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Abstract Diabetes and osteoporosis are both common dis-
eases with increasing prevalences in the aging population.
There is increasing evidence corroborating an association be-
tween diabetes mellitus and bone. This review will discuss the
disease complications of diabetes on the skeleton, highlighting
findings from epidemiological, molecular, and imaging stud-
ies in animal models and humans. Compared to control sub-
jects, decreased bone mineral density (BMD) has been ob-
served in type 1 diabetes mellitus, while on average, higher
BMD has been found in type 2 diabetes; nonetheless, patients
with both types of diabetes are seemingly at increased risk of
fractures. Conventional diagnostics such as DXA measure-
ments and the current fracture risk assessment tool (FRAX)
risk prediction algorithm for estimating risk of osteoporotic
fractures are not sufficient in the case of diabetes. A deterio-
ration in bone microarchitecture and an inefficient distribution

of bone mass with insufficiency of repair and adaptation
mechanisms appear to be factors of relevance. A highly com-
plex and heterogeneous molecular pathophysiology underlies
diabetes-related bone disease, involving hormonal, immune,
and perhaps genetic pathways. The detrimental effects of
chronically elevated glucose levels on bone should be added
to the more well-known complications of diabetes.
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Introduction

Diabetes and osteoporosis are common diseases with increas-
ing prevalences in the aging population. There is growing
evidence corroborating that diabetes mellitus influences the
skeletal metabolism. Decreased bone mineral density (BMD)
and increased fracture risk have fairly consistently been ob-
served in type 1 diabetes mellitus patients [1••]. This review
will primarily focus on type 2 diabetes. Contradictory results
with higher, lower, or similar values for BMD observed in
persons with type 2 diabetes compared to control subjects
have been reported across individual and relatively small stud-
ies with diverse designs [2–5]. Nevertheless, several lines of
evidence arising from meta-analytical efforts suggest that in-
dividuals with type 2 diabetes have generally higher BMD
levels at the femoral neck, hip, and spine than persons without
diabetes, independently of gender or body mass index (which
is usually higher in subjects with type 2 diabetes and discussed
in further detail below) [1••, 6•]. The between-study heteroge-
neity was very high and originated at least in part from differ-
ences in design and possibly diabetes definition across studies.
Nonetheless, the meta-regression of the results across studies
showed that younger age, male gender, higher body mass
index, and higher hemoglobin A1c (HbA1C) were positively
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associated with higher BMD levels in individuals with type 2
diabetes.

Higher Fracture Risk Despite a Higher Bone Mineral
Density in Type 2 Diabetes

Based on evidence in non-diabetics, the higher levels of BMD
should be protective against fracture; this association seems
somewhat different in type 2 diabetes [2, 7, 8••, 9]. Using data
from the prospective Rotterdam Study cohort, De Liefde et al.
were among the first to show that individuals with type 2
diabetes have 69 % higher risk of non-vertebral fractures than
those without diabetes despite having higher BMD at the fem-
oral neck and lumbar spine [9]. The aforementioned meta-
analysis by Vestergaard et al. found summary estimates for
hip fracture risk of 6.9 in type 1 and 1.4 in type 2 diabetes
compared to subjects without diabetes, respectively [1••].
Schwartz and colleagues established in a meta-analysis based
on three prospective observational studies with adjudicated
fracture outcomes (Study of Osteoporotic Fractures; Osteopo-
rotic Fractures in Men Study; and Health, Aging, and Body
Composition Study) that in type 2 diabetes patients, the frac-
ture risk was higher for a given BMD and age as compared
with participants without diabetes and, most importantly, that
the World Health Organization’s fracture risk assessment tool
(FRAX) underestimates osteoporotic fracture risk in individ-
uals with diabetes [8••]; similar work by Giangregorio et al. in
the CanadianManitoba BoneDensity Program illustrated how
diabetes as a risk factor is necessary to be considered for
inclusion in future iterations of FRAX [10]. Even thoughmost
of the work has been done in populations of European back-
ground, similar relationships have been observed across dif-
ferent ethnicities, particularly in relation to increased risk of
vertebral fractures [11–13].

