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Abstract The cerebellum plays an important role in the co-
ordination and refinement of movements and cognitive pro-
cesses. Recently, it has been shown that the main output neu-
ron of the cerebellar cortex, i.e., the Purkinje cell, can show a
different firing behavior dependent on its intrinsic electro-
physiological properties. Yet, to what extent a different nature
of mossy fiber inputs can influence the firing behavior of
cerebellar cortical neurons remains to be elucidated. Here,
we compared the firing rate and regularity of mossy fibers
and neurons in two different regions of cerebellar cortex.
One region intimately connected with the cerebral cortex,
i.e., lobules VI/VII of the neocerebellum, and another one
strongly connected with the vestibular apparatus, i.e., lobule
X of the archaeocerebellum. Given their connections, we hy-
pothesized that activity in neurons in lobules VI/VII and lob-
ule X may be expected to be more phasic and tonic, respec-
tively. Using whole-cell and cell-attached recordings in vivo
in anesthetized mice, we show that the mossy fiber inputs to
these functionally distinct areas of the cerebellum differ in that
the irregularity and bursty character of their firing is signifi-
cantly greater in lobules VI/VII than in lobule X. Importantly,
this difference in mossy fiber regularity is propagated through
the granule cells at the input stage to the Purkinje cells and
molecular layer interneurons, ultimately resulting in different
regularity of simple spikes. These data show that the firing
behavior of cerebellar cortical neurons does not only reflect
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particular intrinsic properties but also an interesting interplay
with the innate activity at the input stage.

Keywords Cerebellar cortex - Neurophysiology -
Patch clamp - Whole cell recording in vivo

Introduction

The cerebellum directs motor learning and might be involved
in a myriad of other processes, including emotion and cogni-
tion [1-3]. These differential behavioral roles are expected to
be reflected in the specific characteristics of the network func-
tion of the particular cerebellar cortical region involved, in that
processing in its neurons may be tailored to the specific task at
hand. Indeed, Purkinje cells, the sole output neurons of the
cerebellar cortex, show different intrinsic properties and dif-
ferent activity levels in several distinct areas of the cerebellar
cortex, often related to a specific zonal distribution [4, 5]. For
example, Purkinje cells in the zebrin-positive zones of the
vestibulocerebellum show a lower firing rate and have a ten-
dency to be more regular than those in the largely zebrin-
negative zones of the anterior cerebellum [4]. Similarly,
mossy fiber inputs to the various cerebellar cortical regions
serving functions with inherently different dynamics can also
be expected to show differences in activity patterns [6-9].
However, to what extent differences in regularity and firing
rates of mossy fiber inputs penetrate into the cerebellar net-
work from the input stage to the output stage remains to be
explored in detail. Here, we sought to investigate differences
in the activity of mossy fibers, granule cells, Purkinje cells,
and interneurons between two functionally distinct areas of
the cerebellar cortex, lobules VI/VII of the neocerebellum
and lobule X of the archaeocerebellum. Lobules VI/VII are
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intimately connected to sensorimotor and frontal cortices con-
trolling active exploratory behavior with the use of fast whis-
ker, paw, and/or eye movements [10-14]. Lobule X forms an
integral part of the vestibulocerebellum receiving inputs main-
ly from the vestibular organs and controlling slower reflexive
trunk movements. Both frequency and regularity of mossy
fiber inputs, as recorded in granule cells, were significantly
different between lobules VI/VII and lobule X. When looking
at output of molecular layer interneurons, the activity pattern of
which is dominated by the parallel fiber inputs from the granule
cells, we observed that in accordance with mossy fiber inputs,
spiking was more regular in lobule X compared with lobules
VI/VIL Similarly, simple spike (SS) firing in Purkinje cells, the
intrinsic activity which is modulated by both granule cell and
molecular layer interneuron inputs [15, 16], was more regular in
lobule X compared with lobules VI/VIL. Together, our data show
that there can be considerable differences in mossy fiber activities
between lobules and subsequent spiking of granule cells, Purkinje
cells, and molecular layer interneurons. These differences can be
lobule-specific and probably reflect the specific needs of the cer-
ebellar cortex in processing different modalities.

