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Abstract

In longitudinal studies measurements are often collected on different types of outcomes
for each subject. These may include several longitudinally measured responses (such as
blood values relevant to the medical condition under study) and the time at which an
event of particular interest occurs (e.g., death, development of a disease or dropout from
the study). These outcomes are often separately analyzed; however, in many instances,
a joint modeling approach is either required or may produce a better insight into the
mechanisms that underlie the phenomenon under study. In this paper we present the
R package JM that fits joint models for longitudinal and time-to-event data.

Keywords: attrition, dropout, longitudinal data, shared parameter models, survival data,
time-dependent covariates.

1. Introduction

Longitudinal studies often produce two types of outcome, namely a set of longitudinal response
measurements and the time to an event of interest, such as death, development of a disease
or dropout from the study. Two typical examples of this setting are HIV and cancer studies.
In HIV studies patients who have been infected are monitored until they develop AIDS or
die, and they are regularly measured for the condition of the immune system using markers
such as the CD4 lymphocyte count or the estimated viral load. Similarly in cancer studies the
event outcome is the death or metastasis and patients also provide longitudinal measurements
of antibody levels or of other markers of carcinogenesis, such as the PSA levels for prostate
cancer.
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These two outcomes are often separately analyzed using a mixed effects model for the longitu-
dinal outcome and a survival model for the event outcome. However, in mainly two settings
a joint modelling approach is required. First, when interest is on the event outcome and
we wish to account for the effect of the longitudinal outcome as a time-dependent covariate,
traditional approaches for analyzing time-to-event data (such as the partial likelihood for the
Cox proportional hazards models) are not applicable. In particular, standard time-to-event
models require that time-dependent covariates are external; that is, the value of this covari-
ate at time point t is not affected by the occurrence of an event at time point u, with t > u
(Kalbfleisch and Prentice 2002, Section 6.3). However, the type of time-dependent covariates
encountered in longitudinal studies do not satisfy this condition, due to the fact that they
are the output of a stochastic process generated by the subject, which is directly related to
the failure mechanism. Therefore, in order to produce valid inferences a model for the joint
distribution of the longitudinal and survival outcomes is required instead. The second setting
in which joint modelling is required is when interest is on the longitudinal outcome. In this
case the occurrence of events causes dropout since no longitudinal measurements are available
at and after the event time. When this dropout is nonrandom (i.e., when the probability of
dropout depends on unobserved longitudinal responses), then bias may arise from an analysis
that ignores the dropout process (Little and Rubin 2002, Chapter 15). To avoid this problem
and obtain valid inferences the longitudinal and dropout process must be jointly modelled.
One of the modelling frameworks that have been proposed in the missing data literature for
handling nonrandom dropout is the shared parameter model (Follmann and Wu 1995), which
postulates a mixed effects model for the longitudinal outcome and time-to-dropout model
for the missingness process. In both settings the joint distribution of the event times and
the longitudinal measurements is modelled via a set of random effects that are assumed to
account for the associations between these two outcomes. Excellent overviews of this area of
biostatistics and statistics research are given by Tsiatis and Davidian (2004) and Yu, Law,
Taylor, and Sandler (2004).

Software for the separate analysis of longitudinal and event time data has been available for
many years. For instance, in R (R Development Core Team 2010) several packages provide
functions for fitting mixed effects models, such as package nlme (Pinheiro, Bates, DebRoy,
Sarkar, and R Development Core Team 2009) and package lme4 (Bates and Maechler 2010),
and for survival models package survival (Therneau and Lumley 2009) – for a more com-
prehensive list of the available packages in the Comprehensive R Archive Network (CRAN)
relevant to the analysis of event time data we refer to the CRAN task view “Survival Anal-
ysis” (Allignol and Latouche 2010). In this paper we focus in the joint modelling of longi-
tudinal and time-to-event data, and we present the R package JM (available from CRAN at
http://CRAN.R-project.org/package=JM) that can be used to fit such joint models. The
implementation of joint models in SAS and WinBUGS has been discussed by Guo and Carlin
(2004). The rest of the paper is organised as follows. In Section 2 we present the joint mod-
elling framework, and discuss different choices for the time-to-event submodel. Furthermore,
we describe the basics of maximum likelihood estimation for this type of models, with special
mention to numerical integration techniques. In addition, we refer to several types of residuals
and prediction of conditional probabilities of survival. Section 3 describes in detail the imple-
mentation of the theory described in Section 2 in package JM. Finally, Section 4 illustrates
the capabilities of the package in a real data example from HIV research, and Section 5 gives
some concluding remarks.

http://CRAN.R-project.org/package=JM
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2. Joint modelling framework

2.1. Submodels specification

In the following we will present the joint modelling framework motivated by the time-to-
event point of view (i.e., in the setting in which we want to incorporate a time-dependent
covariate measured with error in a survival model) – a more direct connection with the missing
data framework is made in Section 2.3. Let Ti denote the observed failure time for the i-th
subject (i = 1, . . . , n), which is taken as the minimum of the true event time T ∗i and the
censoring time Ci, i.e., Ti = min(T ∗i , Ci). Furthermore, we define the event indicator as
δi = I(T ∗i ≤ Ci), where I(·) is the indicator function that takes the value 1 if the condition
T ∗i ≤ Ci is satisfied, and 0 otherwise. Thus, the observed data for the time-to-event outcome
consist of the pairs {(Ti, δi), i = 1, . . . , n}. For the longitudinal responses, let yi(t) denote the
value of the longitudinal outcome at time point t for the i-th subject. We should note here
that we do not actually observe yi(t) at all time points, but only at the very specific occasions
tij at which measurements were taken. Thus, the observed longitudinal data consist of the
measurements yij = {yi(tij), j = 1, . . . , ni}.
Our aim is to associate the true and unobserved value of the longitudinal outcome at time t,
denoted by mi(t), with the event outcome T ∗i . Note that mi(t) is different from yi(t), with
the latter being the contaminated with measurement error value of the longitudinal outcome
at time t. To quantify the effect of mi(t) on the risk for an event, a standard option is to use
a relative risk model of the form (Therneau and Grambsch 2000):

hi(t | Mi(t), wi) = lim
dt→0

Pr{t ≤ T ∗i < t+ dt | T ∗i ≥ t,Mi(t), wi}/dt

= h0(t) exp{γ>wi + αmi(t)}, (1)

where Mi(t) = {mi(u), 0 ≤ u < t} denotes the history of the true unobserved longitudinal
process up to time point t, h0(·) denotes the baseline risk function, and wi is a vector of baseline
covariates (such as a treatment indicator, history of diseases, etc.) with a corresponding vector
of regression coefficients γ. Similarly, parameter α quantifies the effect of the underlying
longitudinal outcome to the risk for an event; for instance, in the AIDS example mentioned in
Section 1, α measures the effect of the number of CD4 cells to the risk for death. To avoid the
impact of parametric assumptions, the baseline risk function h0(·) is typically left unspecified.
However, within the joint modelling framework Hsieh, Tseng, and Wang (2006) have recently
noted that leaving this function completely unspecified leads to an underestimation of the
standard errors of the parameter estimates. In particular, problems arise due to the fact
that the nonparametric maximum likelihood estimate for this function cannot be obtained
explicitly under the full joint modelling approach. To avoid this problem, we could either opt
for the hazard function of a standard survival distribution (such as the Weibull or Gamma)
or for more flexible models in which h0(t) is sufficiently approximated using step functions or
spline-based approaches.

An alternative modelling framework for event time data, especially when the proportionality
assumption in (1) fails, is the accelerated failure time model. In order to incorporate a time-
dependent covariate within this framework, we let S0 denote an absolutely continuous baseline
survival function, and we follow the formulation of Cox and Oakes (1984, Section 5.2) that
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postulates {∫ T ∗

0
exp{γ>w + αm(s)} ds

}
∼ S0.

This can be reexpressed in terms of the risk rate function for subject i as:

hi(t | Mi(t), wi) = h0{Vi(t)} exp{γ>wi + αmi(t)}, (2)

with

Vi(t) =

∫ t

0
exp{γ>wi + αmi(s)} ds.

Similarly, to (1), the baseline risk function h0(·) can be assumed of a specific parametric form
or modelled flexibly. An important difference of (2) compared to (1) is that in the former
the entire covariate historyMi(t) is assumed to influence the subject-specific risk (due to the
fact that h0(·) is evaluated at Vi(t)), whereas in the latter the subject-specific risk depends
only on the current value of the time-dependent covariate mi(t). The survival function for
a subject with covariate history Mi(t) equals Si{t | Mi(t)} = S0{Vi(t)}, which means that
this subject ages on an accelerated schedule Vi(t) compared to S0 – for more information we
refer to Cox and Oakes (1984, Section 5.2). Within the joint modelling framework accelerated
failure time models have been discussed by Tseng, Hsieh, and Wang (2005).

