
including the cholesterol level, has been
reported to affect the splicing of amy-
loid from its trans-membrane precursor
protein (Puglielli et al., 2001; Frears

et al., 1999; Simons et al., 1998).
Interestinly, the cholesterol synthesis
rate within the brain decreases with
age and has been suggested to be
associated with an increased decline of
memory functions (Thelen et al., 2006).

Many proteins involved in peripheral
cholesterol metabolism are also present
in the brain. Yet, brain cholesterol
metabolism is very different from that
in the remainder of the body. The brain
makes up about 2% of the total body
weight, but contains almost 25% of all
free cholesterol. Lipoproteins present in
the circulation are prevented from
entering the brain by the blood-brain
barrier and thus all cholesterol is syn-
thesized endogenously predominantly
by astrocytes (Dietschy and Turley,
2001; Legleiter et al., 2004; Xu et al.,
2006). There is a daily synthesis of at
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least 6 mg of cholesterol in the brain.
Because cholesterol cannot be
degraded and high amounts of free
cholesterol are toxic to cells, neurons in
particular, the excess is secreted from
the brain. About 60% is secreted in the
form of brain specific 24(S)-hydroxy-
cholesterol, a more polar metabolite of
cholesterol (Lund et al., 1999; Babiker
et al., 1997; Bjorkhem et al., 1997,
Bjorkhem et al., 1998; Lutjohann et al.,
1996).The neuron-specific enzyme cho-
lesterol 24S-hydroxylase, CYP46A1, is
responsible for the conversion. In addi-
tion apoE-containing high density lipo-
protein-like particles may be involved
in the secretion of the remaining 40% of
cholesterol from the brain either directly
into the circulation or via the cerebro-
spinal fluid (CSF) (Rebeck, 2004;
Shafaati et al., 2007).

Trafficking of cholesterol
between astrocytes and
neurons

There is evidence indicating that neu-
rons largely shut down their cholesterol
synthesis after birth and rely on astro-
cytes for their cholesterol supply,
because they would need their energy
for maintenance of ion-gradients across
membranes for electrical and chemical
signaling (Pfrieger, 2003; Posse De
Chaves et al., 2000). Neurons require
cholesterol for a number of different
functions including vesicle transport,
neurotransmitter release and as a pre-
cursor for neurosteroids.Moreover, they
need cholesterol for the generation of
new membranes for example for the
formation of new synapses during a
process called synaptic plasticity; the
reorganization of synaptic contacts
between neuronal axons and dendrites
or somata of other neurons which
occurs during learning (Pfrieger,
2003). Cholesterol is being secreted
by astrocytes in the form of high density
lipoprotein (HDL)-like particles contain-
ing apoE as a major protein (Legleiter
and LaDu, 1998; Gong 2002). The
particles secreted by astrocytes differ
slightly from those in plasma with
respect to their size, shape and aggre-
gation properties. We have recently
shown that 24(S)-hydroxycholesterol
that is being secreted by neurons is
involved in regulating this process, by
stimulating the secretion of apoE-con-
taining HDL-like particles from astro-

cytes (Abildayeva et al., 2006). 24(S)-
hydroxycholesterol activates so-called
liver X receptors (LXRs), which are
master regulators of cholesterol homeo-
stasis. LXRs belong to the nuclear
hormone receptor superfamily, of which
the two forms, LXRa and LXRb, are
present in the brain (Whitney et al.,
2002; Eckert et al., 2007). This results in
induction of apoE production and
secretion, and in an enhanced choles-
terol secretion. Because the expression
of the ATP-binding cassette transporters
A1 and G1 was upregulated, these may
be involved in controlling the secretion.

Cerebral cholesterol
homeostasis as a
therapeutical target in
Alzheimer’s Disease?