Materials and Methods

Adult (4-8 weeks) C57Bl/6 mice were prepared for whole cell
recordings in vivo by placing a pedestal on the skull during a
preparatory surgery. In short, animals were anesthetized using
isoflurane (5 % induction, 1.5 % in 0.5 1/min O, and 0.2 1/min
air), while body temperature was kept constant at 37 °C via a
feedback-controlled heating pad. The skin was shaved and
incised for approximately 1 cm midsagitally on the skull.
The bone was etched (37.5 % phosphoric acid, Kerr), and a
primer (Optibond, Kerr) was applied before a pedestal con-
taining two M1.4 nuts was glued to the skull using dental
acrylic (Flowline, Hereaus Kulzer). Animals received pain
reliever in the form of 2 mg/kg metacam (AUV). Animals
were allowed to recover for at least 1 day before recordings
were performed. All experiments adhered to institutional and
national guidelines and were approved by the Dutch Animal
Ethical Committee.

Electrophysiology

On the day of the experiment, the mouse was anesthetized
with an i.p. injection of 75 and 12 mg/kg ketamine and
xylazine, respectively. Anesthesia was supplemented when
needed during the experiment. The occipital bone was ex-
posed by removing the skin and three muscle layers in the
neck of the mouse. For the stability of the recordings, we
usually made small holes in the bone so as to reach lobules
VI/VII or lobule X. When necessary, we used 4 % agar to
stabilize the electrode to the brain. Whole-cell recordings of

all neurons were made using filamented borosilicate glass
(Hilgenberg or Harvard apparatus, 1.5 mm OD, 0.86 ID),
and pipettes were filled with (in mM): 10 KOH, 3.48 MgCl2,
4 NacCl, 129 K-Gluconate, 10 HEPES, 17.5 glucose 4
Na2ATP, and 0.4 Na3GTP (295-305 mOsm; pH 7.2). For
recordings in lobules VI/VIL, the electrode was lowered down to
200 um with high pressure on the electrode, before agar was
applied to stabilize the recording electrode to the brain. For record-
ings in lobule X, the electrode was quickly lowered to depths
between 1,500 wm before the pressure was lowered. “Neuron
hunting” was done by making 2-pum steps under low (15—
30 mbar) pressure. The total distance the electrode traveled from
the surface of the brain was noted for all recordings (track length).
Recordings were amplified using a Multiclamp 700B amplifier
(Axon Instruments) and digitized between 10 and 50 Khz using
a Digidata 1440 (Axon Instruments). Bridge balance and capaci-
tance neutralization was employed for all recordings. Junction
potential between the electrode and extracellular milieu was deter-
mined to be —8.53+0.87 mV. In whole cell mode, a 10 mV pulse
was applied and the resulting current response was recorded. Ac-
cess resistance and membrane resistance were estimated from the
peak and steady-state responses, respectively, whereas membrane
time constants were estimated from the relaxation from peak to
steady state. Analysis was performed using Clampfit (Axon In-
struments, version 10.2), Matlab 2010b (The Mathworks), and
Excel. Reported numbers in the text are mean+SD, unless noted
otherwise. At the beginning of each section, the total number of
analyzed neurons is listed. This neuron number applies to all
analyses in that section unless indicated otherwise.

EPSP Detection

Excitatory postsynaptic potentials (EPSPs) were detected by
obtaining the finite difference with an interval of 20 pus to 1 ms
[approximating a differential with variable At in the form f(#,)
—f(t1), where At=t,—t,]. A threshold was then set to detect the
rising phase of the EPSPs, and EPSP peaks were detected in
the following 2 ms. The baseline was determined just before
onset of the EPSP. Visual inspection was carried out on all
traces and events. Due to the much higher noise levels of
in vivo recordings compared with in vitro recordings, some
events could not be reliably classified and were not included.
On average, we could detect 85-90 % of all events, without
including nonevents.

SAR Analysis

Simple spikes, in contrast to complex spikes (CSs), are gen-
erated by persistent and resurgent sodium currents at the axon
initial segment [17, 18]. Since the complex spike is generated
in the dendritic tree [19], it has a much larger dendritic com-
ponent than simple spikes. We used this difference to estimate
whether our recordings were made from the perisomatic or
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dendritic region of the Purkinje cell involved. Dividing simple
spike amplitude by complex spike amplitude [spike amplitude
ratio or SAR] was a good indication of recording location,
since there was a clear relation between the SAR and record-
ing depth in lobules VI/VII (R*=0.52). Half-widths of simple
spikes were calculated when SAR>0.8 to avoid dendritically
filtered simple spikes.