In the definitions of the survival models presented above we used mi(t) to denote the true
value of the underlying longitudinal covariate at time point t. However and as mentioned
earlier, longitudinal information is actually collected intermittently and with error at a set of
few time points tij for each subject. Therefore, in order to measure the effect of this covariate
to the risk for an event we need to estimate mi(t) and successfully reconstruct the complete
longitudinal history Mi(t), using the available measurements yij = {yi(tij), j = 1, . . . , ni}
of each subject and a set of modelling assumptions. For the remaining of this paper we
will focus on normal data and we will postulate a linear mixed effects model to describe the
subject-specific longitudinal evolutions. In particular, we have

yi(t) = mi(t) + εi(t)

= x>i (t)β + z>i (t)bi + εi(t), εi(t) ∼ N (0, σ2), (3)

where β denotes the vector of the unknown fixed effects parameters, bi denotes a vector
of random effects, xi(t) and zi(t) denote row vectors of the design matrices for the fixed
and random effects, respectively, and εi(t) is the measurement error term, which is assumed
independent of bi, and with variance σ2. We should note that care should be taken in the
specification of xi(t) and zi(t) in order to produce a good estimate of Mi(t). The main
reason for this is that, as we will see later in Section 2.2, in the definition of the likelihood
of the joint model the complete longitudinal history is required for the computation of the
survival function, and of the risk function under the accelerated failure time formulation.
Therefore, in applications in which subjects show highly nonlinear longitudinal trajectories,
it is advisable to consider flexible representations for xi(t) and zi(t) using a possibly high-
dimensional vector of functions of time t, expressed in terms of high-order polynomials or
splines (Ding and Wang 2008; Brown, Ibrahim, and DeGruttola 2005). Finally, in order to
complete the specification of the longitudinal submodel a suitable distributional assumption
for the random effects component is required. A standard choice for this distribution is the
multivariate normal distribution; however, within the joint modelling framework and mainly
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because of the nonrandom dropout (see also Section 2.3), there is the concern that relying on
a standard parametric distribution may influence the derived inferences especially when this
distribution differs considerably from the true random effects distribution. This motivated
Song, Davidian, and Tsiatis (2002) to propose a more flexible model for the distribution of the
random effects that is expressed as a normal density times a polynomial function. However,
the findings of these authors suggested that the parameter estimates and standard errors of
joint models fitted under the normal assumption for the random effects were rather robust
to misspecification. This feature has been further theoretically corroborated by Rizopoulos,
Verbeke, and Molenberghs (2008), who showed that as the number of repeated measurements
per subject ni increases, a misspecification of the random effects distribution has a minimal
effect in parameter estimators and standard errors. Thus, here we will assume that bi ∼
N (0, D) and we will not further investigate this assumption.

2.2. Maximum likelihood estimation

The main estimation methods that have been proposed for joint models are (semiparametric)
maximum likelihood (Hsieh et al. 2006; Henderson, Diggle, and Dobson 2000; Wulfsohn and
Tsiatis 1997) and Bayes using MCMC techniques (Chi and Ibrahim 2006; Brown and Ibrahim
2003; Wang and Taylor 2001; Xu and Zeger 2001). Moreover, Tsiatis and Davidian (2001)
have proposed a conditional score approach in which the random effects are treated as nuisance
parameters, and they developed a set of unbiased estimating equations that yields consistent
and asymptotically normal estimators. Here we give the basics of the maximum likelihood
method for joint models as the one of the more traditional approaches.

Maximum likelihood estimation for joint models is based on the maximization of the log-
likelihood corresponding to the joint distribution of the time-to-event and longitudinal out-
comes {Ti, δi, yi}. To define this joint distribution we will assume that the vector of time-
independent random effects bi underlies both the longitudinal and survival processes. This
means that these random effects account for both the association between the longitudinal and
event outcomes, and the correlation between the repeated measurements in the longitudinal
process (conditional independence). Formally we have that,

p(Ti, δi, yi | bi; θ) = p(Ti, δi | bi; θ) p(yi | bi; θ) (4)

p(yi | bi; θ) =
∏
j

p{yi(tij) | bi; θ}, (5)

where θ = (θ>t , θ
>
y , θ

>
b )> denotes the parameter vector, with θt denoting the parameters for

the event time outcome, θy the parameters for the longitudinal outcomes and θb the unique
parameters of the random-effects covariance matrix, yi is the ni × 1 vector of longitudinal
responses of the i-th subject, and p(·) denotes an appropriate probability density function.
Due to the fact that the survival and longitudinal submodels share the same random effects,
joint models of this type are also known as shared parameter models. Under the modelling as-
sumptions presented in the previous section, and these conditional independence assumptions
the joint log-likelihood contribution for the i-th subject can be formulated as

log p(Ti, δi, yi; θ) = log

∫
p(Ti, δi | bi; θt, β)

[∏
j

p{yi(tij) | bi; θy}
]
p(bi; θb) dbi, (6)

where the likelihood of the survival part is written as

p(Ti, δi | bi; θt, β) = {hi(Ti | Mi(Ti); θt, β)}δiSi(Ti | Mi(Ti); θt, β), (7)
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with hi(·) given by either (1) or (2), and

Si(t | Mi(t), wi; θt, β) = Pr(T ∗i > t | Mi(t), wi; θt, β)

= exp

{
−
∫ t

0
hi(s | Mi(s); θt, β) ds

}
, (8)

p{yi(tij) | bi; θy} is the univariate normal density for the longitudinal responses, and p(bi; θb)
is the multivariate normal density for the random effects.

Maximization of the log-likelihood function corresponding to (6) with respect to θ is a com-
putationally challenging task. This is mainly because both the integral with respect to the
random effects in (6), and the integral in the definition of the survival function (8) do not
have an analytical solution, except in very special cases. Standard numerical integration tech-
niques such as Gaussian quadrature and Monte Carlo have been successfully applied in the
joint modelling framework (Song et al. 2002; Henderson et al. 2000; Wulfsohn and Tsiatis
1997). Furthermore, Rizopoulos, Verbeke, and Lesaffre (2009) have recently discussed the use
of Laplace approximations for joint models, that can be especially useful in high-dimensional
random effects settings (e.g., when splines are used in the random effects design matrix). For
the maximization of the approximated log-likelihood the Expectation-Maximization (EM)
algorithm has been traditionally used in which the random effects are treated as ‘missing
data’. The main motivation for using this algorithm is the closed-form M-step updates for
certain parameters of the joint model. However, a serious drawback of the EM algorithm
is its linear convergence rate that results in slow convergence especially near the maximum.
Nonetheless, Rizopoulos et al. (2009) have noted that a direct maximization of the observed
data log-likelihood, using for instance, a quasi-Newton algorithm (Lange 2004), requires very
similar computations to the EM algorithm. Therefore hybrid optimization approaches that
start with EM and then continue with direct maximization can be easily employed.

2.3. Residuals

A traditional approach to check model assumptions is the inspection of residual plots. Prop-
erties and features of residuals, when longitudinal and survival outcomes are separately mod-
elled, have been extensively studied in the literature. For instance, different types of residuals
for linear mixed models are discussed in Nobre and Singer (2007) and Verbeke and Molen-
berghs (2000), whereas residuals for parametric and semiparametric survival models are pre-
sented in Harrell (2001) and Therneau and Grambsch (2000). However, calculating these
residuals based on the fitted joint model and the observed data, and then using them to check
the model assumptions may prove problematic. In particular, complications arise due to the
nonrandom dropout in the longitudinal process caused by the occurrence of events. To show
this more clearly, we define for each subject the observed and missing part of the longitudinal
response vector. The observed part yoi = {yi(tij) : tij < Ti, j = 1, . . . , ni} contains all observed
longitudinal measurements of the i-th subject before the observed event time, whereas the
missing part ymi = {yi(tij) : tij ≥ Ti, j = 1, . . . , n′i} contains the longitudinal measurements
that would have been taken until the end of the study, had the event not occurred. Under
these definitions and the assumptions of the joint modelling framework, we can derive the
dropout mechanism, which is the conditional distribution of the time-to-dropout given the
complete vector of longitudinal responses (yoi , y

m
i ),

p(T ∗i | yoi , ymi ; θ) =

∫
p(T ∗i | bi; θ) p(bi | yoi , ymi ; θ) dbi. (9)
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We observe that the time-to-dropout depends on ymi through the posterior distribution of the
random effects p(bi | yoi , ymi ; θ). This in practice implies that the observed data, upon which
the residuals are calculated, are not a random sample of the target population, and therefore
should not be expected to exhibit the standard properties of zero mean, constant variance,
etc.