Many studies have shown a difference in population char-
acteristics between type 2 diabetic patients and healthy con-
trols [3, 9, 14, 15]. In these studies, diabetic study participants
tend to be older, have a higher body mass index (BMI) or
weight, increased insulin levels, less physical exercise, higher
alcohol consumption, and they usually smoke more and more
often. Also, the use of diuretics is more common in diabetes,
and particularly loop diuretics (e.g., furosemide) may be asso-
ciated with decreased BMD and increased risk of fractures
through increasing urinary calcium excretion and osteoclastic
bone resorption [16], while thiazides are associated with
higher BMD and lower fracture risk [17, 18]. Further, the
use of anti-diabetic thiazolidinediones has been reported to
increase fracture risk [19]. Patients with diabetes fall more
often, which can be a consequence from suffering from sub-
optimal physical fitness, neuropathy, retinopathy, or
sarcopenia [20]. Alternatively, insulin users with low HbA1C

levels are reported to fall more, likely as a consequence of

hypoglycemia [21]. These characteristics might influence
bone metabolism and fracture risk; nevertheless, statistical
analyses with corrections in aforementioned studies suggest
independence of the differences in BMD and fracture risk
from these measured confounders [3, 9, 14, 15] such as risk
of falling [9, 14].

Relation of Diabetes Regulation with Fracture Risk

Some studies evaluating the relationship between glycemic
control based on fasting blood glucose and fracture risk have
found conflicting results [26–30]. Other factors that do seem
to matter are the use of insulin and disease duration. Among
these studies is an investigation by Ivers et al. [22] which
found that fasting blood glucose greater than 7 mmol/L, dis-
ease duration longer than 10 years, insulin treatment, and the
presence of diabetic retinopathy were associated with in-
creased risk of all types of fractures. The oral glucose toler-
ance test (OGTT) remains the gold standard for distinguishing
diabetes mellitus (pre-glucose load or post-glucose load chal-
lenge serum glucose level of 11.1 mmol/l or higher) and im-
paired glucose tolerance (pre-glucose load or post-glucose
load challenge serum glucose level from 7.8 to 11.1 mmol/l)
[23]. In the Rotterdam Study, subjects with type 2 diabetes and
impaired glucose tolerance were both found to have higher
BMD, whereas contrary to those with impaired glucose toler-
ance, patients with type 2 diabetes had higher fracture risk,
particularly those on anti-diabetic medication [9]. Neverthe-
less, HbA1C is a better indicator than serum glucose for long-
term diabetes control and is therefore considered the main
parameter in clinical practice.

Higher HbA1C reflects a higher average plasma glucose
concentration over a prolonged period, in the order of weeks.
We observed in Rotterdam Study data that poor glycemic
control based on an HbA1C cut-off of 7.5 % (58 mmol/l) in
type 2 diabetes is associated with higher all types of fracture
risk, higher BMD, and thicker femoral cortices in narrower
bones [24••]. Intriguingly, different HbA1C thresholds were
applied in various studies, possibly due to heterogeneity in
effects and study population. Similar to our observations, the
Atherosclerosis Risk in Communities (ARIC) Study found
that type 2 diabetes was significantly and independently asso-
ciated with increased risk of fracture. In this study, an in-
creased risk of fracture of 1.87 times was observed among
persons treated with insulin and an increased risk of 1.63 times
among persons with diagnosed diabetes with HbA1C ≥8 %
(64 mmol/l) as compared to those individuals with HbA1C

