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Abstract

Chromatin dependent activation and repression of transcription is regulated by the

histone modifying enzymatic activities of the trithorax (trxG) and Polycomb (PcG)

proteins. To investigate the mechanisms underlying their mutual antagonistic

activities we analyzed the function of Drosophila dRYBP, a conserved PcG- and

trxG-associated protein. We show that dRYBP is itself ubiquitylated and binds

ubiquitylated proteins. Additionally we show that dRYBP maintains H2A

monoubiquitylation, H3K4 monomethylation and H3K36 dimethylation levels and

does not affect H3K27 trimethylation levels. Further we show that dRYBP interacts

with the repressive SCE and dKDM2 proteins as well as the activating dBRE1

protein. Analysis of homeotic phenotypes and post-translationally modified histones

levels show that dRYBP antagonizes dKDM2 and dBRE1 functions by respectively

preventing H3K36me2 demethylation and H2B monoubiquitylation. Interestingly,

our results show that inactivation of dBRE1 produces trithorax-like related homeotic

transformations, suggesting that dBRE1 functions in the regulation of homeotic

genes expression. Our findings indicate that dRYBP regulates morphogenesis by

counteracting transcriptional repression and activation. Thus, they suggest that

dRYBP may participate in the epigenetic plasticity important during normal and

pathological development.

Introduction

The dynamic and reversible chromatin modifications mediated by the

evolutionary conserved Polycomb (PcG) and trithorax (trxG) proteins contribute
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to the maintenance of repressed and active transcriptional states [1]. Although

great progress has been made in deciphering the biochemical activities of the PcG/

trxG, little is known about the interplay between PcG-mediated repression and

trxG-mediated activation. PcG/trxG regulate the expression of numerous genes,

the best known being the Hox genes. Drosophila Hox genes contain PREs/TREs

(Polycomb and Trithorax Response elements) that serve as platforms for the

recruitment of the PcG/trxG protein complexes [1]. Binding of PcG/trxG proteins

at these sites leads to transcriptional regulation via post-translational modification

of histones [2, 3]. These modifications can have antagonistic effects on

transcription. For example, the monoubiquitylation of histone H2A (H2Aub)

mediated by the E3-ubiquitin ligase SCE/dRING promotes transcriptional

repression [4, 5] while the monoubiquitylation of histone H2B (H2Bub) mediated

by the E3-ubiquitin ligase dBRE1 promotes transcriptional activation [6]. The

dBRE1 protein forms a complex with RAD6 [7] which is required to promote

H2B ubiquitylation, a prerequisite for the H3K4 methylation that promotes

transcriptional activation. SCE/dRING is a core subunit of the repressor PRC1

complex that also contains Polycomb (PC), Posterior Sex Comb (PSC) and

Polyhomeotic (PH). Knowledge of the compositional diversity of PRC1 is

expanding [1] and variants of PRC1 and non-canonical PRC1 complexes with

distinct transcriptional outcomes have been isolated [8–10]. For example, the

dRAF complex (dRing Associated Factors) composed of dRING, PSC (both

members of canonical PRC1) and dKDM2 promotes stronger repression than

PRC1 as it stimulates monoubiquitylation of H2A more efficiently and also

demethylates H3K36me2, a modification established by trxG [11]. Moreover,

recent results in vertebrates indicate the existence of non-canonical PRC1

complexes that, instead of containing the core subunit PC (CBX in vertebrates)

they contain the RYBP subunit forming the PRC1-RYBP complexes found to

locate at target genes with intermediate levels of expression [8, 9]. The finding of

non-canonical PRC1 complexes has led to recent discoveries that are challenging

the classical hierarchical recruitment complex model whereby PRC1 complex is

recruited by PRC2-mediated H3K27 trimethylation [12]. It has now been shown

in vertebrates that non-canonical PRC1-mediated H2A monoubiquitylation can

recruit PRC2 [13–16].