To overcome this problem and produce residuals that can be readily used in diagnostic plots
for joint models, Rizopoulos, Verbeke, and Molenberghs (2010) have recently proposed to aug-
ment the observed data with randomly imputed longitudinal responses under the complete
data model, corresponding to the longitudinal outcomes that would have been observed had
the patients not dropped out. To present this idea briefly, we assume that the joint model
has been fitted to the data set at hand, and that we have obtained the maximum likelihood
estimates θ̂ and an estimate of their asymptotic covariance matrix, say Ĥ. Moreover, we
assume that longitudinal measurements are planned to be taken at prespecified time points
t0, t1, . . . , tmax, and that for the i-th subject measurements are available up to the last pre-
specified visit time earlier than Ti. In the following we adopt a Bayesian point of view for the
joint modelling framework, since multiple imputation has Bayesian grounds (Little and Ru-
bin 2002, Chapter 10). Multiple imputation is based on repeated sampling from the posterior
distribution of ymi given the observed data, averaged over the posterior of the parameters.
Under joint model (6) and dropout mechanism (9), the density for this distribution can be
expressed as

p(ymi | yoi , Ti, δi) =

∫
p(ymi | yoi , Ti, δi; θ) p(θ | yoi , Ti, δi) dθ. (10)

The first part of the integrand in (10) can be derived from (9) taking also into account
assumptions (4) and (5), i.e.,

p(ymi | yoi , Ti, δi; θ) =

∫
p(ymi | bi, yoi , Ti, δi; θ) p(bi | yoi , Ti, δi; θ) dbi

=

∫
p(ymi | bi; θ) p(bi | yoi , Ti, δi; θ) dbi. (11)

For the second part, which is the posterior distribution of the parameters given the observed
data, we use arguments of standard asymptotic Bayesian theory (Cox and Hinkley 1974, Sec-
tion 10.6), and assume that the sample size n is sufficiently large such that {θ | yoi , Ti, δi} can
be well approximated by N (θ̂, Ĥ). This assumption, combined with (10) and (11), suggests
the following simulation scheme:

1. Draw θ(`) ∼ N (θ̂, Ĥ).

2. Draw b
(`)
i ∼ {bi | yoi , Ti, δi, θ(`)}.

3. Draw y
m(`)
i (tij) ∼ N

{
µ
(l)
i (tij), σ̂

2,(`)
y

}
, for the prespecified visit times tij ≥ Ti, j =

1, . . . , n′i that were not observed for the i-th subject, where µ
(l)
i (tij) = x>i (tij)β̂

(`) +

z>i (tij)b̂
(`)
i .

4. Repeat Steps 1–3 for each subject, ` = 1, . . . , L times, where L denotes the number of
imputations.

Steps 1 and 2 account for uncertainties in the parameters and empirical Bayes estimates,
respectively, whereas Step 3 imputes the missing longitudinal responses (more information
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can be found in Rizopoulos et al. 2010). The benefit of using the simulated y
m(`)
i (tij) values

together with yoi to calculate residuals is that these residuals inherit now the properties of
the complete data model, and therefore they can be directly used in diagnostic plots without
requiring to take dropout into account.

2.4. Expected survival

The calculation of predicted survival probabilities based on a fitted survival model on some ref-
erence population has received a lot of attention in the statistical literature – see for instance,
Therneau and Grambsch (2000, Chapter 10) and references therein. In this section we focus
on expected survival but within the joint modelling framework. In particular, based on a joint
model fitted on sample of size n, we are interested in predicting survival probabilities for a
new subject i that has provided a set of longitudinal measurements Yi(t) = {yi(s), 0 ≤ s ≤ t}
(dependence on baseline covariates is assumed but is suppressed here for ease of exposition).
Note that in the joint modelling framework, providing longitudinal measurements up to time
point t in fact implies survival up to time t. Thus, we are actually interested in estimating
the conditional probability

πi(u | t) = Pr(T ∗i ≥ u | T ∗i > t,Yi(t),Dn), (12)

where u > t and Dn denotes the sample on which the joint model was fitted. Similarly to
Section 2.3, it is convenient to proceed using a Bayesian formulation of the problem. More
specifically, (12) can be written as

Pr(T ∗i ≥ u | T ∗i > t,Yi(t),Dn) =

∫
Pr(T ∗i ≥ u | T ∗i > t,Yi(t); θ) p(θ | Dn) dθ. (13)

The first part of the integrand and using assumption (4) is given by

Pr(T ∗i ≥ u | T ∗i > t,Yi(t); θ) =

∫
Pr(T ∗i ≥ u | T ∗i > t,Yi(t), bi; θ) p(bi | T ∗i > t,Yi(t); θ) dbi

=

∫
Pr(T ∗i ≥ u | T ∗i > t, bi; θ) p(bi | T ∗i > t,Yi(t); θ) dbi

=

∫ Si{u | Mi(u, bi, θ); θ}
Si{t | Mi(t, bi, θ); θ}

p(bi | T ∗i > t,Yi(t); θ) dbi, (14)

where Si(·) is given by (8), and furthermore we have explicitly noted that the longitudinal
history Mi(·), as estimated by the linear mixed effects model, is a function of both the
random effects and the parameters. For the second part we again follow asymptotic Bayesian
arguments and assume that {θ | Dn} can be well approximated by a multivariate normal
distribution with mean the maximum likelihood estimates θ̂ and covariance matrix Ĥ =
vâr(θ̂). Combining (13) with (14) and {θ | Dn} ∼ N (θ̂, Ĥ), a Monte Carlo estimate of
πi(u | t) can be obtained using the following simulation scheme:

1. Draw θ(`) ∼ N (θ̂, Ĥ).

2. Draw b
(`)
i ∼ {bi | T ∗i > t,Yi(t), θ(`)}.

3. Compute π
(`)
i (u | t) = Si{u | Mi(u, b

(`)
i , θ(`)); θ(`)}/Si{t | Mi(t, b

(`)
i , θ(`)); θ(`)}.
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4. Repeat Steps 1–3 for each subject, ` = 1, . . . , L times, where L denotes the number of
Monte Carlo samples.

Step 1 is straightforward to perform; on the contrary, the posterior distribution for the
random effects given the observed data for subject i in Step 2 is of a non-standard form,
and thus a more sophisticated approach is required to sample from it. Here we use of
a Metropolis-Hastings algorithm with independent proposals from a multivariate t distri-
bution centered at the empirical Bayes estimates b̂i = arg maxb{log p(T ∗i > t,Yi(t), b; θ̂)}
(where log p(T ∗i > t,Yi(t), b; θ̂) = logSi(t | b; θ̂) + log p(Yi(t) | b; θ̂) + log p(b; θ̂)), with
scale matrix var(b̂i) = {−∂2 log p(T ∗i > t,Yi(t), b; θ̂)/∂b>∂b |b=b̂i}

−1, and four degrees of
freedom. We expect the multivariate t proposals to work satisfactorily in this setting be-
cause, as it has been recently shown by Rizopoulos et al. (2008), as ni (the number of
longitudinal measurements for subject i) increases, the leading term of the log posterior
distribution of the random effects is the logarithm of the density of the linear mixed model
log p(Yi(t) | bi; θ(`)) =

∑
j log p{yi(tij) | bi; θ(`)}, which is quadratic in bi and will resemble the

shape of a multivariate normal distribution. The realizations {π(`)i (u | t), ` = 1, . . . , L} can
be used to derive estimates of πi(u | t), such as

π̂i(u | t) = median{π(`)i (u | t), ` = 1, . . . , L} or π̂i(u | t) = L−1
L∑
`=1

π
(`)
i (u | t),

and confidence intervals using the Monte Carlo sample percentiles.

3. The R package JM

3.1. Design

The R package JM has been developed to fit a variety of joint models for normal longitudinal
responses and time-to-event data under maximum likelihood. This package has a single
model-fitting function called jointModel(), which accepts as main arguments a linear mixed
effects object fit as returned by function lme() of package nlme, and a survival object fit as
returned by either function coxph() or function survreg() of package survival. The method

argument of jointModel() specifies the type of the survival submodel to be fitted and the
type of numerical integration method; available options are:

method = "weibull-AFT-GH": the Weibull model under the accelerated failure time for-
mulation (i.e., model (2) with h0(·) being the Weibull baseline risk function). The
Gauss-Hermite integration rule is used to approximate integral (6).

method = "weibull-PH-GH": the Weibull model under the relative risk formulation (i.e.,
model (1) with h0(·) being the Weibull baseline risk function). The Gauss-Hermite
integration rule is used to approximate integral (6).

method = "piecewise-PH-GH": the relative risk model (1) with a piecewise-constant base-
line risk function. In particular,

h0(t) =
Q∑
q=1

ξqI(vq−1 < t ≤ vq), (15)
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where 0 = v0 < v1 < · · · < vQ denotes a split of the time scale, with vQ being larger
than the largest observed time, and ξq denotes the value of the hazard in the interval
(vq−1, vq]. The Gauss-Hermite integration rule is used to approximate integral (6).

method = "Cox-PH-GH": the relative risk model (1) with an unspecified baseline risk func-
tion. The Gauss-Hermite integration rule is used to approximate integral (6). This
option corresponds to the joint model proposed by Wulfsohn and Tsiatis (1997).

method = "spline-PH-GH": the relative risk model (1) with a spline-approximated baseline
risk function. In particular, the log baseline risk function log h0(t) is expanded into
B-spline basis functions as follows,

log h0(t) = κ0 +
m∑
d=1

κdBd(t, q),

where κ> = (κ0, κ1, . . . , κm) are the spline coefficients, q denotes the degree of the B-
splines basis functions B(·), and m = m̈+q−1, with m̈ denoting the number of interior
knots. The Gauss-Hermite integration rule is used to approximate integral (6).

method = "ch-Laplace": for this option a similar survival model is assumed as in method =

"spline-PH-GH", but the integration over the random effects in (6) is achieved using a
fully exponential Laplace approximation – more details regarding this approach can be
found in Rizopoulos et al. (2009). This option is more suitable in settings in which the
subject-specific longitudinal profiles are highly nonlinear and are modelled using high-
dimensional random effects structures (e.g., using splines or polynomials of time). In this
setting the Gauss-Hermite can prove very time consuming due to the high dimensionality
of the random effects, whereas the Laplace method provides a reasonable approximation
in considerably less computing time.

