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Abstract

The role of the innate immunity in the pathogenesis of Crohn’s disease (CD), an inflammatory bowel disease, is a
subject of increasing interest. Neutrophils (PMN) are key members of the innate immune system which migrate to
sites of bacterial infection and initiate the defence against microbes by producing reactive oxygen species (ROS),
before undergoing apoptosis. It is believed that impaired innate immune responses contribute to CD, but it is as yet
unclear whether intrinsic defects in PMN signal transduction and corresponding function are present in patients with
quiescent disease. We isolated peripheral blood PMN from CD patients in remission and healthy controls (HC), and
characterised migration, bacterial uptake and killing, ROS production and cell death signalling. Whereas IL8-induced
migration and signalling were normal in CD, trans-epithelial migration was significantly impaired. Uptake and killing of
E. coli were normal. However, an increased ROS production was observed in CD PMN after stimulation with the
bacterial peptide analogue fMLP, which was mirrored by an increased fMLP-triggered ERK and AKT signal
activation. Interestingly, cleavage of caspase-3 and caspase-8 during GMCSF-induced rescue from cell-death was
decreased in CD neutrophils, but a reduced survival signal emanating from STAT3 and AKT pathways was
concomitantly observed, resulting in a similar percentage of end stage apoptotic PMN in CD patients and HC. /In toto,
these data show a disturbed signal transduction activation and functionality in peripheral blood PMN from patients
with quiescent CD, which point toward an intrinsic defect in innate immunity in these patients.
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oxidase gene encoding p40°"™ show enhanced colitis [11]
supporting a positive role for ROS in the resolution of disease.
On the other hand, epithelial cell damage and ensuing bacterial
invasion and inflammation have been attributed to noxious
ROS released by PMN, and PMN ablation has proven
beneficial in a subset of CD patients [12-14]. Relatively few
studies have investigated PMN cell biology in CD, and those

Introduction

Crohn’s disease (CD) is a chronic inflammatory bowel
disease with a complex aetiology involving genetic factors,
priming by enteric microflora, environmental factors and an
alteration in the immune-mediated response [1-3]. Increasing
evidence points towards a role of the innate immune system in

CD pathology, with a role for dendritic cells, macrophages and
neutrophils [4,5]. Neutrophils (polymorphonuclear cells; PMN),
one of the most abundant and important mediators of innate
immunity, are professional phagocytes which mount the acute
inflammatory response and act as the first line of defence
against invading pathogens [6]. The role of PMN in CD
pathology remains obscure. Impaired PMN function may result
in limited bacterial clearance and fuel an on-going, chronic
inflammatory response. Indeed, patients with congenital
disorders of PMN function (i.e. migration, production of reactive
oxygen species [ROS]) often develop inflammatory bowel
disease (IBD) [7-10]. Furthermore, mice lacking the NADPH
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that have, show conflicting results. Although an inadequate
PMN influx and subsequent clearance of bacteria has been
observed in CD, this may be caused by defective secretion of
pro-inflammatory cytokines by macrophages, and it is as yet
unclear whether PMN intrinsically lack migratory capacity, ROS
production or bactericidal activity [15-20].

Altogether, varying predictions have been made regarding
the role of PMN in the pathogenesis of CD. Recently, a
comprehensive analysis of peripheral blood monocytes in
patients with quiescent CD revealed intrinsic defects in this
cell-type, prior to inflammation and their recruitment to the
mucosa [21]. Impaired cytokine profiles were observed in CD
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monocytes, whereas migration, ROS production and
phagocytosis were unaffected. However, an exhaustive
analysis of multiple PMN effector functions and the signalling
events involved in one study has so far not been conducted but
is urgently needed to complement our insight into the innate
immune system functionality in IBD patients. In the current
study, we investigated whether PMN from quiescent CD
patients are constitutively defective, by investigating the
capacity of PMN to respond to stimuli inducing migration,
phagocytosis, bacterial killing, ROS production and apoptosis,
and the correlation thereof to the activity of the signal
transduction pathways involved. We show that transepithelial
migration and fMLP-induced ROS production as well as fMLP
and  granulocyte-macrophage  colony-stimulating  factor
(GMCSF)-mediated signalling are altered in CD PMN, whereas
phagocytosis and bacterial killing are normal.