The conserved dRYBP/YAF2/RYBP protein contains in its N-terminal a

Ubiquitin Binding Domain (UBD) of the type Nucleoporin Zinc Finger (NZF)

and the murine RYBP has been shown to interact with ubiquitin [17–19]. Loss of

dRYBP function in Drosophila produces a range of phenotypes that are highly

variable in penetrance [19, 20] suggesting that dRYBP functions in a range of

biological processes. Moreover, although dRYBP inactivation does not produce

homeotic phenotypes, dRYBP has been shown to interact with PcG/trxG proteins

and to function as a PcG-dependent transcriptional repressor [19, 20]. However,

the mechanisms underlying dRYBP function in epigenetic regulation of gene

expression mediated by PcG/trxG proteins remain poorly understood.
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Here we show that dRYBP interacts genetically and biochemically with dRING,

dKDM2 and dBRE1 to modulate H2Aub, H3K36me2 and H2Bub levels and

thereby regulate gene repression and activation.

Results and Discussion

dRYBP interacts with ubiquitin and with ubiquitylated proteins

The dRYBP protein sequence (Figure 1A) suggests its function in the process of

ubiquitylation [17, 18], a crucial step in the epigenetic regulation of transcription

[2, 21]. We first analyzed whether dRYBP binds ubiquitin. We performed

immunoprecipitation of Drosophila wild type nuclear protein extracts using anti-

dRYBP antibody and the samples were analyzed by immunoblotting with anti-

ubiquitin and anti-dRYBP antibodies. Figure 1B shows that the anti-dRYBP

antibody detects a protein band of 17 kDa (corresponding to dRYBP) and

another of 25 kDa while the anti-ubiquitin antibody only detects the 25 kDa

band. Thus, dRYBP coexists in Drosophila in two different forms: dRYBP and

dRYBPub.

Next, we analyzed whether dRYBP interacts with ubiquitylated proteins. We

generated fusion proteins with full length dRYBP (dRYBP-GST) and a truncated

form of the dRYBP protein lacking the UBD domain (dRYBPDNZF-GST). These

fusion proteins were used to perform GST pulldowns with S2 cells protein extracts

treated with proteasome inhibitors (Figure 1C) to increase the abundance of

ubiquitylated proteins in the extracts (Figure S1). The pulldown products were

analyzed by immunoblotting using the anti-ubiquitin antibody. Results show that

the bulk of the ubiquitylated proteins were found to bind to dRYBP-GST

(Figure 1C). Thus, the UBD domain of the dRYBP protein seems to be required

for the majority of the interactions, in S2 cells, between dRYBP and ubiquitylated

proteins.

This behavior of Drosophila dRYBP protein is similar to the murine RYBP [18].

dRYBP coexists as two different forms, dRYBP and dRYBPub proteins and

interacts with ubiquitylated proteins (Figure 1). Functions of the two protein

forms are yet to be determined. Our results show that dRYBP monoubiquitylation

does not induce its proteasomal degradation (Figure S1). We speculate that

dRYBP and, in particular dRYBPub form could serve as adaptor proteins to

facilitate the assembly of ubiquitylation complexes and thus, promote protein

ubiquitylation. Additionally, the interaction of dRYBP, through its NZF domain,

with many of the ubiquitylated proteins present in S2 cells (Figure 1C) could

explain the diverse biological processes in which dRYBP is involved such as

apoptosis, immune response and morphogenesis [19, 22–24] as well as the variety

of dRYBP/RYBP interactor proteins so far described including, the E2F

transcription factor, Apoptin and Hungtintin [25, 26].
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The dRYBP protein associates with SCE, dKDM2 and dBRE1

We used two different dRYBP affinity purified serum antibodies to isolate dRYBP

and its interacting proteins from nuclear protein extracts of 0 to 12 hour-old

Drosophila embryos. Immunoprecipitation was followed by extensive washes with

a buffer containing either 400 mM or 800 mM of KCl and 0,1% of NP-40 (see

Materials and Methods). Mass spectrometric analysis revealed a large number of

dRYBP-associated proteins, among these SCE, dKDM2 and dBRE1 (Figure 2A).

Curiously any other PcG proteins such as PSC, SU(Z)2, PH, PC or PHO were

detected at either 400 mM or 800 mM of KCl.