Currently, jointModel() allows for linear mixed effects submodels with iid error terms and
no special structure in the random effects covariance matrix. Therefore, in the call to lme()

to produce the object supplied as first argument to jointModel(), users should not specify
a correlation structure (correlation argument), a variance function (weights argument) or
a pdMat in the random argument.

Several supporting functions are available in the package that extract or calculate several
useful statistics based on the fitted joint model, such as model summary and statistical signif-
icance for the estimated coefficients, empirical Bayes estimates (and their standard error), fit-
ted and residuals values, and the covariance matrix of the parameter estimates. In particular,
the function jointModel() return objects of class jointModel, for which the following meth-
ods are available: print(), coef(), fixef(), ranef(), fitted(), residuals(), summary(),
plot(), vcov(). The residuals() method for class jointModel computes residuals based on
both the observed data alone and the multiple-imputation residuals described in Section 2.3.
In addition, the Monte Carlo procedure described in Section 2.4 for the estimation of pre-
dicted survival probabilities is implemented in function survfitJM(). A detailed description
of these functions is available in the online help files.
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3.2. Implementation details

The maximum likelihood estimates are obtained by maximizing the log-likelihood function,
in which the integral in (6) is approximated using either the Gauss-Hermite rule or the fully
exponential Laplace approximation, and the integral in (8) is approximated using the Gauss-
Kronrod rule. For all joint models except the one with the unspecified baseline risk func-
tion, the maximization of the log-likelihood is based on a hybrid optimization procedure,
which starts with the EM algorithm for a fixed number of iterations, and if convergence
is not achieved switches to a quasi-Newton algorithm until convergence is attained. Avail-
able quasi-Newton algorithms are the BFGS of optim() (default), and the PORT routines
of nlminb(). For the method = "Cox-PH-GH" the semiparametric maximum likelihood esti-
mates are obtained using only the EM algorithm. Initial values for the parameters are taken
from the linear mixed and survival models that are supplied as the first two arguments in
jointModel(). During the EM iterations convergence is declared whenever either of the
following two commonly used criteria is satisfied

max{|θ(it) − θ(it−1)|/(|θ(it−1)|+ ε1)} < ε2,

`(θ(it))− `(θ(it−1)) < ε3{|`(θ(it−1))|+ ε3},

where θ(it) denotes the parameters values at the it-th iteration, `(θ) =
∑
i log p(Ti, δi, yi; θ),

and ε1 = 10−3, ε2 = 10−4, and ε3 = sqrt(.Machine$double.eps) which is about 10−8.
During the quasi-Newton iterations typically only the latter criterion is used. A finer con-
trol of the optimization procedure is provided via the control argument of jointModel().
This specifies among others, the optimization routine in R for the quasi-Newton algorithm
(i.e., optim() or nlminb()), the tolerance values for the convergence criteria, the number of
quadrature points for the Gauss-Hermite rule that approximates (6) and the Gauss-Kronrod
rule that approximates (8), the type of numerical derivative that calculates the Hessian ma-
trix based on the score vector (i.e., forward or central difference approximation), the number
of EM and quasi-Newton iterations, and the position and number of knots when method is
either "piecewise-PH-GH", "spline-PH-GH" or "ch-Laplace".

An important aspect for the success of the optimization procedure described above in ap-
proximating the true maximum likelihood estimates, is the accuracy of the Gauss-Hermite
quadrature rule. As it is known from the mixed models literature (Pinheiro and Bates 1995),
the choice of the number of quadrature points may influence the parameter estimates, stan-
dard errors and the log-likelihood value. Thus, it is typically advisable to investigate the
fit of the model with an increasing number of quadrature points and/or consider the adap-
tive Gauss-Hermite rule that appropriately re-scales the quadrature points in the area where
the integrand has its main mass. It is obvious that both these procedures increase substan-
tially the computing time required to fit joint models. However, fortunately, we can decrease
computational intensity without sacrificing too much precision by taking into advantage the
information we have available from the linear mixed effects model fit that is provided as first
argument in jointModel(). To illustrate how this can be achieved, we first compare the
logarithm of the integrands in the linear mixed effects and joint models, given respectively as:

log p(yi, bi; θ) =
ni∑
j=1

log p{yi(tij) | bi; θy}+ log p(bi; θb),

log p(Ti, δi, yi, bi; θ) =
ni∑
j=1

log p{yi(tij) | bi; θy}+ log p(bi; θb) + log p(Ti, δi | bi; θt, β).
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Following an argument similar to the one raised in Step 2 of the Monte Carlo scheme of
Section 2.4, we observe that the leading term in both integrands is the density p(yi | bi; θy) =∏
j p{yi(tij) | bi; θy} (Rizopoulos et al. 2008). This means that, especially as ni increases,

we expect both integrands to have their main mass around the same location. The fitting
algorithms behind jointModel() take this information into account and scale the Gauss-
Hermite quadrature points accordingly. This procedure shares similarities with the adaptive
Gauss-Hermite rule, but we implement it only once, at the start of the optimization, and we
do not further update the quadrature points afterwards. Based on empirical evidence, we have
observed that even though we do not update the quadrature points at each iteration of the
optimization algorithm (as in the adaptive Gauss-Hermite rule), this procedure performs very
well in practice. The computational advantages are twofold: first, we can use fewer quadrature
points than we would have used in the standard (i.e., non-adaptive) Gauss-Hermite rule, and
second, we avoid the computationally demanding relocation of the quadrature points at each
iteration of the adaptive Gauss-Hermite rule. A numerical study regarding the performance
of this approach and further discussion is provided in Appendix A.

4. Analysis of a real data example using JM

As an illustrative example of joint modelling we consider a longitudinal study on 467 HIV
infected patients who had failed or were intolerant of zidovudine therapy. The aim of the
study was to compare the efficacy and safety of two alternative antiretroviral drugs, namely
didanosine (ddI) and zalcitabine (ddC). Patients were randomly assigned to receive either ddI
or ddC, and CD4 cell counts were recorded at study entry, where randomization took place,
as well as 2, 6, 12, and 18 months thereafter. By the end of the study 188 patients had died,
resulting in 59.7% censoring. More details about this data set can be found in Goldman,
Carlin, Crane, Launer, Korvick, Deyton, and Abrams (1996). Our main research question
here is to test for a treatment effect on survival after adjusting for the CD4 cell count. Due to
the fact that the CD4 cell count measurements are in fact the output of a stochastic process
generated by the patients and is only available at the specific visit times the patients came
to the study center, it constitutes a typical example of time-dependent covariate measured
intermittently and with error for which joint modelling is required.

The longitudinal and survival information for these patients is available in JM in the data
frames aids and aids.id, respectively. The CD4 cell counts are known to exhibit right
skewed shapes of distribution, and therefore, for the remainder of this analysis we will work
with the square root of the CD4 cell values. As a descriptive analysis we present in Figure 1
the subject-specific longitudinal profiles and the Kaplan-Meier estimate for the time-to-death:

R> library("JM")

R> library("lattice")

R> xyplot(sqrt(CD4) ~ obstime | drug, group = patient, data = aids,

+ xlab = "Months", ylab = expression(sqrt("CD4")), col = 1, type = "l")

R> plot(survfit(Surv(Time, death) ~ drug, data = aids.id), conf.int = FALSE,

+ mark.time = TRUE, col = c("black", "red"), lty = 1:2,

+ ylab = "Survival", xlab = "Months")

R> legend("topright", c("ddC", "ddI"), lty = 1:2, col = c("black", "red"),

+ bty = "n")
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Figure 1: Subject-specific evolutions in time of the square root of the CD4 cell count mea-
surements, separately for ddC and ddI.

We observe that in both groups patients show similar variability in their longitudinal profiles,
whereas from the Kaplan-Meier estimate in Figure 2 it seems that the ddC group has slightly
higher survival than the ddI group after the six month of follow-up.