Materials and Methods

Patients

This study was approved by the ethical board of the Erasmus
MC, Rotterdam, The Netherlands (protocol MEC-2004-168).
Patients and healthy controls were included after written
informed consent was obtained. In total, 53 patients and 20
healthy controls were included (Table 1). Due to the limited
number of PMN obtained from 20 ml of peripheral blood, the
ethical limit in our protocol, as well as logistical arrangements,
not all the experiments could be performed with the same set
of patients. However, the characteristics of the patients used
were similar between experiments, thus precluding the skewing
of results of secondary reasons such as age or medication.
Patients were in clinical remission (quiescent disease) at the
time of blood collection, with no evidence of inflammation in
endoscopies performed around this time. All experiments on
CD PMN were performed simultaneously on PMN from a
healthy volunteer.

Granulocyte isolation from human peripheral blood

Heparin anti-coagulated blood was obtained from CD
patients and HCs in parallel. Neutrophils were isolated as
described previously [22]. Briefly, mononuclear cells were
removed by centrifugation of heparinized blood over Ficoll-
Paque (Amersham), followed by erythrocyte lysis with ice-cold
NH,CI solution. PMN were allowed to recover for 30 minutes at
37°C in RPMI 1640 supplemented with 0.5% human serum
albumin (HSA; Sanquin, the Netherlands). PMN were
resuspended in incubation buffer (20mM HEPES, 132mM Nacl,
6mM KCL, 1mM MgSO,, 1.2mM KH,PO,, 5mM glucose, 1mM
CaCl, and 0.5% HSA) before they were subjected to functional
assays.

Migration assay

The migration assay was performed using a microchamber
transwell system with 3uM pores (Becton Dickinson). PMN (2 x
10°%) were applied to the upper well of the chamber. Migration
was induced by 20 ng/ml IL8 (Peprotech, Rockyhill, NJ)
present in the lower compartment of the chamber for 4 hours at
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Table 1. Characteristics of Crohn’s disease patients and
healthy controls.

Crohn’s disease Controls
Number, n 53 20
Mean age, yr (range) 38 (20-68) 32 (24-56)
Sex, n (%)
- female 26 (49%) 5 (25%)
- male 27 (51%) 15 (75%)
Mean age at diagnosis, yr (range) 24 (13-59)
Mean duration of disease, yr (range) 13 (1-37) -
Location, n (%)
- terminal ileum (L1) 13 (24.5%) -
- colon (L2) 11 (20.8%)
- ileocolonic (L3) 28 (52.8%) -
- upper Gl tract (L4) 1(1.9%)
Fistulising disease, n (%) 21 (39%) S
Medication, n (%)
- none 10 (18.8%) 20 (100%)
- Mesalazine 7 (7.6%) 0 (0%)
- Steroids 10 (18.8%) 0 (0%)
- immunosuppressants 14 (26.4%) 0 (0%)
- anti-TNF 25 (47.1%) 0 (0%)

doi: 10.1371/journal.pone.0084521.t001

37°C. Basal to apical migration assay was performed using
inverted monolayers of Caco, cells, which were grown inverted
on collagen-coated transwell inserts for 5 days in DMEM (PAA
laboratories, Pasching, Austria)/10% fetal calf serum (FCS,
PAA)/ 10ug/ml Penicillin/Streptomycin (Gibco) (37°C and 5%
CO2). Confluence of the epithelial cell monolayer was
confirmed by testing their permeability to bovine serum albumin
(BSA) as described previously [23]. PMN migration was
determined by fluorescence-activated cell sorting (FACS)
analysis as described, using FACSCantoll (BD Biosciences)
[24], and cells migrated towards IL8 were expressed as
percentage of those migrated in control wells without IL8.

Phagocytosis and bactericidal activity of PMN

Bacterial uptake and killing were performed as previously
described [25]. Briefly, E. coli bacteria, transformed with GFP
expression vector were grown in kanamycin-containing LB
media until OD of 1, after which cultures were centrifuged and
resuspended in 1ml of PBS supplemented with 0.1% Gelatin
and 10mM HEPES. Bacterial opsonisation was carried out by
incubating bacteria with non-heat inactivated human serum
(Gibco) for 15 minutes at 37°C. PMN were challenged with 100
ul of opsonised bacteria at 37°C for 15 minutes, using 0°C
control for each experiment. The percentage of phagocytosing
PMN, as well as their fluorescence intensity as a measure of
the amount of phagocytosed bacteria, were determined by flow
cytometry. Bacterial kiling was tested by washing E. coli-
challenged PMN 2 times, and resuspending the cell pellet in
1ml of antibiotics-containing buffer in order to kill any
contaminating bacteria attached to the plastic. Bacterial killing
was allowed to take place for 4 hours. PMN were lysed using
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sterile water, lysates were plated on LB agar plates and the
colonies grown after 18 hours were counted using a colony
counter. Each experiment was done in duplicate.