Histology

A subset of neurons was filled with 0.5 % Neurobiotin (Vector
labs). Since Neurobiotin has previously been reported to alter
membrane currents in some neurons [20], we tested a subset
of cells without injections of Neurobiotin. In none of the cell
populations did we detect a difference between recordings
with and without Neurobiotin. After successful retraction of
the electrode from the cell, as indicated by obtaining an
outside-out patch, the animal was perfused with 0.5 % para-
formaldehyde and 2.5 % glutaraldehyde in 0.11 M phosphate
buffer containing 4 % sucrose. The brain was then postfixed
for 1 night at 4 °C in the same solution, after which it was cut
into 100-pum-thin slices and stained either with avidin—biotin
complex (Vector labs) followed by DAB staining or with
streptavidin—Alexa conjugate (Life Technologies). Neurons
labeled with ABC-DAB and streptavidin—Alexa conjugate
were visualized using a normal transmission-light microscope
or a confocal microscope (Leica, SP5), respectively.

Results

Whole cell in vivo recordings were made from neurons in
lobules VI/VII and lobule X of the cerebellar cortex (Figs. 1
and 2a). There was no difference in the success rate of
obtaining a patch between these areas. Each cerebellar cortical
cell type showed characteristic suprathreshold and subthresh-
old activities and characteristic responses to current input. We
used such activities and input—output responses to identify
every neuron type and verified this with morphological iden-
tification [21, 22].

Granule Cells

To identify differences in mossy fiber inputs between lobules
VI/VII and lobule X, we patched 13 granule cells in lobules
VI/VII and 10 in lobule X of the cerebellar cortex in intact
anesthetized mice (Figs. 1a and 2b; Table 1). All granule cells
patched were initially silent during the recording; the cells
only started to fire action potentials when the quality of the
recording deteriorated (Fig. 2b). Moreover, in cell-attached
mode, before breaking into the cell, we never observed spon-
taneous action potentials. Therefore, output from granule cells
was not analyzed from granule cell recordings, but only
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indirectly from inputs to molecular layer interneurons (see
below). As can be expected from small cells, the granule cells
showed a high input resistance and short membrane time con-
stants (Table 1). We found small, insignificant, differences in
membrane parameters between granule cells in lobules VI/VII
and lobule X (Table 1). Subthreshold activity in granule cells
was dominated by fast EPSPs arriving at an average frequency
of 20.8+4.7 (Fig. 2b, ¢). Granule cells in lobules VI/VII
showed significantly less of these events than those in lobule
X (lobule VI/VII vs. lobule X 6.9+1.8 Hz vs. 26.9+6.7 Hz,
p=0.01; Fig. 2b, c¢). Moreover, in cells of lobules VI/VIL, the
distribution of interevent intervals (IEL; i.e., in between mossy
fiber events) was significantly more irregular than in cells in
lobule X (CV lobule VI/VII vs. lobule X 1.53+0.07 vs. 0.77+
0.08, p«0.001; Fig. 2b, c). When depolarized, all granule cells
fired action potentials (average width at half-amplitude 0.88+
0.49 ms). Due to the high resistance of the cells, small currents
were sufficient to drive vigorous spiking in cells. Interspike
intervals shorter than 10 ms were frequently observed and
could be as short as 2.1 ms. Shortest intervals were not differ-
ent between lobules VI/VII and X (mean shortest intervals
lobule VI/VII vs. lobule X: 5.54+3.2 ms vs. 8.1+4.9 ms, p=
0.34). Granule cells fired spikes tonically with a linear current
input—firing frequency relation (R*>0.74 for all cells, mean
R*=0.93), and there was no difference in linearity of the re-
sponses between lobule VI/VII and lobule X (R*: lobule VI/
VII vs. lobule X 0.96+0.06 vs. 0.97+0.03, p=0.80). Similar-
ly, there was no difference in the slope of the current input-
firing frequency relation (slope lobule VI/VII vs. lobule X 4.3
+1.5 Hz/pA vs. 4.3+£2.0 Hz/pA, p=0.98).