The process of cholesterol supply from
astrocytes to neurons may be compro-
mised in AD. A number of genes
encoding proteins involved in this
process, have been associated with
AD, such as APOE, ABCA1, CYP46A1.
Increased plasma and CSF levels of 24
(S)-hydroxycholesterol have been
found in early stages of AD, while
reduced levels were observed in later
stages, possibly due to the loss of
CYP46A1-expressing neurons, which
are the metabolically active ones
(Heverin et al., 2004; Papassotiropoulos
et al., 2002; Lutjohann et al., 2000).
Moreover, the levels of HDL-like par-
ticles were found to be strongly reduced
in post mortem CSF of AD patients
(Papassotiropoulos et al., 2002; Mulder
et al., 1998).

Asmentioned, a strict regulation of brain
cholesterol homeostasis is required for
optimal brain functioning. The autono-
mous regulation of brain cholesterol
homeostasis is demonstrated by the
observation that apoE-deficient mice
that are being fed a high fat diet and
display about 20-fold increased plasma
cholesterol levels, show no alterations in
their brain sterol profile in comparison
with wild-type chow-fed mice, with the
exception of a slight increase in 27-
hydroxycholesterol levels (Jansen et al.,
2009). However, although tightly regu-
lated, there are extracerebral factors
that do modulate cerebral cholesterol
homeostasis.

Besides evidence that an aberrant cho-
lesterol metabolism in the brain may

contribute to the progression of AD, we
found alterations in the sterol profile in
the brain of AD-mice expressing a
mutant form of APP and of PS1
(Vanmierlo et al., 2010). This indicates
that alterations in brain cholesterol
metabolism can also be induced by
the expression of APP- and/or PS1
mutations in mice, and is supportive
of a close link between cholesterol and
AD. Stimulation of the LXR-pathway,
that plays a key role in the regulation of
cholesterol metabolism in the body and
the brain results in an enhanced choles-
terol turnover in the body and also in
the brain (Repa et al., 2007; Plosch et al.,
2002). LXR-activation has been report-
ed to reduce the deposition of amyloid-
b, the key protein of senile plaques in
AD-brains (Koldamova et al., 2005; Sun
et al., 2003). This may involve several
mechanisms such as reducing the solu-
ble levels, enhancing its secretion
from the brain, and stimulation of Ab
degradation by microglia (Bell et al.,
2007, Mulder and Terwel, 1998). We
questioned if enhancement of the
cholesterol turnover in the brain, by
administration of the synthetic LXR
agonist T0901317, would restore
memory functions in aged AD-mice.
Herefore, we fed 21week-old AD-mice a
diet containing T0901317 (0.015%
drug in food, w/w) for a period of 10
weeks (Vanmierlo et al., 2009). This
resulted in an enhanced cholesterol
turnover in the brain as indicated by
increased levels of the cholesterol pre-
cursors, desmosterol, lathosterol and
lanosterol in the cortex, hippocampus
and cerebellum, and in upregulation of
a number of LXR-target genes involved
in cellular cholesterol secretion includ-
ing Abca1, Abcg1 Apoe and Srebp1c.
T0901317 administration resulted in an
improved performance of the mice in
the Object Recognition Task, showing
that activation of the LXR-pathway
could restore the declined memory in
the AD-mice. There was no detectable
effect of T0901317 on the amyloid load
in the brain in any of the brain regions
examined, e.g. cortex, hippocampus
and prelimbic area. T0901317 did not
further improvememory in C57Bl6 wild-
type mice. Conclusively, T0901317
restored, at least in part, memory in
aged AD-mice, independently of an
effect on amyloid deposition. LXR ago-
nists were originally developed as drugs
that lower plasmacholesterol by enhanc-
ing its secretion from the body. However
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because of serious side effects of trigly-
ceride accumulation in the liver, novel
more selective LXR agonists are being
developed (Giannarelli et al., 2011).