ROS production assay

ROS production was performed as previously described [26].
Briefly, PMN (2x108cells/ml) were incubated with DHR123
(Sigma-Aldrich) for 15 minutes and stimulated with 1uM fMLP
(Sigma-Aldrich) for 30 minutes. For priming experiments, cells
were pre-treated with 5ng/ml GMCSF (Sargramostim, Bayer,
Germany) for 15 minutes prior to fMLP stimulation. Stimulation
was terminated by washing the cells with ice-cold PBS
containing 1% HSA and placing them on ice. Oxidation of
DHR123 to the fluorescent Rhodamine 123 was measured by
flow cytometry within 30 minutes of termination of stimulation.

Apoptosis analysis

Apoptosis was induced by culturing PMN (2x108/ml) with
anti-Fas antibody (Fas-Ab, CH 11, 100ng/ml, Millipore).
Alternatively, PMN were treated with GMCSF (10ng/ml). After 6
hours of Fas-Ab-induced apoptosis and 15 hours of GMCSF-
induced rescue, the percentage of apoptotic PMN was
measured by Annexin-V kit according to the manufacturer’s
instructions (BD Biosciences, San Jose, CA). Necrotic PMN
were excluded by 7AAD (BD Biosciences, San Jose, CA)
positivity. Late apoptosis was measured by internucleosomal
DNA fragmentation using Apo direct in situ DNA fragmentation
assay kit (Biovision, Milpitas, California). Briefly, this TUNEL-
based detection kit utilizes terminal deoxynucleotidyl
transferase (TdT) to catalyse the incorporation of fluorescein-1
2-dUTP at the free 3'-hydroxyl ends of the fragmented DNA.
Stained PMN were analyzed using Flowcytometry and the data
were analyzed using FlowJo software (Ashland, OR).

Quantitative western blot analysis

PMN were stimulated with 1uyM fMLP, 5ng/ml GMCSF,
5ng/ml GCSF or 100ng/ml Fas-Ab (CH 11) as indicated in the
figures. Pelleted cells were resuspended in Laemmli buffer,
boiled, separated by SDS-PAGE and electrophoretically
transferred to PVDF Immobilon FL membrane (Milipore,
Billerica, MA). Membranes were probed with antibodies against
phospho-ERK1/2 (Thr202/Tyr204), phospho-AKT (Ser473),
phospho-STAT3, Caspase 3 (cleaved and uncleaved) or
cleaved Caspase 8, all from Cell signalling technology
(Danvers, MA). Total levels of ERK, AKT and STAT3 are
unaffected by short term stimulation of cells with IL8, fMLP or
GMCSF [27-31]. In addition, we demonstrated that total levels
of these proteins show excellent correlation with total B-actin
levels (Figure 1). Therefore, equal loading was confirmed by
reprobing blots with antibodies against B-actin (Santa Cruz
Biotechnology, Santa Cruz, CA) according to the
manufacturers’ protocols. Proteins were detected by IR dyes
(LI-COR, Lincoln, NE). Quantification of phosphorylation and
cleavage of Caspases were performed by densitometry of the
images, using Odyssey 3.0 software.
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Statistical analysis

Comparisons between CD and HC samples were tested by
non-parametric test for unpaired samples (Mann-Whitney
testing) in functional experiments. For western blot analysis,
where CD and HC samples were paired per gel, comparisons
for paired samples were tested by Student-T-test using
Graphpad software (La Jolla, CA).

Results

Decreased trans-epithelial migration of neutrophils
from CD patients in response to IL8

First, we investigated the migratory capacity of CD
neutrophils and two of the major signalling pathways involved
therein, the ERK1/2 and PI3K-AKT signalling moieties [32].
After confirming the partial dependence of IL8-induced
migration on these pathways by using their respective specific
inhibitors (Figure 1A: 100 vs. 65.5 £21% for U0126 and 100 vs.
67 +22% for LY294002), we examined the phosphorylation of
these signal transducers in PMN from CD patients and HCs.
We observed a rapid and transient activation of ERK1/2 and
AKT in response to IL8 stimulation, but found no significant
differences in the level of activation of these molecules
between CD patients and HCs (Figure 1B, C and D, n=10).
Total levels of ERK were similar between CD patients (n=18)
and HC (n=16, p=0.7, Figure 2A and B). In line with this
unaltered migration-dependent signalling, the percentage of
PMN migrating towards IL8 was not different between CD
patients (n=11) and HCs (n=8) (2267+1859% vs. 35741+2443%,
p=0.114, Figure 1E).