Purkinje Cells

To evaluate the final output stage of cerebellar cortical pro-
cessing, we recorded from Purkinje cells in lobules VI/VII
(N=13) and lobule X (N=6) (Fig. 1b). Purkinje cells are the
principal neuron of the cerebellar cortex and provide its sole
output. They could be identified by their low membrane resis-
tance, high capacitance (Table 1), and characteristic simple
spike (SS) and complex spike (CS) firing in vivo (Fig. 3a).
Simple spikes, which are generated by a persistent and resur-
gent sodium currents at the axon initial segment [17, 18],
showed the typical fast single-spike waveform with a short
width at half-amplitude (half-width 0.33+0.07 ms for cells
with SAR>0.8). In contrast, complex spikes, which are gen-
erated by climbing fiber input impinging on the proximal den-
drites of the Purkinje cells [19], showed the typical multiple
spikelets riding on top of a pronounced calcium plateau
(Fig. 3a). In addition, Purkinje cells in both lobules VI/VII
and lobule X showed the typical switch between a depolarized
and hyperpolarized state (i.e., bistability) that often occurs
under anesthesia [23, 24]. The average membrane potentials
during upstate and downstate were —42.8+3.9 and —55.8+
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Fig. 1 Reconstructions of recorded neurons. a Granule cell. The soma is
approximately 8 um across. The ascending branch of the parallel fiber can
be observed leaving the soma at the 1 o’clock position. Two dendrites can
be observed at the 6 and 10 o’clock positions. b Purkinje cell. The typical
large soma and dendritic tree were reconstructed. ¢ A basket cell was

7.3 mV (¢ test p<0.001), respectively. During the upstate, all
recorded Purkinje cells fired both simple spike and complex
spikes (SS 62.5+£23.4 Hz, range 27.6-121.0 Hz; CS 0.70+
0.32 Hz, range 0.2—1.3 Hz), whereas during downstates, only
complex spike activity was observed. Spontaneous bistability
could be observed and quantified in nine cells, but in all of the
remaining cells (N=10), downstates could be induced by hy-
perpolarizing currents. In both lobules VI/VII and lobule X,
complex spikes could induce state transitions, but state transi-
tions could also occur without an associated complex spike.
As expected from literature [23, 25], switches from upstate to
downstate were generally slow and were preceded by a com-
plex spike within 200 ms in 29 % of the cases (10 out of 34
state changes; Fig. 3d). Downstate to upstate switches were
preceded within 200 ms by a complex spike in 24 % of the
state changes (9 out of 37 state changes; Fig. 3d). Despite the
relatively high change of complex spike activity before a state
change, the chance of a complex spike inducing a state change
was lower than 1 % for both upstate-to-downstate and
downstate-to-upstate changes (10 and 9 CSs, respectively, as-
sociated with a state change compared with 1,329 CSs in
total). Because of the relatively low number of state changes

]
]
{
b
/
}

reconstructed. The axon and dendrites could not be readily
distinguished and are both shown in black. Outlines indicate the
Purkinje cell layer. d Confocal z-stack projection of a recovered unipolar
brush cell. The typical brush-like dendrite can be seen at the /eft of the cell
body, while the axon can be seen leaving the cell at the right

and the low number of cells analyzed, we did not compare
state changes between lobules VI/VII and lobule X. Combin-
ing upstate and downstate, complex spike firing rates were
relatively low and not significantly different (p=0.82) be-
tween lobules VI/VII (0.67+0.31 Hz) and lobule X (0.72+
0.37 Hz). In contrast, simple spike activity showed differences
among the lobules. In accordance with the differences in gran-
ule cell activity described above, simple spike firing during
upstates in lobules VI/VII was more irregular than in lobule X
(0.44+0.14 vs. 0.25+0.09, respectively, p=0.02; Fig. 3¢). Fir-
ing rates during upstates did not differ between lobules, but
there was a trend for slightly lower firing rates in lobule X
(lobules VI/VII 66.4+24.5 Hz vs. lobule X 47.1+12.6 Hz, p=
0.12; Fig. 3b, c).