below 8 % [25••]. Kanazawa et al. found that obese Japanese
men with type 2 diabetes and HbA1C of 9 % and above had
three times increased risk of vertebral fracture than men with
diabetes but normal BMI, despite equal or higher BMD [26].
Strotmeyer et al. found that older white and black adults with
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type 2 diabetes in the Health ABC Study had 1.6 increased
risk of fracture [13]. However, when comparing diabetes pa-
tients with and without fractures, poor glycemic control
(threshold of HbA1C 7 % (53 mmol/l)), longer disease dura-
tion, and insulin use were not significantly different. Forsén
et al. [26] found that fracture risk was higher in Norwegian
subjects with a disease duration longer than 5 years and insu-
lin use, but failed to demonstrate any effect on fractures using
a high cut-off of HbA1C 9.5 % (80 mmol/l). Yet, this cut-off
was very high and a consequent lack of study power cannot be
ruled out.

Pathophysiology

A highly complex and heterogeneous molecular pathophysi-
ology seems to underlie fracture risk in diabetes-related bone
disease. One of the factors that have been found detrimental is
advanced glycation end products (AGEs). AGEs are generat-
ed by the sequential non-enzymatic addition of carbohydrate
molecules to protein amino groups [27]. AGEs accumulate in
various tissues including bone [28, 29], kidney, and coronary
arteries [30]. This may result in the development of diabetic
complications through increased inflammation, interference
with normal tissue function, and cellular damage. Pentosidine
is one of the well-known AGEs, and the accumulation of
pentosidine in cortical and trabecular bone is negatively asso-
ciated with bone strength [28, 29, 31]. Histopathological anal-
yses comparing bone samples from femoral neck fracture
cases with post-mortem controls revealed a higher extent of
hydroxylation and higher pentosidine content [32, 33]. Fur-
thermore, Yamamoto et al. showed that individuals with type
2 diabetes suffering from vertebral fractures have increased
serum levels of pentosidine [34•], while higher levels of the
endogenous secretory receptor for AGEs (esRAGE), acting as
a decoy receptor binding AGEs, have protective effects on
fracture risk in diabetes [35]. esRAGE is the most prevalent
splice variant of RAGE, while the most common form is full-
length RAGE [36], which possesses a transmembrane domain
and is therefore able to transduce signals as a membrane-
bound receptor [37]. Seemingly, full-length RAGE has a role
in bone remodeling by regulating osteoclast function possibly
through integrin signaling and bone mass given that mice
lacking RAGE have increased bone mass and BMD and de-
creased bone resorptive activity in vivo [38].

Insulin levels could mediate in part a positive association
between type 2 diabetes and elevated BMD. Individuals with
type 2 diabetes usually have an excess of insulin, and those
with worse glucose control have the highest serum levels
[24••]. Physiologically, insulin has an anabolic effect on bone
due to its structural homology to insulin-like growth factor-I
(IGF-I) by interacting with the IGF-I receptor present on os-
teoblasts [39]. The IGF-I signaling pathway is crucial for bone

acquisition and bone remodeling [40]. The lower concentra-
tions of serum IGF-I levels are associated with the presence of
and a higher number of prevalent vertebral fractures in post-
menopausal women with type 2 diabetes [41, 42]. Addition-
ally, novel data from a mouse study with osteoprogenitor-
selective ablation of the insulin receptor suggest that insulin
receptor malfunction itself may directly lead to biomechanical
microarchitecture alterations in both cortical and trabecular
bone [43•]. Furthermore, there is evidence that insulin
receptor signaling promotes the differentiation of osteo-
blasts and enhances the production and activation of
osteocalcin [44, 45].