In an in vivo setting, IL8-mediated migration of PMN towards
the lumen of the gut requires basolateral-to-apical migration of
PMN over epithelial cells. As this process is substantially
differently regulated as compared to migration of PMN toward
cytokines alone [33,34], we also determined the level of
basolateral-to-apical migration of PMN through an inverted
monolayer of human epithelial Caco, cells. Interestingly, the
percentage of PMN migrating towards IL8 through epithelial
cells was significantly reduced in CD patients compared to HCs
(Figure 1F, mean+SEM of 133+55% vs. 190+60%, n=10, p =
0.04). Together, these data suggest that IL8 stimulation of CD
PMN in itself results in normal activation of the ERK and PI3K
pathways and migration, whereas intrinsic trans-epithelial
migration capacity of PMN from CD patients is impaired.

Bacterial uptake and killing are not affected in CD
patients

Next, we investigated the uptake of GFP-positive E. coli by
isolated PMN from CD patients (n=16) and HCs (n=14). As
shown in Figure 2A and B, neither the percentage of
phagocytosing PMN (mean+SEM of 64+24% vs. 62+19%,
p=0.7) nor the number of bacteria taken up per granulocyte
(1648+1244 vs. 1242759 MFI, p=0.313) were significantly
different between CD patients and HCs. In addition, an equal
amount of bacterial colonies were grown from CD and HC
PMN, demonstrating that the efficiency of bacterial killing was
not different between patients (n=10) and controls (n=9)
(2631172 vs. 305+199 colonies, Figure 2C). These results
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Figure 1. PMN from CD patients are deficient in trans-epithelial migration towards IL8. (A) The involvement of ERK1/2 and
PI3K pathways in IL8-induced migration was confirmed by measuring the percentage of migrated PMN after incubation with or
without 10 pM of U0126 and LY294002, respectively. Mean+SEM is shown (n=3). (B) PMN were stimulated with 20 ng/ml of IL8 for
the indicated time points. Experiments were performed on healthy controls (HC) and CD PMN simultaneously, and samples were
loaded side-by-side on the same gel. ERK1/2 and AKT activation were detected by their phospho-specific antibodies.
Representative example is shown. (C) No differences in levels of activated ERK1/2 were observed between CD patients and HC
(n=10, mean+SEM shown) upon quantification of blots by densitometry. (D) No differences in levels of activated AKT were observed
between CD patients and HC (n=10, mean+SEM shown) upon quantification of blots by densitometry. (E) PMN from HC and CD
patients were applied to the upper compartment of a transwell system. PMN transmigrated in response to 20 ng/ml IL8 present in
the lower compartment were counted by flow cytometry and results are represented as percentage of those migrated in control
wells. No differences were observed between MeantSEM of CD patients (n=11) and HC (n=8). (F) PMN from healthy and CD
patients were allowed to migrate through a monolayer of epithelial cells towards IL8 for 4 hours at 37°C. Compared to HC PMN, CD
PMN showed significantly less migration (Mean+SEM, *p=0.02, n=10).

doi: 10.1371/journal.pone.0084521.g001
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indicate that there is no intrinsic defect in either phagocytosis
or killing of E. coli bacteria in PMN from CD patients with
quiescent disease.

Enhanced fMLP-induced ROS production in CD
patients, corresponding with increased ERK and AKT
signalling

The production of ROS is an important antibacterial defence
mechanism of PMN. We therefore studied the amount of
superoxide produced, and the signalling events involved, in
response to the bacterial peptide analogue fMLP. As shown in
Figure 3A, fMLP-stimulated ROS production was significantly
higher in PMN from CD patients as compared to HCs (mean
+SEM of 130+31% vs. 106+28%, p=0.03, n=14). This
corresponded to a significantly enhanced fMLP-induced
phosphorylation of the ERK and PI3K/AKT pathways (known to
be required for ROS production [35]), in PMN from CD patients
(p=0.03 and p=0.02, respectively at t=2 min, n=9, Figure 3B-D).
These results suggest that PMN from CD patients may already
be partially primed in vivo. Priming is normally established by
pro-inflammatory cytokines such as granulocyte-macrophage
colony-stimulating factor (GMCSF), and serves to drastically
enhance the respiratory burst in response to bacterial peptides
in an inflammatory environment. Indeed, priming of PMN with
GMCSF resulted in a significantly higher fMLP-triggered ROS
production in both CD and HC PMN (p<0.05). However, ROS
production after priming with GMCSF did not differ between CD
patients and HCs, indicating that maximal achievable
respiratory burst is equal between these groups. As for ROS
production, priming of PMN with GMCSF resulted in a
significantly enhanced fMLP-triggered phosphorylation of both
ERK1/2 and AKT, which again was equal between CD patients
and HCs. Similar results were obtained when ROS production
and signalling were investigated in GCSF-primed PMN (not
shown).