To illustrate the virtues of the joint modelling approach, we will first start with a ‘naive’
analysis, in which we ignore the special characteristics of the CD4 cell counts and we fit a
Cox model that includes the treatment indicator and CD4 as an ordinary time-dependent
covariate (i.e., ignoring the measurement error). To fit this models we will use the standard
counting process form of the Cox model:

R> td.Cox <- coxph(Surv(start, stop, event) ~ drug + sqrt(CD4), data = aids)

R> summary(td.Cox)

Call:

coxph(formula = Surv(start, stop, event) ~ drug + sqrt(CD4),

data = aids)

n= 1405

coef exp(coef) se(coef) z Pr(>|z|)

drugddI 0.32678 1.38650 0.14708 2.222 0.0263 *

sqrt(CD4) -0.72302 0.48528 0.07997 -9.042 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 2: Kaplan-Meier estimates of the probability of survival for the ddC and ddI treatment
groups.

exp(coef) exp(-coef) lower .95 upper .95

drugddI 1.3865 0.7212 1.0393 1.8498

sqrt(CD4) 0.4853 2.0606 0.4149 0.5676

Rsquare= 0.059 (max possible= 0.786 )

Likelihood ratio test= 86.14 on 2 df, p=0

Wald test = 83.51 on 2 df, p=0

Score (logrank) test = 83.25 on 2 df, p=0

Variables start and stop denote the limits of the time intervals between visits in the study
center, and event takes the value 1 when a patient died; for more details we refer to Therneau
and Grambsch (2000, Section 3.7).

We observe that after adjusting for the square root of CD4 count in the Cox model, there is not
a strong evidence for a treatment effect. We proceed by specifying and fitting a joint model
that explicitly postulates a linear mixed effects model for the CD4 cell counts. In particular,
taking advantage of the randomization set-up of the study, we include in the fixed-effects part
of the longitudinal submodel the main effect of time and the interaction of treatment with
time. In the random-effects design matrix we include an intercept and a time term. For the
survival submodel and similarly to the Cox model above, we include as a time-independent
covariate the treatment effect, and as time-dependent one the true underlying effect of CD4
cell count as estimated from the longitudinal model. The baseline risk function is assumed
piecewise constant with six knots placed at equally spaced percentiles of the observed event
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times. In particular, {v1, . . . , vQ−1} in (15) are specified as quantile(Time, seq(0, 1,

length = Q + 1))[-c(1, Q + 1)], where Q equals seven, and Time is the numeric vector
that contains the observed event times Ti, (i = 1, . . . , n). In order to fit this joint model
we need first to fit separately the linear mixed effects and Cox models, and then supply the
returned objects as main arguments in jointModel(). More specifically, the joint model fitted
by jointModel() has exactly the same structure for the longitudinal and survival submodels
as these two separately fitted models, with the addition that in the survival submodel the
effect of the estimated ‘true’ longitudinal outcome mi(t) is included in the linear predictor.
Furthermore, due to the fact that jointModel() extracts all the required information from
these two objects (e.g., response vectors, design matrices, etc.), in the call to coxph() we
need to specify the argument x = TRUE in order for the design matrix of the Cox model to
be included in the returned object, i.e.,

R> fitLME <- lme(sqrt(CD4) ~ obstime + obstime:drug,

+ random = ~ obstime | patient, data = aids)

R> fitSURV <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

R> fit.JM <- jointModel(fitLME, fitSURV, timeVar = "obstime",

+ method = "piecewise-PH-GH")

R> summary(fit.JM)

Call:

jointModel(lmeObject = fitLME, survObject = fitSURV, timeVar = "obstime",

method = "piecewise-PH-GH")

Data Descriptives:

Longitudinal Process Event Process

Number of Observations: 1405 Number of Events: 188 (40.3%)

Number of Groups: 467

Joint Model Summary:

Longitudinal Process: linear mixed effects model

Event Process: Relative risk model with piecewise-constant baseline risk

function (knots at: 6.2, 11.1, 12.5, 13.9, 16, 17.8)

log.Lik AIC BIC

-2107.647 4247.295 4313.636

Variance Components:

StdDev Corr

(Intercept) 0.8660 (Intr)

obstime 0.0388 0.0681

Residual 0.3754

Coefficients:

Longitudinal Process

Value Std.Err z-value p-value

(Intercept) 2.5558 0.0372 68.7962 <0.0001
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obstime -0.0423 0.0046 -9.1932 <0.0001

obstime:drugddI 0.0051 0.0065 0.7819 0.4343

Event Process

Value Std.Err z-value p-value

drugddI 0.3510 0.1537 2.2829 0.0224

Assoct -1.1019 0.1180 -9.3399 <0.0001

log(xi.1) -1.6483 0.2499 -6.5973

log(xi.2) -1.3388 0.2394 -5.5913

log(xi.3) -1.0226 0.2861 -3.5736

log(xi.4) -1.5795 0.3736 -4.2282

log(xi.5) -1.4716 0.3500 -4.2050

log(xi.6) -1.4375 0.4282 -3.3567

log(xi.7) -1.4767 0.5454 -2.7077

Integration:

method: Gauss-Hermite

quadrature points: 15

Optimization:

Convergence: 0

The main argument timeVar of jointModel() is used to specify the name of the time vari-
able in the linear mixed effects model, which is required for the computation of mi(t). The
summary() method returns a detailed output, including among others the parameter esti-
mates, their standard errors, and asymptotic Wald tests for both the longitudinal and sur-
vival submodels. In the results of the event process the parameter labeled ‘Assoct’ is in fact
parameter α in (1) that measures the effect of mi(t) (i.e., in our case of the true square root
CD4 cell count) in the risk for death. The parameters xi are the ξq (q = 1, . . . , 7) parameters
for the piecewise constant baseline risk function in (15). A comparison between the standard
time-dependent Cox model with the joint model reveals some interesting features. In par-
ticular, we observe that the regression coefficient for ddI is larger in magnitude in the joint
model, which results in a slightly stronger treatment effect. Much stronger bias is observed
for the effect of the CD4 cell count, with estimated regression coefficient −0.72 for the time-
dependent Cox model and −1.10 for the joint model. As an alternative to the Wald test, a
likelihood ratio test (LRT) can be also used to test for a treatment effect. To perform this
test we need to fit the joint model under the null hypothesis of no treatment effect in the
survival submodel, and then use the anova() method:

R> fitSURV2 <- coxph(Surv(Time, death) ~ 1, data = aids.id, x = TRUE)

R> fit.JM2 <- jointModel(fitLME, fitSURV2, timeVar = "obstime",

+ method = "piecewise-PH-GH")

R> anova(fit.JM2, fit.JM)

AIC BIC log.Lik LRT df p.value

fit.JM2 4250.53 4312.72 -2110.26

fit.JM 4247.29 4313.64 -2107.65 5.23 1 0.0222
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Figure 3: Diagnostic plots for the fitted joint model. The top-left panel depicts the subject-
specific residuals for the longitudinal process versus their corresponding fitted values. The
top-right panel depicts the normal Q-Q plot of the standardized subject-specific residuals for
the longitudinal process. The bottom-left depicts an estimate of the marginal survival function
for the event process. The bottom-right depicts an estimate of the marginal cumulative risk
function for the event process.

We arrive at the same conclusion with an almost identical p value to the Wald test. The
anova() method for class jointModel accepts as arguments two fitted joint models, with the
first one always being the model under the null.

We proceed by checking the fit of the model using residuals plots. As it is standard in R, the
residuals and fitted values can be extracted from a fitted model using the generic functions
residuals() and fitted(), respectively. For joint models fitted by jointModel() we have
several kinds of residuals and fitted values depending on the outcome (i.e., longitudinal or
time-to-event) and the level of focus (i.e., marginalized over the subjects or subject-specific)
– for more details we refer to Appendix B. Some model diagnostics are directly available
by calling the plot() method for jointModel objects – for our fitted joint model this is
illustrated in Figure 3.

R> par(mfrow = c(2, 2))

R> plot(fit.JM)

The estimated marginal survival function presented in bottom-left panel of Figure 3 is calcu-
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lated according to the formula

S(t) =

∫
Si(t | bi; θ̂) p(bi; θ̂) dbi ≈ n−1

∑
i

Si(t | b̂i; θ̂),

where b̂i denotes the empirical Bayes estimates for the random effects. The estimated marginal
cumulative risk function is simply calculated as Hi(t) = − logS(t). Additional residuals plots
can be easily computed by first calculating the specific type of residuals of interest, and
then plotting them against the corresponding fitted values or covariates. For example, the
code below produces Figure 4 that contains the plots of the standardized subject-specific
and standardized marginal residuals versus fitted values for the longitudinal process, and the
martingale residuals versus m̂i(Ti) and the Kaplan-Meier estimate of the Cox-Snell residuals
for the event process (function plotResid() used to produce the following residuals plots can
be found in Appendix C).