Plant sterols derived
from the diet can enter
the brain

Plant sterols have been suggested to be
natural activators of the LXR-pathway
and therefore, may enhance the choles-
terol turnover (Plat et al., 2005; Yang,
2006). The most common plant sterols,
such as sitosterol and campesterol, are
structurally very similar to cholesterol
and can only be derived from the diet
(Pollak and Kritchevsky, 1981; Salen
et al., 1970). They are applied as
functional food in order to lower
plasma cholesterol levels as a strategy
to prevent cardiovascular diseases
(Thompson and Grundy, 2005; Calpe-
Berdiel et al., 2009). We found that
plant sterols, in contrast with choles-
terol, can cross the blood-brain barrier
and enter the brain in Abc5-knockout
mice (Jansen et al., 2006; Fricke et al.,
2007). The Abcg5 transporter is a
predominantly intestinal receptor that
forms heterodimers with Abcg8 in order
to selectively resecrete plant sterols in
the intestine (Yu et al., 2002). In case of
deficiency for one of these transporters
plant sterols are being retained in the
intestine and released into the circula-
tion resulting in increased plasma levels.
Abcg5-knockout mice display 35-70-
fold increased plant sterol levels in
plasma and 5-12-fold increased levels
in their brains, in hippocampus, cortex
and cerebellum. Campesterol preferen-
tially accumulates in the brain in hippo-
campus and cortex, and to the highest
extend in the cerebellum. Although,
plant sterol levels were increased in all
brain regions, a small but significant
effect on brain sterols was observed in
restricted brain regions; levels of the
cholesterol precursor, lanosterol, were
increased in the cortex and to a lesser
extend in hippocampus, and levels of
the cholesterol precursor desmosterol
and of the cholesterol metabolite 24(S)-
hydroxycholesterol were reduced in the
hippocampus, a brain region involved in
learning- and memory functions. The
latter was in contrast with our expecta-
tions that plant sterols may enhance
the cholesterol turnover by activating
the LXR-pathway. The reduced desmos-

terol and 24(S)-hydroxycholesterol
levels suggest a reduced cholesterol
turnover. However, subjecting Abcg5-
knockout mice and their wild-type
littermates to behavioral tasks, revealed
no differences inmemory functions or in
anxiety and mood-related behavior. An
exception was the swimming speed,
which was slightly higher in the Abcg5-
knockout mice in comparison with their
wild-type littermates (Vanmierlo et al.,
2011a). Therefore, it can be concluded
that accumulation of plant sterols in the
Abcg5-knockout mice does not lead to
an overt behavioral phenotype of
impairments in memory functions or
in mood and anxiety related behavior.
The elevated plant sterol levels in
the brain were accompagnied by an
increased expression of Abca1 and
Abcg1 in particular in the hippocampus,
but the expression of other LXR-target
genes was unaffected, suggesting the
mechanisms involved in upreglating
Abca1 and Abcg1 are LXR-independent.
So far, no evidence was obtained for a
major effect of plant sterols as LXR
activators within the brain.

Abcg5 and Abcg8, the transporters for
plant sterols, are not detectable in the
brain. We obtained evidence indicating
that the plant sterols that have entered
the brain are not being resecreted.

Brassicasterol; a novel
biomarker for
Alzheimer’s Disease?

Very recently, evidence was obtained
indicating that brassicasterol, a plant
sterol less common than sito- and
campesterol, may be an additional bio-
marker for AD (Vanmierlo et al., 2011b).
In the early stages of the disease the
functions of the blood-brain barrier and
of the choroid plexus are impaired. We
hypothesized that as a consequence,
plant sterol concentrations may be
altered in AD CSF. Indeed plant sterol
concentrations turned out to be reduced
in CSF of AD patients in comparison with
controls. Both sitosterol and brassicas-
terol were significantly reduced, but only
thedifference for brassicasterol remained
signifant after correction for cholesterol.
Brassicasterol improved the predictive
value when added to the biomarkers
pTau and Ab42. Thus brassicasterol
might be a relevant additional biomarker
for AD.

Conclusively, sterol metabolism in the
brain may be a promising therapeutical
target in the prevention and/or retarda-
tion of AD and it therefore may be
worthwhile to continue investigating
LXR agonists that are being developed
without serious side effects. Moreover, it
is important to further investigate the
consequences of elevated brain plant
sterol levels, and it remains to be
established how elevated cerebral plant
sterol levels affect neuropathogenesis
such as for example during the pro-
gression of AD. As decribed for LXR
activation by T0901317 that did restore
impaired memory functions in AD-mice
but did not further improve these in
wild-type mice, plant sterols may affect
cognitive functions or neuropathogen-
esis in AD-mice.
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