Together, these results suggest that PMN from CD patients
release ROS more rapidly in response to bacterial stimuli, but
that the maximum achievable level of ROS production is
unaltered.

Reduced Caspase cleavage during spontaneous
apoptosis in PMN from CD patients

After performing their bactericidal function, PMN undergo
apoptosis and are cleared by macrophages. One of the early
signalling events to take place in cellular apoptosis is the
cleaving of Caspase 8 and 3. Although no differences in total
Caspase 3 and Caspase 8 levels were observed in patients
(Figure 4A and B, and Figure 2C-E), the amount of Caspase 3
and 8 cleaved during spontaneous cell death was reduced in
CD compared to HCs after 6 hours (Figure 4C-E, p=0.1 and
p=0.04 for Caspase 3 and Caspase 8 respectively, n=6).
Treatment of cells with the apoptosis-inducing Fas-antibody CH
11 enhanced cleavage of both Caspases to an equal extent in
patients and HCs (Figure 4C-E, p=0.5 and p=0.2 for Caspase 3
and Caspase 8 respectively, n=6), indicating that only the
intrinsic apoptosis machinery is affected in CD.

Treatment of PMN with GMCSF for 15 hours protects against
cleavage of Caspase 3 (Figure 4F), which corresponds to a
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decreased number of apoptotic cells as measured by
externalisation of phosphatidylserine (PS) by Annexin V
staining (Figure 4G). When comparing CD patients and HCs for
Caspase cleavage in the presence of GMCSF, a significantly
enhanced GMSCF-induced survival signal was observed in CD
patients, as evidenced by reduced cleavage of Caspase 3 and
8 (Figure 4C, D and E, p=0.04 and p=0.003, respectively, n=6).

Normal end-stage apoptosis in PMN from CD patients

To test whether the reduced Caspase 3 and 8 signal in CD
patients results in a decreased cell death, we measured the
percentage of annexin-V-positive cells in PMN cultures att = 0,
6 and 15h of culture. As expected, cell viability immediately
upon isolation (t=0Oh) was more than 90% (mean+SEM of
5.413.6% dead cells in CD, n=9, vs. 3.5+2.2% in HC, n=8,
p=0.1, Figure 5A). Surprisingly, spontaneous apoptosis,
observed within 6 hours, was not reduced in CD patients
compared to healthy controls (meantSEM of 30+£19% vs.
27+11%, p=0.9). Engagement of the Fas-receptor drastically
increased the amount of annexin V-positive cells, equally in CD
patients and HC (71+£12% vs. 77+11%, p=0.2).

In addition, whereas Caspase cleavage in GMCSF cultured
PMN was significantly reduced in CD patients, apoptosis as
measured by PS-expression showed no differences between
CD and HC PMN in either spontaneous apoptosis after 15h, or
the rescue thereof by GMCSF (meantSEM of 42+17% vs.
48+18%, p=0.7). These findings were confirmed by TUNEL
assay, showing no significant differences between CD patients
and HCs in the percentage of apoptotic PMN cultured with or
without GMCSF for 15 h (mean+SEM of 66+5% vs. 57+20%, p
= 0.45 and 31£7% vs. 27+11%, p = 0.49, respectively, n=6,
Figure 5B).

Decreased GMCSF-induced STAT3 phosphorylation in
PMN from CD patients

Whereas GMCSF-induced rescue of Caspase cleavage was
enhanced in CD patients, this was not mirrored by an
increased survival of PMN. These results suggest that other
death mechanisms may override the positive survival signal in
CD patients. We therefore investigated GMCSF-induced
phosphorylation of STAT3 and AKT, constituting two of the
major survival mechanisms induced by this cytokine [31,36]. As
shown in Figure 5C and D, STAT3 phosphorylation in response
to GMCSF was significantly reduced in PMN from CD patients
compared to their healthy counterparts, whereas total STAT3
levels were unchanged (Figure 2A and F). Similarly, a reduced
AKT phosphorylation was observed in 4 out of 5 CD patients.
These results suggest that an impaired STAT3 and AKT-
survival pathway in CD patients may counteract the reduced
Caspase cascade activation, thus resulting in equal numbers of
apoptotic PMN in CD and HC.