R> par(mfrow = c(2, 2))

R> resSubY <- residuals(fit.JM, process = "Longitudinal",

+ type = "stand-Subject")

R> fitSubY <- fitted(fit.JM, process = "Longitudinal", type = "Subject")

R> plotResid(fitSubY, resSubY, xlab = "Fitted Values", ylab = "Residuals",

+ main = "Subject-Specific Residuals vs Fitted Values")

R> resMargY <- residuals(fit.JM, process = "Longitudinal",

+ type = "stand-Marginal")

R> fitMargY <- fitted(fit.JM, process = "Longitudinal", type = "Marginal")

R> plotResid(fitMargY, resMargY, xlab = "Fitted Values", ylab = "Residuals",

+ main = "Marginal Residuals vs Fitted Values")

R> resMartT <- residuals(fit.JM, process = "Event", type = "Martingale")

R> fitSubY <- fitted(fit.JM, process = "Longitudinal", type = "EventTime")

R> plotResid(fitSubY, resMartT, xlab = "Fitted Values", ylab = "Residuals",

+ main = "Martingale Residuals vs Fitted Values")

R> resCST <- residuals(fit.JM, process = "Event", type = "CoxSnell")

R> sfit <- survfit(Surv(resCST, death) ~ 1, data = aids.id)

R> plot(sfit, mark.time = FALSE, conf.int = TRUE, lty = 1:2,

+ xlab = "Cox-Snell Residuals", ylab = "Survival Probability",

+ main = "Survival Function of Cox-Snell Residuals")

R> curve(exp(-x), from = 0, to = max(aids.id$Time), add = TRUE,

+ col = "red", lwd = 2)

We observe that the fitted loess curve in the plot of the standardized marginal residuals versus
the fitted values shows a systematic trend with more positive residuals for small fitted values.
However, as mentioned in Section 2.3, due to the nonrandom dropout in the longitudinal
outcome caused by the occurrence of events, conclusions from residuals based on the observed
data alone should be extracted with caution. For instance, in our example small numbers of
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Figure 4: Diagnostic plots for the fitted joint model. The dashed lines in bottom-right panel
denote the 95% confidence intervals for the Kaplan-Meier estimate of the Cox-Snell residuals.

CD4 cell counts indicate a worsening of patients’ condition resulting in higher death rates (i.e.,
dropout). Thus, the residuals corresponding to small fitted values are only based on patients
with a ‘good’ health condition, which results in the systematic trend. To take dropout into
account we will use the multiply-imputed residuals introduced in Section 2.3. The simulation
scheme described in Section 2.3 is available via the residuals() method for jointModel

objects, and can be invoked using the logical argument MI. As an illustration, we calculate
the multiply-imputed standardized marginal residuals (we set the seed for reproducibility):

R> set.seed(123)

R> res.MI <- residuals(fit.JM, process = "Longitudinal",

+ type = "stand-Marginal", MI = TRUE)

R> fitMargY.miss <- res.MI$fitted.valsM

R> resMargY.miss <- res.MI$resid.valsM

Contrary to the standard call to residuals() that returns a numeric vector of residuals (as
illustrated above), setting MI to TRUE returns a list with several components useful in the
further processing of the multiply-imputed residuals. The two components that we extract
here are the fitted values and the multiply-imputed standardized marginal residuals that
correspond to ymi , as defined in Section 2.3. Object fitMargY.miss is a numeric vector,
whereas resMargY.miss is a numeric matrix with columns representing the realizations of



20 JM: Joint Modelling of Longitudinal and Time-to-Event Data in R

Figure 5: Observed standardized marginal residuals (black circles), augmented with all the
multiply imputed residuals produced by the L = 50 imputations (grey points). The superim-
posed solid lines represent a loess fit based only on the observed residuals (black line), and a
weighted loess fit based on all residuals (grey line).

the residuals based on the multiple-imputations for ymi (default is 50 multiple-imputations;
this is controlled by argument M of residuals()). The following code produces Figure 5
that depicts the multiply-imputed residuals together with the observed residuals versus their
corresponding fitted values:

R> M <- ncol(resMargY.miss)

R> resMargY.MI <- c(resMargY, resMargY.miss)

R> fitMargY.MI <- c(fitMargY, rep(fitMargY.miss, M))

R> plot(range(fitMargY.MI), range(resMargY.MI), type = "n",

+ xlab = "Fitted Values", ylab = "MI Standardized Marginal Residuals")

R> abline(h = 0, lty = 2)

R> points(rep(fitMargY.miss, M), resMargY.miss, cex = 0.5, col = "grey")

R> points(fitMargY, resMargY)

The black loess curve in Figure 5 is in fact the same curve as in the top-right panel of Figure 4
and is produced by

R> lines(lowess(fitMargY, resMargY), lwd = 2)
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However, to produce the grey loess curve, which describes the relationship between the com-
plete residuals (i.e., the multiply-imputed residuals together with the observed residuals)
versus their corresponding fitted values, some extra steps are required. In particular, we need
to take into account that for each of the time points the i-th subject did not appear in the
study center we have M = 50 multiply-imputed residuals, whereas for the times that he did
appear we only have one. Thus, in the calculation of the loess curve we will use case weights
with the value 1 for the observed residuals and 1/M = 1/50 = 0.02 for the multiply-imputed
ones, i.e.,

R> dat.resid <- data.frame(

+ resid = resMargY.MI,

+ fitted = fitMargY.MI,

+ weight = c(rep(1, length(resMargY)), rep(1/M, length(resMargY.miss)))

+ )

R> fit.loess <- loess(resid ~ fitted, data = dat.resid, weights = weight)

R> nd <- data.frame(fitted = seq(min(fitMargY.MI), max(fitMargY.MI),

+ length.out = 100))

R> prd.loess <- predict(fit.loess, nd)

R> lines(nd$fitted, prd.loess, col = "grey", lwd = 2)

A comparison between the two loess smoothers reveals that indeed the systematic trends that
were present in the residual plots based on the observed data alone are mainly attributed to
the nonrandom dropout and not to a model lack-of-fit.

Following we will focus on the calculation of expected survival probabilities. The Monte
Carlo scheme of Section 2.4 is implemented in function survfitJM() that accepts as main
arguments a fitted joint model, and a data frame that contains the longitudinal and covariate
information for the subjects for which we wish to calculate the predicted survival probabilities.
Here we compute πi(u | t) for four patients in the data set who have not died by the time
of loss to follow-up, using L = 200 Monte Carlo samples (as previously, we set the seed for
reproducibility):

R> set.seed(123)

R> ND <- aids[aids$patient %in% c("7", "15", "117", "303"), ]

R> predSurv <- survfitJM(fit.JM, newdata = ND, idVar = "patient",

+ last.time = "Time")

R> predSurv

Prediction of Conditional Probabilities for Event based on 200 replications

$`7`

times Mean Median Lower Upper

1 14.6962 0.9863 0.9879 0.9696 0.9945

2 15.3147 0.9629 0.9673 0.9177 0.9853

3 15.9332 0.9393 0.9465 0.8655 0.9761

4 16.5518 0.9136 0.9209 0.8110 0.9651

5 17.1703 0.8877 0.8952 0.7628 0.9516

6 17.7888 0.8617 0.8715 0.7025 0.9421
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7 18.4074 0.8359 0.8523 0.6502 0.9308

8 19.0259 0.8103 0.8302 0.6115 0.9245

9 19.6444 0.7849 0.8091 0.5475 0.9167

10 20.2629 0.7597 0.7897 0.4852 0.9107

11 20.8815 0.7349 0.7643 0.4159 0.8978

12 21.5000 0.7105 0.7425 0.3741 0.8905

...

By default survfitJM() computes πi(u | t) at a set of equally spaced time points, produced by
a regular sequence of length 35 starting from the minimum observed event time to the max-
imum observed event time (i.e., seq(min(Time), max(Time) + 0.1, length.out = 35));
this default choice can be changed by specifying in argument survTimes a numeric vector of
time points at which πi(u | t) is to be computed. We should note however that survfitJM()
actually computes πi(u | t) for each subject for the time points that are later than the time of
the last available longitudinal measurement (e.g., if a subject had provided longitudinal mea-
surements up to time t, survfitJM() will compute πi(u | t) for all u > t). This is because for
the time points that are earlier than the time of the last available longitudinal measurement
we know that this subject was alive and therefore πi(u | t) = 1 (see also Section 2.4). In
addition, if the last time point at which a subject was still alive is later than the time point
of his last available longitudinal measurement, then this can be specified via the optional
argument last.time; for instance, in our example we specify last.time = "Time" since we
know that all four patients were still alive at the censoring time, which is given by the vari-
able Time in data frame ND. The printed output survfitJM() is rather self-explanatory – to
avoid including here the whole lengthy output for all four patients, we only show the results
for Patient 7. This patient provided CD4 cell count measurements up to 12 months from
randomization and he was lost to follow-up after 14.3 months. He has 75% probability of
surviving more than 21.4 months (which is the largest recorded follow-up time) with a 95%
pointwise confidence interval ranging from 38% to 89%. The estimated πi(u | t)’s can also be
plotted using the plot() method for objects of class survfitJM. In particular, a simple call
to plot() produces Figure 6:

R> par(mfrow = c(2, 2))

R> plot(predSurv, conf.int = TRUE)

Furthermore, the fun argument of the plot() method can be used to produce various trans-
formations of πi(u | t). For instance, the following code includes in Figure 7 the plots of
expected survival, natural logarithm of expected survival, and expected cumulative risk

R> par(mfrow = c(2, 2))

R> plot(predSurv, which = "7", conf.int = TRUE)

R> plot(predSurv, which = "7", conf.int = TRUE, fun = log,

+ ylab = "log Survival")

R> plot(predSurv, which = "7", conf.int = TRUE, fun = function (x) -log(x),

+ ylab = "Cumulative Risk")

An additional option provided by the plot() method for survfitJM objects, is to include
in the same figure the estimated πi(u | t) and the longitudinal information for each patient.
This is illustrated for Patient 7 in Figure 8 that is produced with following piece of code:
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Figure 6: Predicted probabilities of survival for four patients who have not died by the end of
the study, based on 200 Monte Carlo samples. The red and greed solid lines depict the mean
and median, respectively, of πi(u | t) over the Monte Carlo samples. The black dashed lines
depict a 95% pointwise confidence intervals based on the quantiles of πi(u | t) over the Monte
Carlo samples.