Molecular Layer Interneurons

Purkinje cell activity is regulated not only by granule cell
input but also by molecular layer interneurons, which provide
a feed-forward inhibition from granule cells onto Purkinje
cells [16, 26]. Additionally, molecular layer interneurons re-
ceive spill-over climbing fiber input and sense extracellular
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Fig. 2 Granule cells. a Left: a
Schematic overview of the
experiment. Cells were patched in
either lobules VI/VII (green) or
lobule X (blue) (Adapted from
Ref. [50]). Right: Schematic
overview of the cerebellar cir-
cuitry, indicated are the Purkinje
cell (PC), molecular layer inter-
neuron (MLI), granule cell (GrC),
Golgi cell (GoC), and unipolar
brush cell (UBC). Dendrites are
indicated with thick lines, axons
with thin lines. Synapses are in-
dicated with a triangle. b Two
examples of granule cell sub-
threshold activity in lobules VI/
VII (left) and lobule X (right). ¢
Boxplots of EPSP
propertiesGranule cells. a Left:
Schematic overview of the ex-
periment. Cells were patched in
either lobules VI/VII (green) or
lobule X (blue) (Adapted from
Ref. [50]). Right: Schematic
overview of the cerebellar cir-
cuitry, indicated are the Purkinje
cell (PC), molecular layer inter-
neuron (MLI), granule cell (GrC),
Golgi cell (GoC), and unipolar
brush cell (UBC). Dendrites are
indicated with thick lines, axons
with thin lines. Synapses are in-
dicated with a triangle. b Two
examples of granule cell sub-
threshold activity in lobules VI/
VII (leff) and lobule X (right). ¢
Boxplots of EPSP properties
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calcium to provide feed-forward inhibition in response to
climbing fiber input and synaptic activity, in general
[27-29]. To further evaluate the output of granule cells and
its possible impact on Purkinje cells, we recorded from mo-
lecular layer interneurons, which are electrically more com-
pact than Purkinje cells and thus provide an opportunity to
record granule cell output in the form of EPSPs. We recorded

Table 1  Cell physiological parameters of all recorded neurons
Rm (MQ) Tau (ms) FF (Hz) N
Granule cells  VI/VII  778+80 0.38+0.02 0 13
X 583453 0.35+0.03 0 10
Purkinje cells VI/VII 41+10 7.39+£1.09 66.4+6.8 13
X 108+75 31.15422.68 45.3+12.1 6
MLIs VI/VII  139+30 2.12+0.27 9.8+3.6 12
X 147+19 4.75+0.78 5.5+1.9 20
Golgi cells 459 & 578 252 &337 249&146 2
UBCs 400+68 1.85+0.70 7.3+£3.5 4
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the activity of 32 molecular layer interneurons from lobules
VI/VII (N=12) and lobule X (N=20) in anesthetized mice.
Molecular layer interneurons were characterized by low mem-
brane resistance (144.3£90.6 MQ) and intermediate mem-
brane time constants (3.8+3.1 ms; Table 1). Irrespective of
their location in lobules VI/VII or lobule X, the molecular
layer interneurons all received spontaneous excitatory synap-
tic inputs. Due to the low amplitude and high frequency of
synaptic inputs, it was impossible to reliably identify separate
events (Fig. 4a). Given that most of the granule cells were
silent in our preparation (see above), these findings imply that
molecular layer interneurons probably receive input from a
large population of granule cells [9, 30]. Although we could
not reliably analyze individual EPSPs, we observed that mo-
lecular layer interneurons recorded from lobules VI/VII re-
ceived excitatory inputs arriving in bursts, whereas those in
lobule X occurred in a tonic fashion (Fig. 4a). Indeed, when
comparing the regularity of molecular layer interneuron spik-
ing to mossy fiber inputs to granule cells, we observed that
spiking in lobules VI/VII interneurons was more irregular than
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Fig. 3 Purkinje cells. a Two examples of simple and complex spike
(center) firing in lobules VI/VII (/eff) and lobule X (right). b Histograms
of interspike intervals of simple spikes for all cells (t4in lines) for both
lobules VI/VII (green) and lobule X (blue). Thick lines indicate the aver-
age interspike interval distributions. ¢ Boxplots of spiking activity of
simple spikes. d Histograms of complex spikes around state changes.
Upstate to downstate switches (leff) and downstate to upstate switches
(right) are indicated. Dark grey bars indicate the time window
[=200 ms:0 ms]

that in lobule X; this held especially true at the shorter time
scales (CV 1.15+0.33 vs. 0.98+0.54, p=0.36; CV, 0.93+