Discussion

In the current study, we demonstrate that intrinsic properties
of PMN from patients with quiescent CD are changed. A
decreased trans-epithelial migration, increased ROS
production in response to bacterial peptides, and impaired
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Figure 2. Normal bacterial uptake and killing by PMN from CD patients. Isolated PMN were challenged with opsonised GFP-
expressing E. coli for 15 minutes at 37°C after which GFP fluorescence was determined by FACs analysis. Appropriate 0 °C control
was taken for each experiment. (A) MeantSEM of median fluorescence intensity (MFI) of PMN from CD patients (n=16) and HC
(n=14) is shown. (B) Percentage of PMN positive for E. coli-GFP (%) of 16 CD patients and 14 HC. (C) PMN were challenged with
E. coli for 15 minutes at 37°C and allowed to kill bacteria for 4 hours at 37°C. Colonies grown from lysed PMN after 15 hours were
counted using a colony counter. Mean+SEM of CD patients (n=10) and HC (n=9) is shown.

doi: 10.1371/journal.pone.0084521.g002
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Figure 3. Enhanced fMLP-induced ROS production in CD patients corresponds with increased ERK and AKT
signalling. (A) PMN production of superoxide after stimulation was measured by flow cytometry analysis and expressed as a
percentage of the fluorescence in unstimulated cells. Mean+SEM of CD patients and HC is shown. Asterisks indicate significantly
higher ROS production in fMLP stimulated cells in CD patients compared to HCs (*p=0.03, n=14). Preincubation of PMN with 5ng/ml
GMCSF enhanced fMLP-induced ROS production, to an equal maximum in CD patients and healthy controls. (B) Isolated PMN
from CD and HC were simultaneously stimulated with 1 yM fMLP with or without priming with 5ng/ml of GMCSF. Phosphorylated
ERK1/2 and AKT (upper panels) was detected by Western blot analysis. Membranes were reprobed with antibodies against $-actin
(lower panel) to confirm equal loading. (C) Quantification of blots shows that fMLP-induced phosphorylation of AKT is significantly
increased in CD patients compared to HC PMN (mean+SEM, *p=0.03, n=9).

(D) Quantification of blots shows that fMLP-induced phosphorylation of ERK1/2 is significantly increased in CD patients compared to
HC PMN (mean+SEM, *p=0.03, n=9).

doi: 10.1371/journal.pone.0084521.g003

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e84521



Neutrophils in Crohn's Disease

A B
2 _ 201
| £
— s — | TO12! 2E2 15
Caspase 3 5 =®
S S P S| (-Actin g5 a
2 5~ O 059
HC CD HC CD =
0.0 .
HC CD
C
Cleaved
- = -
— W— caspase 8
: P— Cleaved
_.ﬂ - - - caspase 3
aeamn TR iy | e—— A—— ﬁ B-Actin
- Fas-Ab GMCSF - Fas-Ab GMCSF
HC CD
D E
° = OHC o — 3 HC
EE- mcp 50 @ cD
S< [ 2 * *
o * S®03 —
-'%' ) — o0
c g %2 ]
L a @ g 0.21
£8 £%
- © 0.1 s 9,4
g3 i 83
= T 2
E 8 oo r r g oo ’ . :
22 Spontaneous Fas-Ab GMCSF 22 Spontaneous Fas-Ab GMCSF

-
(=3
o

z
F G =
80f ——=
Cleaved :>_’
|_ . | caspase 3 S 60
£
x
40
— | B-Actin qg, ==
< 2
= + GMCSF °
X T T

Spontaneous GMCSF

Figure 4. Reduced Caspase cleavage during spontaneous apoptosis in PMN from CD patients. (A) Total Caspase 3 levels
were detected in freshly isolated PMN from HC and CD patients by western blotting. A representative example is shown. More
examples are shown in Figure 2E. (B) Quantification by densitometry revealed a non-significant increase in total Caspase 3 in PMN
from CD patients (n=18) as compared to HC (n=13), p=288. (C) Isolated PMN from CD patient and HC were cultured either with or
without 100 ng/ml Fas-Ab (6 hours) or 10 ng/ml GMCSF (15 hours). Samples were loaded onto one gel, and cleavage of Caspase 3
and Caspase 8 were detected by western blotting. Representative example is shown (n=6). (D) Densitometric quantification shows
reduced Caspase 3 cleavage in PMN from CD patients undergoing spontaneous apoptosis or GMCSF mediated rescue thereof
(meantSEM, *p=0.04, n=6). (E) Quantification demonstrates reduced Caspase 8 cleavage in PMN from CD patients undergoing
spontaneous apoptosis or GMCSF mediated rescue thereof (*p=0.003, n=6). Total Caspase 8 levels were unchanged in CD
patients (See Figure 2C and D) (F) PMN were cultured with or without 10 ng/ml GMCSF for 15 hours and rescue of apoptosis by
GMCSF was shown by the reduced presence of cleaved Caspase 3, as detected by western blotting (representative example of
three independent experiments) (G) Rescue of spontaneous apoptosis after 15 h by GMCSF was detected by quantification of the
percentage of apoptotic PMN by Annexin V binding by flow cytometry.