R> plot(predSurv, conf.int = TRUE, estimator = "median", which = "7",

+ include.y = TRUE)

The estimator argument specifies which estimate of πi(u | t) to plot (i.e., mean, median or
both), argument which can be used to specify for which specific subject we want to produce
the plot, and logical argument include.y adds in the same figure the scatter plot of the
longitudinal responses of this subject versus time. This figure is useful in investigating whether
specific longitudinal profiles result in steeper survival curves, which could be insightful for the
mechanisms that underly the medical condition under study.

Finally, to make the connection with the missing data framework we can compare the results of
the linear mixed effects model ignoring the dropout process with the results of the longitudinal
submodel from the joint model fit:

R> summary(fitLME)

Linear mixed-effects model fit by REML

Data: aids
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Figure 7: Transformations of the predicted survival probabilities for death for Patient 7,
based on 200 Monte Carlo samples. The green solid line depicts the median of πi(u | t) over
the Monte Carlo samples. The black dashed lines depict a 95% pointwise confidence interval.
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Figure 8: Predicted survival probabilities for Patient 7 (top panel) including also his available
longitudinal

√
CD4 cell counts measurements (bottom panel), based on 200 Monte Carlo

samples. The green solid line depicts the median of πi(u | t) over the Monte Carlo samples.
The black dashed lines depict a 95% pointwise confidence interval.
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AIC BIC logLik

2699.069 2735.789 -1342.535

Random effects:

Formula: ~obstime | patient

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 0.87143264 (Intr)

obstime 0.03617033 -0.015

Residual 0.36844785

Fixed effects: sqrt(CD4) ~ obstime + obstime:drug

Value Std.Error DF t-value p-value

(Intercept) 2.5118005 0.04258901 936 58.97766 0.0000

obstime -0.0375070 0.00440225 936 -8.51997 0.0000

obstime:drugddI 0.0082141 0.00632277 936 1.29912 0.1942

Correlation:

(Intr) obstim

obstime -0.118

obstime:drugddI 0.000 -0.687

...

We observe a rather very small sensitivity, which is more easily noticeable by comparing the
parameter estimates divided by their corresponding standard errors (i.e., z-value column
in the results of the joint model fit and t-value column in the results of the linear mixed
model fit). However, note that we have relaxed the MAR assumption only towards the
MNAR mechanism implied by joint models (9) – we cannot definitely claim that there are no
sensitivity issues.

5. Extra features and extensions

In this article we have illustrated the capabilities of package JM for the joint modelling of
longitudinal and time-to-event data using shared parameter models. These models are appli-
cable when either we wish to account for the effect of a time-dependent covariate measured
with error in a survival analysis context or when we wish to correct for nonrandom dropout
in the analysis of longitudinal outcomes.

Even though in Section 4 we have focused on joint models with a relative risk submodel
with a piecewise constant baseline risk function for the event outcome, JM offers several
other options for the survival submodel as described in Section 3.1. Moreover, for method =

"weibull-PH-GH" and method = "weibull-AFT-GH" the scaleWB argument of jointModel()
can be used to fix the scale parameter of the Weibull hazard function to a specific value (e.g.,
setting scaleWB = 1, the Weibull hazard reduces to the exponential hazard). In addition, for
method = "spline-PH-GH", it is also possible to include stratification factors, i.e., different
coefficients for the B-spline approximation of the log baseline risk function are assumed for
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different levels of categorical variable. To fit such a stratified joint model the user needs
to include the stratification factors in the definition of the survival model, which must only
be a Cox model. For instance, for the AIDS data set analyzed in Section 4, the following
code includes as a stratification factor variable that distinguishes between patients who were
intolerant or had failure in the standard treatment for AIDS:

R> fitSURV3 <- coxph(Surv(Time, death) ~ drug + strata(AZT), data = aids.id,

+ x = TRUE)

R> fit.JM3 <- jointModel(fitLME, fitSURV3, timeVar = "obstime",

+ method = "spline-PH-GH")

The supporting function wald.strata() can be used to test for equality of the spline coeffi-
cients across strata with a Wald test. Furthermore, for all types of joint models available in
JM it is possible to postulate a lag effect for the longitudinal time-dependent covariate, that
is

hi(t | Mi(t), wi) = h0(t) exp[γ>wi + αmi{min(t− k, 0)}],

where k > 0. This is controlled by the argument lag of jointModel() that defaults to 0.
Finally, a further issue in the calculation of the multiple-imputation residuals is the nature of
the visiting process (i.e., the stochastic mechanism that generates the time points at which
the longitudinal measurements are collected). In particular, in the AIDS study patients
were supposed to provide CD4 cell count measurements at fixed follow-up times. However, in
observational studies and in some randomized trials, the time points at which the longitudinal
measurements are taken are not fixed by design but rather determined by the physician or even
the patients themselves. The possibility of random visit times complicates the methodology
presented in Section 2.3 due to the fact that the time points at which the i-th subject was
supposed to provide measurements after the observed event time Ti are not available, and
thus the corresponding rows x>i (tij) and z>i (tij), for tij ≥ Ti, of the design matrices Xi and Zi,
respectively, required in Step 3 of the simulation scheme of Section 2.3, cannot be specified.
To overcome this problem JM offers the option to model the visiting process (using a Weibull
model with a Gamma frailty implemented in function weibull.frailty()), and use this
visiting model to simulate future visit times for each individual. An example of this procedure
as well as up-to-date information regarding the current and future features of the package, and
R scripts, with detailed analysis of real data sets illustrating these features, can be found in
the R wiki page of JM, accessible at http://rwiki.sciviews.org/doku.php?id=packages:
cran:jm.

Package JM is still under active development. Future plans include among others, the handling
of interval censored and grouped survival data, different types of parameterizations for the
survival model, and the implementation of the fully exponential Laplace approximation for
the other types of survival models available in jointModel().
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A. Study of the effect of the number of quadrature points

To investigate the effectiveness of the scaling procedure described in Section 3.2, we fitted
three joint models of increasing complexity in the AIDS data set using 9, 11, 15, 21 and 25
Gauss-Hermite quadrature points, respectively (in order to be able to follow the context in
which these joint models are specified please read first Section 4 up to p. 15). The specification
of these models is as follows:

M1: In the longitudinal submodel we include in the fixed-effects part the main effect of
time and the interaction of treatment with time, and in the random-effects part an
intercept term. In the survival submodel we include as a time-independent covariate
the treatment effect, and as time-dependent one the true underlying effect of CD4 cell
count as estimated from the longitudinal model. The baseline risk function is assumed
piecewise constant with six knots placed at equally spaced percentiles of the observed
event times.

M2: The same specification as M1 but in the random-effects part we also include a random
slopes term (this is the joint model presented in Section 4).

M3: The same specification as M2 but in both the longitudinal and survival submodels we
include as extra baseline covariates, a dummy for AZT failure and a dummy for previous
opportunistic infections. In addition, in the longitudinal submodel we also include
the interaction effects of time with AZT failure and time with previous opportunistic
infections.

The results, presented in Tables 1–4, have been produced in a Intel Core2Duo 2.50 GHz
laptop, with 4GB RAM, running Windows Vista Home Premium, using R version 2.10.1
(2009-12-14) and JM (version 0.6-1). First from Table 1, and as expected, we observe that
the computing time increases exponentially with respect to both model complexity (i.e., from
M1 to M3) and the number of quadrature points. However, from Tables 2–4, we observe that
with respect to parameter estimates, the scaling procedure described in Section 3.2 works
satisfactorily. In particular, the joint model fits using 15 or even 11 quadrature points yields
very similar parameter estimates as the more precise though more computational intensive
21 and 25 quadrature point joint model fits.