Molecular Layer Interneurons
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Fig. 4 Molecular layer interneurons. a Two examples of spiking activity
of molecular layer interneurons in lobules VI/VII (leff) and lobule X
(right). b Histograms of interspike intervals for all cells (thin lines) for
both lobules VI/VII (green) and lobule X (blue). Thick lines indicate the
average interspike interval distributions. ¢ Boxplots of spiking activity of
molecular layer interneurons. d Firing rate adaptation over a 1,000 ms
current input. Each bin represents the normalized (to bin 1) number of
spikes fired in 50 ms. Error bars indicate+ SEM

0.15 vs. 0.64+0.19, p=0.001; Fig. 4b). Together, these data
indicate that the level of regularity of mossy fiber inputs to
granule cells is probably largely conserved in the output of the
granule cells.

Since molecular layer interneurons inhibit Purkinje cells,
shaping their activity, we also recorded spike output from
molecular layer interneurons. Spontaneous action potential
firing in molecular layer interneurons was highly irregular
(CV 1.1+£0.5) and varied greatly between cells (firing frequen-
cy 7.1£10.2 Hz, range 0-—43.8 Hz), but was not different be-
tween recording locations (lobule VI/VII vs. lobule X CV:
1.15+£0.33 vs. 0.98+0.54; p=0.36; Fig. 4). Also in cell-
attached configuration, there was a high spread of activity
profiles (firing frequency 4.1+£6.6 Hz, range 0-23.4 Hz, N=
14) and a high degree of irregularity in the spike trains (CV
1.4£0.5), but there was no significant difference between
whole cell and cell-attached modes in either firing frequency
(»p=0.213) or regularity (p=0.22). Moreover, with regard to
the location, we also did not observe any difference between
lobules VI/VII and lobule X with respect to the firing frequen-
cy (9.8£12.6 Hz vs. 5.5£8.4 Hz; p=0.25). Like in granule
cells, the relation between one second input current and firing
frequency was linear in molecular layer interneurons and not
different between lobules VI/VII and X (=0.94+0.12; slope
0.49+0.51 Hz/pA, range 0.34-2.39 Hz/pA; p=0.15). After
the first 50 ms of 1 s current input, there was a significant
adaptation in firing frequency [ANOVA F(19,570)=4.23,
p<0.001; Fig. 4d]. This indicates that although molecular
layer interneurons respond linearly to inputs on a
shorter timescale, for longer activations, the firing fre-
quency is attenuated. Again, there was no difference
between lobules VI/VII and lobule X in this respect
(»=0.23), highlighting that the main characteristics of
the spatiotemporal patterns of the simple spike activity
are relayed from the mossy fiber inputs to granule cells
and via their parallel fibers directly onto the Purkinje
cells, rather than via the molecular layer interneurons.

Membrane properties and spiking activity of molecular lay-
er neurons was clearly different from interneurons recorded in
the granule cell layer. Golgi cells (N=2; Table 1), the main
interneuron in the granular layer, showed typical regular,
spontaneous firing at 10-30 Hz (CV 0.1-0.3), a higher mem-
brane resistance of about 400-600 MQ, and strong delayed
hyperpolarization-activated depolarizing currents and re-
bound spiking (Fig. 5a, b; Table 1; for comparison with
in vitro data see also Refs. [31-36]). Moreover, the activity
of the molecular layer interneurons also diverged from that of
unipolar brush cells recorded in the granular layers of lobules
VI/VII (N=2) and lobule X (N=2), which was characterized
by an intermediate membrane resistance (400.4+£135.6 MQ),
a short membrane time constant (1.85+0.70 ms), and com-
bined bursty and tonic firing, the latter at a relatively low
average firing frequency (7.3+7.1 Hz, ranging from 0 to
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Fig. 5 Golgi and unipolar brush cells. a Two examples of Golgi cell
spontaneous firing. b Current inputs in the two cells shown in a (same
greyscale as in a). ¢ Two unipolar brush cells show spontaneous burst
firing. Two such bursts, as indicated by the numbered boxes, are enlarged
in d. d Enlargement of the bursts shown in c. e Release from
hyperpolarization induced burst firing in unipolar brush cells. f
Depolarization induces tonic spike firing in unipolar brush cells

Table 2  Estimations of neuron densities in the cerebellar cortex

16.1 Hz in whole cell mode; 0 and 0.7 Hz for two neurons
recorded in cell-attached mode; Fig. 5c, d; Table 1). When
these neurons were released from hyperpolarization, a burst
was often observed, while at slight depolarized potentials,
tonic action potential firing could be observed (Fig. 5Se, f;
see also Refs. [37-39]).