doi: 10.1371/journal.pone.0084521.g004
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Figure 5. Impaired survival signalling in CD PMN does not affect intermediate and end-stage apoptosis. (A) Isolated PMN
were cultured either with or without 100 ng/ml Fas-Ab (6 hours) or 10 ng/ml GMCSF (15 hours) and the percentage of apoptotic
PMN was determined by Annexin V positivity (9 CD patients and 8 HC). (B) No differences in DNA fragmentation as measured by
TUNEL assay after 15 hours of PMN culture with or without 10 ng/ml GMCSF were observed between CD and HC (n=6). (C-F)
PMN were isolated simultaneously from a CD patient and healthy control, stimulated with 5 ng/ml GMCSF for 15 minutes and
samples were run on one gel. (C) STAT3 activation was detected by western blotting using phospho-STAT3 antibodies.
Representative experiment is shown. (D) Significantly decreased levels of activated STAT3 were observed in CD patients compared
to HC (meantSEM, *p=0.04, n=5). Total STAT3 levels were unchanged (see Figure 2A and F). (E) AKT activation was detected by
western blotting using phospho-AKT antibodies Representative experiment is shown. (F) Protein levels of activated AKT were
quantified by densitometry and corrected for B-actin protein levels. MeantSEM of CD patients and HC is shown (n=5).

doi: 10.1371/journal.pone.0084521.g005
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cellular signalling were observed. Inadequate PMN influx and
subsequent clearance of bacteria in CD may contribute to
disease status [15,37]. However, conflicting findings are
reported regarding intrinsic migratory capacity of PMN in CD
patients. In vitro migration of PMN from CD patients was found
to be normal or increased in transwell assays [16], whereas in
vivo PMN migration towards skin blisters, skin windows or
injured intestinal mucosa was decreased in CD PMN [15,38].
This was attributed to reduced cytokine production, as blister
fluid in CD patients contained less IL8, and PMN migration
towards skin windows was restored by adding exogenous IL8
[15]. However, increased mucosal IL8 levels have been
reported in CD patients, suggesting that other factors may
contribute to impaired intestinal PMN migration [39,40]. There
are clear differences between migration through bare transwell
filters versus ftransepithelial migration [33], with PMN
transepithelial migration requiring ICAM-1 and other adhesion-
mediated events [41], and epithelial cells producing and
releasing a range of chemoattractants at their apical side,
which may enhance PMN basolateral-to-apical migration [42].
We now show that in vitro transepithelial migration, a clean
measure of the intrinsic capacity of PMN to migrate through
intestinal epithelial cells, is impaired in CD patients. Whereas
IL8-mediated ERK1/2 and AKT signalling is unlikely to
contribute to this impairment, a number of adhesion defects
may underlie this decreased migration. For instance, IL8 is
known to enhance CD11b expression on PMN [43]. Increased
expression of the adhesion molecule CD11b on CD PMN has
indeed been described, which may be linked to enhanced
adhesion and reduced migration in CD [44,45]. Thus, although
epithelial cytokine production in CD may be altered, our study
shows that an intrinsic defect in PMN transepithelial migration
exists, which may contribute in decreased neutrophil
recruitment to sites of inflammation.