Osteocalcin is an osteoblast-specific secreted protein that
regulates hydroxyapatite size and shape through its vitamin K-
dependent, gamma-carboxylated form, thereby reflecting
bone remodeling and, in particular, bone formation [46]. The
metabolic roles of osteocalcin have been identified in animal
studies, including increasing insulin secretion and sensitivity
[47]. The regulation of insulin sensitivity by osteocalcin may
be either direct or indirect, via the adipocyte-derived hormone
adiponectin (discussed below) [46]. Osteocalcin has also been
found to be negatively correlated with HbA1C as a marker of
glycemic control in type 1 and type 2 diabetes [26].
Osteocalcin knock-out mice display glucose intolerance and
insulin resistance with a concomitant slight increase in bone
density [48••]. In bone and serum, osteocalcin is incompletely
carboxylated (undercarboxylated osteocalcin), and it is this
uncarboxylated form that has been negatively implicated in
energy metabolism and glucose control in both mice and
humans [45, 47]. Higher undercarboxylated osteocalcin may
be linked to increased risk of hip fracture [49•], where calcium
and vitamin D2 suppletion was able to normalize the
undercarboxylated osteocalcin levels [50••]. The underlying
mechanism is largely unknown; it is known that 1,25-
dihydroxyvitamin D enhances the transcription of osteocalcin
by means of the gene possessing a vitamin D-responsive ele-
ment [51], but whether vitamin D might directly influence the
γ-carboxylation reaction of osteocalcin remains unclear [52,
53]. Cardiovascular disease including atherosclerosis is more
common in type 2 diabetes mellitus; studies carried out so far
suggest that abdominal aortic calcification is more common in
diabetics [54]. In Asian women, it has been observed that
osteocalcin significantly correlated with aortic calcification,
which again is associated with a threefold increased risk of
vertebral fractures [55].

Adipokines are cell signaling proteins secreted by adipose
tissue and include for instance leptin, adiponectin, and resistin.
The release of these adipokines leads to a chronic
subinflammatory state that could play a central role in the
development of insulin resistance and type 2 diabetes [56]. It
has been observed that plasma leptin concentrations are higher
in obese persons with diabetes than in healthy controls [57].
Leptin induces bone growth by stimulating osteoblast
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proliferation and differentiation [58–60], and it has also been
shown to inhibit osteoclastogenesis through reducing RANK/
RANK-ligand production and increasing osteoprotegerin [61,
62]. Plasma leptin concentrations have been found inversely
related with BMD in cross-sectional studies [63–65]. Further,
higher leptin levels were associated with a lower prevalence of
fracture in some cohorts [66], though the effect may not be as
clear in individuals aged 70 to 79 years from the Health Aging
and Body Composition Study [67]. Some reports indicate that
circulating adiponectin and resistin levels are reduced in dia-
betes [68]. Adiponectin is expressed in osteoblasts and osteo-
clasts [69], and adiponectin seems to influence differentiation
from mesenchymal progenitor cells into osteocytes or adipo-
cytes, yet the effects on bone metabolism remain unclear [70,
71]. After the adjustments of measures of body fat, each dou-
bling of adiponectin is associated with a 2–3 % decrease in
BMD [72], and higher adiponectin levels may be a risk factor
for increased fracture risk [67]. The gut-derived peptide hor-
mone ghrelin has been shown to modulate osteoblast differ-
entiation and function, both directly and perhaps also through
the regulation of the growth hormone–insulin-like growth fac-
tor axis and through interaction with leptin ghrelin has a role
in modulating bone structure [73]. A systematic review and
meta-analysis by Biver et al. concluded that the most relevant
adipokines influencing BMD and fracture risk are indeed lep-
tin and adiponectin, whereas no convincing data are available
for resistin, visfatin, or gut-derived ghrelin [74].