Discussion

The target of the here-described research was to establish
whether two functionally distinct areas of the cerebellar cortex
differ in activity and cell physiological parameters. We found
that input from mossy fibers was radically different between
lobules VI/VII and lobule X. Input to lobules VI/VII was
characterized by bursts of EPSPs to granule cells, while input
to lobule X was tonic. This difference was propagated to gran-
ule cell spiking as observed by EPSPs recorded in molecular
layer interneurons. Ultimately, granule cells and molecular
layer interneurons impinge on Purkinje cells to regulate their
simple spike firing. As expected, Purkinje cell simple spike
firing showed differences in regularity between lobules VI/VII
and lobule X, with more irregular spiking in lobules VI/VII
compared with lobule X.

Recent research has shown that there are differences in
intrinsic membrane properties of Purkinje cells in lobules
M-V vs. lobule X, which are part of the paleocerebellum
and archeaocerebellum, respectively [5]. We did not observe
such differences in cell membrane properties between
neocerebellum and archeaocerebellum, highlighting possible

Density (/mm®)  Diameter (um)  Total surface per cell (um?)  Total surface overall (um?)  Chance overall ~ Fraction patched
Granule  2.63E + 6*° 544 9.16E+1 241E+8 35.0 % 23/69 (33.3 %)
Purkinje ~ 2.00E +4° 80° 2.01E+4 4.02E+8 583 % 18/69 (26.1 %)
MLI 1.00E + 5° 1054f 3.14E+2 3.14E+7 4.6 % 22/69 (31.9 %)
Golgi 4.50E + 380 1gedeh 1.02E+3 459E+6 0.7 % 2/69 (2.9 %)
UBC 4.00E + 4" gedh 2.54E+2 1.02E+7 15 % 4/69 (5.8 %)

The estimations of the density and diameter of neuronal classes in the cerebellar cortex are based on some literatures, as indicated in superscript letters.
Total surface per cell and total surface overall assumes simple spherical cells. Chance overall indicates the unbiased random chance of encountering a
piece of membrane of that particular cell type. Fraction patched indicates the number of patched neurons per cell class. MLIs and UBCs indicate
molecular layer interneurons and unipolar brush cells, respectively. Uncommon cell types, such as Lugaro cells and Candelabrum cells, are excluded

because of their relative rarity
Ref. [21]
°Ref. [46]
°Ref. [30]
dRef. [47]
°Ref. [48]
Ref. [41]
£Ref. [35]
" Ref. [49]
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specification of the paleocerebellum. Another study investi-
gating differences in membrane properties of cerebellar neu-
rons in paleocerebellum and archeaocerebellum found that the
Cav3-Kv4 complex was differentially regulated between lob-
ules II and IX [40]. This difference may have important im-
plications for the manner granule cells interpret their mossy
fiber inputs, with granule cells in lobule IX being able to
follow slowly changing mossy fiber input rates and granule
cells in lobule II being more sensitive to burst inputs. Similar
mechanisms may be at play in lobules VI/VII, where granule
cells receive inputs in bursts.

It thus seems that there is an intricate interplay between cell
physiological parameters and cell input. Likewise, previous
work seems to suggest that there are considerable differences
in the activities of mossy fibers between cerebellar regions. In
the cerebellar flocculus (i.e., hemispheric extension of lobule
X) of mice anesthetized with ketamine—xylazine, mossy fibers
fire mainly tonically and modulate their firing rate gradually
according to vestibular stimuli [9]. In contrast, in the anterior
lobe of the cat, mossy fibers seem to respond with bursts of
activity upon touch stimuli [6—8]. Here, we report for the first
time whole cell recordings from Golgi and unipolar brush
cells. Other researchers have recorded parallel fiber input in
molecular layer interneurons in whole cell mode previously,
but only from neocerebellum and paleocerebellum [29, 41]. In
these recordings, irregular but high-frequency parallel fiber
inputs were reported, in line with the current findings.