Defective bacterial clearance has been associated with the
development of CD [46,47] . Loss of NADPH oxidase activity
leads to reduced bactericidal activity of PMN, and defective
ROS production in a number of inherited disorders is highly
associated with intestinal inflammation that is undistinguishable
from CD [48]. A recent study by Hayee et al. showed impaired
fMLP-induced ROS production in CD PMN, but no defect in
bacterial kiling [20]. Whereas we confirmed the normal
bacterial phagocytosis and killing, our study also demonstrated
an enhanced fMLP-induced respiratory burst in CD PMN. As it
has long been recognised that oxidative damage plays a major
role in mucosal injury in CD, it is conceivable that an
exaggerated bacterial peptide-induced PMN ROS production,
independent on priming by pro-inflammatory cytokines, may
contribute to mucosal damage [12,13]. The discrepancy
between these and other studies may be partially explained by
differences in study cohorts. Treatment regimens present in CD
patients but not HC may have an impact on cellular function. In
addition, in our HC cohort, ratio male/female was slightly higher
than in the CD group. Although we cannot formally exclude the
possibility that this affects results, gender in general does not
seem to affect PMN ROS production, migration or
phagocytosis [49,50]. In addition, it has been speculated that
the genetic alterations associated with increased risk for IBD

PLOS ONE | www.plosone.org

10

Neutrophils in Crohn's Disease

development, affect innate immune cell function [51]. However,
the number of genetic alterations and their method of action on
PMN signalling and function is unknown, and is thus difficult to
take into consideration in this type of study. The enhanced
fMLP-mediated ROS production observed in this study was
mirrored by enhanced ERK1/2 and AKT signalling in CD
patients, confirming our results, and suggesting that PMN in
CD patients may already be primed to some extent in vivo. As
CD remains incurable, flaring of disease at some point is
inevitable, and it is conceivable that circulating levels of pro-
inflammatory cytokines are already present even in the
absence of a clear inflammation.

PMN are short-lived cells. In the absence of appropriate
stimuli, they rapidly undergo characteristic changes indicative
of apoptosis. These include cleavage of Caspases, followed by
PS exposure on the cell membrane, cleaving of the DNA repair
enzyme poly (ADP-ribose) polymerase (PARP), and ending in
DNA fragmentation [52]. Delayed PMN apoptosis can result in
persisting inflammation and host tissue injury [53]. In this study,
we demonstrate a decreased Caspase 3 and 8 cleavage during
spontaneous apoptosis and rescue thereof by GMCSF.
Surprisingly, this was not mirrored by an enhanced long term
PMN survival, as determined by either Annexin V staining or
TUNEL staining. In vivo, rescue of PMN from apoptosis by
GMCSF ensures a longer window of opportunity for PMN to kill
invading pathogens, and is mediated through activation of the
PI3K/AKT and STAT3 pathways [54,55]. We now demonstrate
that both AKT and STAT3 activation are severely reduced in
PMN from CD patients in response to GMCSF. It is
conceivable that a reduced survival signal coming from these
pathways may counteract the enhanced survival mediated
through reduced Caspase cleavage. Our data strongly suggest
an improper activation of apoptotic signalling pathways in CD
PMN, the net result being a normal frequency of apoptotic
cells. Whether other functional properties are affected by this
impaired signalling remains to be elucidated.

In toto, we demonstrate that intrinsic defects in transepithelial
migration, ROS production and chemokine and cytokine
induced signalling are present in PMN from quiescent CD
patients. CD is a heterogeneous disease, where different
underlying mechanisms may cause patient-to-patient
variability. Genetic variation is likely to contribute to PMN
function, and it is probable that some roles of innate immune
cells are underestimated or even obscured by pooling CD
patients. Nevertheless, our study clearly shows that genetic
variation notwithstanding, several PMN functions are impaired
across patients, strongly implying a role for innate immunity in
the development of this disease. Through these and other
studies, a role for the innate immune system in the
development of CD is becoming ever more apparent.

Supporting Information

Figure S1. Short term stimulation of PMN does not affect
total ERK or STAT3 levels. Isolated PMN were stimulated
with 1 yM fMLP with or without priming with 5ng/ml of GMCSF.
Stimulation was confirmed by probing blots with p-AKT or p-
STAT3 antibodies (B). Probing blots with total ERK1/2 (A) or
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STAT3 (B) antibodies showed that stimulation does not hugely
influence total protein levels. Moreover, total ERK and total
STATS3 protein levels show excellent correlation with B-Actin
levels in the same lanes (C and D, respectively), showing that
B-Actin is a good loading control.

(TIF)

Figure S2. No differences in total ERK, STAT3, Caspase 3
or Caspase 8 levels between CD patients and healthy
controls (HC). Unstimulated, isolated PMN from CD patients
and HC were run on SDS-PAGE, and probed with antibodies
against total ERK protein, total STAT3 protein (examples in
panel A), total uncleaved Caspase 8 (panel C) or uncleaved
Caspase 3 (examples panel E, more in main manuscript).
Quantitation of blots showed no differences in total ERK levels
between CD (n=18) and HC (n=16, p=0.6915, panel B). There
were no differences in total STAT3 levels between CD (n=24)
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