The role of inflammation in the pathogenesis of type 2
diabetes, as touched upon before, and associated complica-
tions is now well established [75]. C-reactive protein (CRP)
is an extremely sensitive marker of systemic inflammation
produced mainly by the liver under the stimulation of
macrophage- and adipocyte-derived proinflammatory cyto-
kines, principally interleukin-6 (IL-6) [76]. Elevated levels
of CRP are described in persons with type 2 diabetes; howev-
er, it is not clear if they are related to the presence of obesity,
diabetes, or both [77]. Studies in general populations have
found lower BMD [78, 79], lower hip geometrical bending
strength [80•], and an increased risk of fracture [80•, 81] for
higher CRP levels, which intriguingly appeared to be indepen-
dent of BMD or trabecular microarchitecture [82]. Some stud-
ies explicitly indicate a relationship between CRP and com-
plications of diabetes [83–86]; nonetheless, evidence is lack-
ing for a direct mechanism, and CRPmay very well merely be
a marker of the ongoing inflammation [80•, 87–89].

Shared Genetic Factors Between Diabetes and Bone
Disease

A genome-wide association study (GWAS) meta-analysis for
gene expression levels in relation to type 2 diabetes as the
phenotype of interest including 1175 case–control

microarrays showed a significantly differential gene expres-
sion of osteopontin (OPN), also known as phosphoprotein 1
(SPP1) or bone sialoprotein I (BSP-I) [90]. This same inves-
tigation brought forward that osteopontin is a ligand for the
most prominent top hit of this genome-wide screening being
the immune cell receptor CD44 and that the expression pro-
files of CD44 and osteopontin are frequently coordinately
dysregulated, especially in adipose tissue. The gene-
encoding osteopontin maps to the 4q22.1 locus, which has
frequently appeared as a femoral neck-BMD and lumbar
spine-BMD locus in large-scale meta-analyses and contains
many bone-active genes [91•, 92–94]. Osteopontin is an ex-
tracellular structural protein in bone able to bind strongly to
calcium crystals [95]. It has been proposed that osteopontin is
an important factor in bone remodeling [96], which may be by
anchoring osteoclasts to the mineral matrix of bones [97]. In
addition, osteopontin enhances B lymphocyte proliferation
and immunoglobulin production and is chemotactic for many
immune cell types including macrophages, dendritic cells, and
T cells [98]. Osteopontin null mice of all ages display a bone
phenotype probably mediated by altered osteoclast activity,
protecting them from developing osteoporosis [99]. Fascinat-
ingly, wild-type mice exposed to a high-fat diet exhibit in-
creased plasma osteopontin levels with elevated expression
in macrophages recruited into adipose tissue, while on the
other hand, obese osteopontin null mice exhibit decreased
markers of inflammation with less macrophage infiltration
into adipose tissue, display improved insulin sensitivity, and
are seemingly protected from the effects of diet-induced obe-
sity on body composition or energy expenditure [100]. Alto-
gether, this suggests a key role for osteopontin in the devel-
opment of age-related osteoporosis and the link of obesity to
the development of insulin resistance and possibly type 2
diabetes.

A GWAS meta-analysis targeting copy number variations
(CNV), which are a type of structural variants of the genome
in which large (>1 kb) segments of the genome are either lost
or duplicated, found evidence that a deletion in the 6p25.1
locus predisposes to risk of all types of fracture [101•]. The
deletion is located in an intergenic region in the subtelomeric
region of chromosome 6p in the proximity of the peroxisomal
D3, D2-EnoylCoA Isomerase (PECI) gene which codes for an
enzyme relevant for the metabolism of fatty acids. PECI was
first cloned by using pooled antisera from autoimmune diabe-
tes patients [102]. The increased risk seen with individuals
with the 6p25del may be mediated by co-morbidity with dia-
betes, yet more studies are needed to convincingly replicate
the potential association of this copy number variant with
fracture risk and elucidate the underlying functional
mechanism.

The association between BMD, type 2 diabetes, and glyce-
mic traits [103] was also tested in the context of pleiotropic
relations by members of the Genetic Factors of Osteoporosis
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(GEFOS) and Meta-Analyses of Glucose and Insulin-related
traits (MAGIC) consortia. None of the BMD single nucleotide
polymorphisms (SNPs) reached the a priori P value threshold
corrected for multiple testing, except a SNP at the ITGA1
locus. This marker was found associated with type 2 diabetes,
serum insulin levels, β-cell function, and glucose tolerance.
Null ITGA1mice have impaired fracture healing and cartilage
remodeling [104], although it is not yet clear what role this
gene product has on BMD or bone structure.