GH9 GH11 GH15 GH21 GH25

M1 0.26 0.28 0.44 0.42 0.61
M2 1.72 2.57 5.04 11.37 16.69
M3 3.90 4.95 6.56 14.47 23.10

Table 1: Elapsed time in minutes for the three joint models fitted to the AIDS data under
different choices for the number of quadrature points for the Gauss-Hermite rule.
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GH9 GH11 GH15 GH21 GH25

β1 2.57 2.55 2.50 2.50 2.49
β2 −0.04 −0.04 −0.04 −0.04 −0.04
β5 0.01 0.00 0.00 0.01 0.00

log(σ) −0.81 −0.83 −0.86 −0.88 −0.89

β1 2.61 2.56 2.56 2.50 2.50
β2 −0.04 −0.04 −0.04 −0.04 −0.04
β5 0.01 0.00 0.01 0.01 0.01

log(σ) −0.94 −0.96 −0.98 −1.00 −1.00

β1 3.28 3.13 3.10 3.12 3.10
β2 −0.03 −0.03 −0.04 −0.04 −0.04
β3 −0.23 −0.10 −0.07 −0.09 −0.12
β4 −1.05 −0.92 −0.83 −0.80 −0.80
β5 0.00 0.00 0.01 0.01 0.01
β6 −0.00 −0.00 0.00 0.00 −0.00
β7 −0.01 −0.01 −0.01 −0.01 −0.01

log(σ) −0.94 −0.96 −0.99 −1.00 −1.00

Table 2: Parameter estimates for the longitudinal process for the three joint models fitted
to the AIDS data under different choices for the number of quadrature points for the Gauss-
Hermite rule. The top panel presents the results for the random intercepts joint model M1,
the middle panel the results for the random intercepts and random slopes joint model M2, and
the bottom panel the results for the random intercepts, random slopes + extra covariates joint
model M3. β1 denotes the intercept, β2 the time effect, β3 the effect of AZT failure, β4 the
effect of previous opportunistic infections, β5 the interaction effect of time with treatment,
β6 the interaction effect of time with AZT, β7 the interaction effect of time with previous
opportunistic infections, and σ the standard deviation of the error terms.

GH9 GH11 GH15 GH21 GH25

D11 0.795 0.782 0.774 0.776 0.773

D11 0.780 0.783 0.750 0.765 0.758
D12 0.000 0.001 0.002 0.002 0.003
D22 0.002 0.001 0.002 0.001 0.001

D11 0.618 0.602 0.586 0.572 0.578
D12 −0.001 −0.001 −0.001 0.000 −0.000
D22 0.001 0.001 0.001 0.001 0.001

Table 3: Parameter estimates for the random-effects covariance matrix for the three joint
models fitted to the AIDS data under different choices for the number of quadrature points
for the Gauss-Hermite rule. The top panel presents the results for the random intercepts
joint model M1, the middle panel the results for the random intercepts and random slopes
joint model M2, and the bottom panel the results for the random intercepts, random slopes
+ extra covariates joint model M3. D11 denotes the variance for the random intercepts, D22

the variance for the random slopes, and D12 their covariance.
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GH9 GH11 GH15 GH21 GH25

γ1 0.36 0.34 0.35 0.35 0.35
α −1.08 −1.08 −1.09 −1.07 −1.08

log(ξ1) −1.68 −1.67 −1.64 −1.68 −1.67
log(ξ2) −1.31 −1.29 −1.27 −1.31 −1.29
log(ξ3) −0.96 −0.94 −0.92 −0.96 −0.94
log(ξ4) −1.50 −1.48 −1.45 −1.49 −1.47
log(ξ5) −1.38 −1.36 −1.34 −1.38 −1.36
log(ξ6) −1.39 −1.36 −1.33 −1.37 −1.35
log(ξ7) −1.33 −1.31 −1.31 −1.35 −1.34

γ1 0.36 0.35 0.35 0.34 0.35
α −1.10 −1.10 −1.10 −1.09 −1.09

log(ξ1) −1.66 −1.67 −1.65 −1.67 −1.67
log(ξ2) −1.35 −1.35 −1.34 −1.35 −1.36
log(ξ3) −1.03 −1.03 −1.02 −1.04 −1.04
log(ξ4) −1.59 −1.58 −1.58 −1.59 −1.60
log(ξ5) −1.48 −1.47 −1.47 −1.49 −1.49
log(ξ6) −1.44 −1.44 −1.44 −1.45 −1.45
log(ξ7) −1.47 −1.47 −1.48 −1.48 −1.49

γ1 0.34 0.33 0.34 0.34 0.34
γ2 0.09 0.08 0.09 0.09 0.09
γ3 0.62 0.64 0.63 0.63 0.62
α −0.99 −0.98 −0.98 −0.98 −0.99

log(ξ1) −2.41 −2.44 −2.44 −2.42 −2.41
log(ξ2) −2.06 −2.08 −2.09 −2.08 −2.06
log(ξ3) −1.71 −1.74 −1.74 −1.73 −1.72
log(ξ4) −2.25 −2.27 −2.28 −2.27 −2.26
log(ξ5) −2.12 −2.15 −2.16 −2.15 −2.14
log(ξ6) −2.06 −2.08 −2.10 −2.09 −2.08
log(ξ7) −2.06 −2.07 −2.09 −2.09 −2.08

Table 4: Parameter estimates for the event process for the three joint models fitted to the
AIDS data under different choices for the number of quadrature points for the Gauss-Hermite
rule. The top panel presents the results for the random intercepts joint model M1, the middle
panel the results for the random intercepts and random slopes joint model M2, and the
bottom panel the results for the random intercepts, random slopes + extra covariates joint
model M3. γ1 denotes the treatment effect, γ2 the effect of AZT failure, γ3 the effect of
previous opportunistic infections, α the association parameter, and ξ1, . . . , ξ7 the parameters
of the baseline risk function.

The code used to produce these results is copied below:

R> fitLME.int <- lme(sqrt(CD4) ~ obstime + obstime:drug,

+ random = ~ 1 | patient, data = aids)

R> fitLME.slp <- lme(sqrt(CD4) ~ obstime + obstime:drug,

+ random = ~ obstime | patient, data = aids)
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R> fitLME.covs <- lme(sqrt(CD4) ~ obstime * (drug + AZT + prevOI) - drug,

+ random = ~ obstime | patient, data = aids)

R> fitSURV <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

R> fitSURV.covs <- coxph(Surv(Time, death) ~ drug + AZT + prevOI,

+ data = aids.id, x = TRUE)

R> GHk <- c(9, 11, 15, 21, 25)

R> jmI <- jmII <- jmIII <- vector("list", length(GHk))

R> for (i in seq_along(GHk)) {

+ jmI[[i]] <- jointModel(fitLME.int, fitSURV, timeVar = "obstime",

+ method = "piecewise-PH-GH", GHk = GHk[i])

+ jmII[[i]] <- jointModel(fitLME.slp, fitSURV, timeVar = "obstime",

+ method = "piecewise-PH-GH", GHk = GHk[i])

+ jmIII[[i]] <- jointModel(fitLME.covs, fitSURV.covs, timeVar = "obstime",

+ method = "piecewise-PH-GH", GHk = GHk[i])

+ }

B. Types of residuals for joint models

For the longitudinal part of the joint model two frequently used types of residuals are the
standardized marginal and standardized subject-specific residuals, which are defined as

r
(ym)
i = V̂

−1/2
i (yi −Xiβ̂), and

r
(ys)
i (tij) = {yi(tij)− x>i (tij)β̂ − z>i (tij)b̂i}/σ̂,

where β̂, σ̂, and D̂ denote the maximum likelihood estimates under model (3), b̂i are the
empirical Bayes estimates for the random effects, and V̂i = ZiD̂Z

>
i + σ̂2I, with I denoting

the identity matrix of appropriate dimensions. The marginal residuals r
(ym)
i predict the

marginal errors yi −Xiβ = Zibi + εyi, and can be used to investigate misspecification of the
mean structure Xiβ as well as to validate the assumptions for the within-subjects covariance

structure Vi. The subject-specific residuals r
(ys)
i (tij) predict the conditional errors εi(t), and

can be used for checking the homoscedasticity and normality assumptions.

For the survival part of the joint model, a standard type of residuals is the martingale residuals
defined as

r
(tm)
i = δi −

∫ Ti

0
hi(s | M̂i(s); θ̂) ds.

These are commonly used for a direct assessment of excess events (i.e., to reveal subjects
that are poorly fit by the model), and for evaluating whether the appropriate functional form
for a covariate is used in the model. Another type of residuals for survival models, related
to the martingale residuals, is the Cox-Snell residuals. These are calculated as the value of
cumulative risk function evaluated at the observed event times Ti, i.e.,

r
(tcs)
i =

∫ Ti

0
hi(s | M̂i(s); θ̂) ds.
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If the assumed model fits the data well, we expect r
(tcs)
i to have a unit exponential distribution;

however, when Ti is censored, r
(tcs)
i will be censored as well. To take censoring into account

in checking the fit of the model, we can compare graphically the Kaplan-Meier estimate of

the survival function of r
(tcs)
i with the survival function of the unit exponential distribution.

C. A useful function for residuals plots

R> plotResid <- function (x, y, ...) {

+ plot(x, y, ...)

+ lines(lowess(x, y), col = "red", lwd = 2)

+ abline(h = 0, lty = 3, col = "grey", lwd = 2)

+ }
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