Zebrin striping has been shown to be an important deter-
minant of Purkinje cell activity, with Purkinje cells in zebrin-
positive zones showing considerably lower firing rates than
those in zebrin-negative zones [4]. The vestibulocerebellum is
zebrin-positive, and indeed in our current experiments, we
observed a trend toward lower firing rates in Purkinje cells
in lobule X compared with those in lobules VI and VII. Inter-
estingly, lobules VI and VII are also mostly zebrin—positive,
and this might in part explain the relative lack of difference in
firing rates between Purkinje cells in lobules VI/VII and X.
Future studies should look into the possibility of an interplay
between zebrin striping and mossy fiber afferent regularity to
evaluate the relative contributions of Purkinje cell intrinsic
activities vs. afferent influences to the irregularity of Purkinje
cell firing.

Lobule X of the cerebellum, which is connected to
the vestibular apparatus, is involved in balance and re-
lated eye movements, whereas lobules VI and VII,
which are intimately connected to the cerebral cortex,
are involved in paw movements and possibly cognitive
processes [42, 43]. The difference in regularity of inputs
and outputs of the cerebellar cortex could be explained
by an always-on mechanism controlling balance and
posture in the vestibular cerebellar vs. a cortical
oscillation-based input for lobules VI/VII. Interestingly,
previous studies have indicated a close relation between

neocortical oscillations and activity in the cerebellum
during anesthesia [44, 45], which in part might explain
the lower EPSP rates observed in granule cells in lob-
ules VI and VII compared with granule cells in lobule
X. Still, it is not expected that all effects observed were
due to anesthesia. Previous work has shown differences
in the firing rate and regularity of Purkinje cells in
unanesthetized mice, with lower Purkinje cell simple
spike firing frequencies in lobule X compared with lob-
ules I-III [4]. Moreover, in decerebrate cats, in which
pontine inputs are not operating in a functional manner,
mossy fiber inputs to granule cells in the C3 zone con-
trolling front paw movements also appear bursty against
a low tonic background [8].

Cell Numbers in the Cerebellar Cortex and Technical
Considerations

Apart from investigating differences in activity patterns be-
tween two functionally distinct areas of the cerebellum, we
also systematically tried to record from all neuronal types
in the cerebellum. We patched all major cell types in the
cerebellar cortex, Purkinje cells, granule cells, molecular
layer interneurons, putative Golgi cells, and unipolar brush
cells and characterized their activity. All cell classes
showed differences to one another, and we tried to identify
each cell type based on their activity profile. We propose a
simple scheme to readily identify each cell during in vivo
recordings: Purkinje cells are identified by their simple and
complex spikes; granule cells are identified by their high
input resistance (>350 MQ) and low capacitance (<10 pF);
molecular layer interneurons, in turn, show a lower mem-
brane resistance (<500 MQ) and higher capacitance
(>10 pF); Golgi cells show a higher input resistance
(>450 MQ) and a high capacitance (>25 pF) compared
with molecular layer interneurons, and in addition, they
show a hyperpolarization-activated depolarizing current
with no clear EPSPs; and unipolar brush cells, which have
an input resistance of >250 MQ and capacitance of >15 pF,
also show a hyperpolarization-activated depolarizing cur-
rent, but in addition, a typical burst discharge of action
potentials.

There are several factors governing the cell types
patched during a given in vivo whole cell experiment.
First, the size of the electrode tip is of importance: small
tips (~1 pum) select for small cells. Second, the depth at
which neuron hunting is started will affect the neurons
patched. In general, one can expect to have encountered
a cell within 150 pum from the start of the search. Third,
the density of the different neuronal classes differs greatly.
Therefore, to get an estimate of expected probability of
encountering a particular cell type, we calculated for each
cell type the estimated total surface membrane in a cubic
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millimeter of cerebellum (Table 2). From this table, it can
be concluded that the chance of encountering a Golgi cell
is very low indeed. The chance of encountering a unipolar
brush cell in lobule X is more than double the chance of
encountering a Golgi cell. Still, in our dataset, there was
an overrepresentation of molecular layer interneurons and
a underrepresentation of Purkinje cells [x*(4,N=89)=
217.74, p<0.001]. This is probably because we mostly
used smaller tipped electrodes, thereby targeting smaller
cells like interneurons and unipolar brush cells. Also,
starting neuron hunting 200 pum below the pial surface
(see “Materials and Methods”) biased the sampled popu-
lation toward molecular layer interneurons.
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