Bone Geometry

Our data on hip bone geometry in the Rotterdam Study
showed that individuals with inadequately controlled diabetes
have persistently thicker cortices in narrower femoral necks
than those with adequately controlled diabetes or those with-
out diabetes [24••]. A lesser tendency to undergo physiologi-
cal bone expansion (periosteal apposition), i.e., a process in
which a limited amount of bone mass is efficiently
redistributed, could be inferred from narrower bone diameters
in these individuals. This led us to propose that changes in
microarchitecture (i.e., microcracks and cortical porosity)
could be underlying the increased risk of fractures observed
in inadequately controlled diabetics. A peripheral quantitative
computed tomography (pQCT) investigation in the Osteopo-
rotic Fractures in Men Study found that participants with type
2 diabetes displayed greater volumetric bone mineral density
(vBMD) but a smaller bone area at both the distal tibia and
radius, which resulted in a bone strength which was particu-
larly low relative to body weight [105]. As described by
Ahlborg et al. [106], a process of rapid physiological bone
expansion occurs in women after menopause, highlighting a
complex interplay of hormones such as estradiol, IGF-I, and
insulin [107, 108]. Considering the known anabolic effects of
IGF-I and insulin on bone and periosteal expansion, it can be
expected that the altered insulin–IGF-I–growth hormone axis
(lower bioavailability of IGF-I) may also contribute to the
observed geometrical alterations observed in inadequately
controlled diabetes, as a lack of periosteal apposition and bone
repair. Since such differences in geometry are accentuated at
older ages, we previously postulated that an accumulation of
microcracks with time may well be a skeletal complication of
inadequately controlled diabetes resulting in impaired bone
repair, decreased bone remodeling, high BMD, and increased
risk of fracture [24••]. There is a growing body of evidence for
the deterioration of bone microarchitecture in type 2 diabetes
leading to a porous skeleton susceptible to fracture. Burghardt
et al. applied a novel derivative of cortical porosity for high-
resolution peripheral quantitative computed tomography (HR-
pQCT) and reported that the cortical porosity in type 2 diabet-
ic patients is up to twice that of controls at the radius [109••].
Subsequently, Patsch et al. compared type 2 diabetes patients

with fragility fractures to patients with diabetes without frac-
tures and controls with and without fractures [110••]. The
investigators showed nicely that the cortical porosity is spe-
cific to those type 2 diabetes patients that have a fracture.
Similarly, the trabecular bone score (TBS) is a measure of
bone texture that can be derived from DXA, which correlates
with 3D parameters of bone microarchitecture [111]. One of
the first studies utilizing this invention demonstrated that TBS
is lower at the lumbar spine in diabetes-related bone disease
[112]. The results of these investigations provide a potential
explanation for the inability of standard DXA measures to
explain the elevated fracture incidence in patients with diabe-
tes presenting with higher BMD and apparently stronger bone
geometry.

Recently, researchers have started to examine bone
marrow fat composition, regarding presence and types
of hydrogen bonds, where unsaturated fats contain at
least one double bond, and saturated fats have the max-
imum number of hydrogens bonded to carbons. The ra-
diological research group of Dr. Link has demonstrated
in their combined quantitative computed tomography
(QCT) and magnetic resonance (MR) spectroscopy stud-
ies that the prevalence of fragility fractures is associated
with lower unsaturation levels and higher saturation
levels of bone marrow fat, in which the participants with
diabetes with fractures have the lowest marrow
unsaturation and highest saturation [113]. In contrast to
controls without diabetes, higher mean vertebral bone
marrow fat content is significantly correlated with viscer-
al adipose tissue and HbA1C in persons with type 2 dia-
betes, representing worse metabolic profiles [114]. The
concept of high-saturated fat-associated adipose inflam-
mation and insulin resistance has been proposed; howev-
er, underlying molecular mechanisms remain to be
elucidated.

Reference point indentation [115, 116] allows minimally
invasive measurements of bone material properties of human
bone in vivo by microindentation, which is correlated with the
risk of osteoporotic fractures [117, 118]. Recently, Farr et al.
showed that patients with type 2 diabetes have reduced serum
markers of bone turnover and lower bone material strength at
the tibia than age-matched controls without diabetes [119••].
Further, in this same study, the average HbA1C level over the
previous 10 years was negatively correlated with bone mate-
rial strength [119••], supporting the contention recognizing the
skeleton as another important target tissue subject to diabetic
complications [24••].

Therapeutic Options

Not only are patients with diabetes at increased risk for
fractures, but they also are prone to impaired bone
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healing after fracture [120]. In usual fracture healing,
serum concentrations of biomarkers such as alkaline
phosphatase, IGF-I, and osteocalcin peak in the first
few weeks of recovery [121, 122] and decrease again
thereafter, but possibly in disturbed consolidation, these
levels remain elevated for an even longer time [123]. An
experimental study using the diabetic Zucker (fa/fa) rat
model with creation of femoral defects demonstrated that
the administration of parathyroid hormone (PTH) could
partially reverse the adverse skeletal effects of diabetes
on bone defect [124].

Systematic screening for complications and fall pre-
vention efforts, along with calcium and vitamin D reple-
tion and adequate physical activity, represents the main-
stay of fracture prevention in patients with diabetes.
Nonetheless, we should mention that the controversy re-
garding the anti-fracture efficacy versus the side-effect
profile of calcium supplements in general is still unre-
solved [125–127]. A few meta-analyses with different
methodologies have been published on this topic to date
yielding conflicting results [128–131], of which the in-
vestigation by Bolland et al. suggested an increased risk
of myocardial infarction (MI) and possibly stroke in men
and women together for calcium supplements, particular-
ly without co-administered vitamin D [128]. These spe-
cific potential side effects of calcium supplements may
be of particular importance in patients with diabetes as
they are already at increased risk of cardiovascular dis-
ease complications; however, no studies have been per-
formed in this area yet. As discussed above, the current
FRAX risk score underestimates fracture risk in patients
with diabetes, which leads to undertreatment of the dia-
betic individuals that are actually at increased fracture
risk. Anti-catabolic drugs (raloxifene, bisphosphonates,
denosumab) might be effective, but on the basis of path-
ophysiological evidence that suggests low bone forma-
tion in the aforementioned research in model organisms
[124], osteo-anabolic therapies such as teriparatide might
represent an important therapeutic option for diabetes-
related bone disease [132]. More studies including ran-
domized controlled trials in this area are needed.

Strength of Evidence

The evidence outlined in this review includes studies in
humans and animals. Animal studies cited are mostly knock-
out mice experiments. Human studies include observational
studies of varying sizes, meta-analyses summarizing these re-
sults, and a few randomized controlled trials of generally
smaller sample sizes. At present, it may not be very well
possible to grade the evidence; replication studies in this field
are desirable.

Conclusion

In conclusion, the detrimental effects of diabetes on bone
should be added to the more well-known complications of
diabetes. A deterioration in bone microarchitecture and an
inefficient distribution of bone mass with insufficiency of re-
pair and adaptation mechanisms in combination with in-
creased risk of falling all lead to an elevated fracture risk as
skeletal complications of diabetes. Improved risk prediction
with epidemiological determinants and integration of novel
biochemical and imaging biomarkers will be necessary to cor-
rectly and timely diagnose those individuals at increased risk.
More research is needed to unravel the pathophysiology un-
derlying diabetes-related bone disease, which may eventually
contribute to preventative and curative therapies.
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