We confirmed the association of dRYBP with SCE, dKDM2 and dBRE1 by co-

immunoprecipitation (co-IPs) experiments of Drosophila nuclear protein extracts

combined with immunoblotting using anti-dRYBP, anti-SCE, anti-dKDM2 and

anti-dBRE1 antibodies (Figure 2). Additionally, we analyzed the interaction of

dRYBP with other PcG proteins such as PSC, PC and PH that did not appear as

dRYBP interacting proteins in our analysis but have been shown to form

complexes with dRING/SCE and/or dKDM2 (Figure 2B). As a negative control for

all proteins we checked for association with E(Z) protein [27] (Figure 2B). Co-IPs

of dRYBP, SCE, dKDM2, dBRE1 showed that dRYBP is associated with SCE,

dKDM2 and dBRE1 (Figure 2B and Figure 2C) and that dRYBP does not associate

with PSC, PC, PH and E(Z) (Figure 2B). Additionally, co-IPs also show that

dBRE1 does not interact with SCE or dKDM2 (Figure 2C). Reverse co-IPs

confirmed these interactions (Figure S2). Of note, the co-IP experiments only

detected the interaction between PcG/trxG proteins with the unmodified dRYBP

protein of 17 kDa. Future experiments will investigate whether the dRYBPub

Figure 1. dRYBP binds to ubiquitin and ubiquitylated proteins. (A) Phylogenetic conservation of the dRYBP protein consensus NZF domain. Indicated
are the aminoacids required for Zn binding (orange), for protein folding (blue) and for Ub binding (arrows, green). (B) Western Blot of immunoprecipitation
using a-dRYBP antibody of Drosophila embryonic nuclear protein extracts for dRYBP and Ub detection. Input: Drosophila embryonic nuclear protein
extracts. Mock: pre-immune serum. Indicated are the 17 kDa and 25 kDa bands corresponding to dRYBP and dRYBPub. (C) Western Blot detection with
a-Ub antibody of dRYBP-GST or dRYBPDNZF-GST-pulldowns from S2 cell extracts treated with proteasome inhibitors (+MG-132+Lact.). Input: S2 cell
extracts. Mock: protein-GST.

doi:10.1371/journal.pone.0113255.g001
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protein (25 kDa) can also interact with SCE, dKDM2 and dBRE1 proteins as a

way to understand the functions of both protein forms.

To analyze whether the UBD domain of dRYBP is required for its association

with SCE, dKDM2 and dBRE1 we performed pulldown assays using the dRYBP-

Figure 2. dRYBP interacts biochemically with SCE, dKDM2 and dBRE1. (A) Mass spectrometric parameters of the dRYBP, SCE, dKDM2 and dBRE1
proteins using Drosophila embryonic nuclear protein extracts and dRYBP #194 and dRYBP #195 serum antibodies. Molecular weight (kDa), mascot score
(MS), number of unique peptides (UP), total number of peptides (TP) identified and sequence coverage (%). (B) Western Blot of co-immunoprecipitations
using a-dRYBP, a-SCE or a-dKDM2 antibodies for dRYBP, SCE, dKDM2, PSC, PC, PH and E(Z) detection. (C) Western Blot of co-immunoprecipitations
using a-dRYBP or a-dBRE1 antibodies for dRYBP, dBRE1, SCE, dKDM2 and E(Z) detection. In (B) and (C) Drosophila embryonic nuclear protein extracts
(Input), pre-immune serum (Mock). (D) Western Blot detection with the indicated antibodies of dRYBP-GST or dRYBPDNZF-GST-pulldowns using
Drosophila embryonic nuclear protein extracts (Input) or protein-GST (Mock). Arrowheads point to the corresponding protein bands detected with the
indicated antibodies (other bands may be non-specific or correspond to modified proteins).

doi:10.1371/journal.pone.0113255.g002
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GST and dRYBPDNZF-GST proteins with Drosophila nuclear protein extracts.

Results show that both dRYBP-GST and dRYBPDNZF-GST associate with SCE,

dKDM2 and dBRE1 proteins (Figure 2D) indicating that the UBD domain of

dRYBP is not required for these interactions. Therefore, the NZF domain of the

dRYBP protein is perhaps essential for dRYBP functions independent of its

interaction with PcG/trxG proteins and therefore independent of its function as

chromatin-dependent transcriptional regulator.

Thus, the analysis of the dRYBP interactions with the subunits of the vertebrate

non-canonical RYBP-PRC1 (RYBP, PSC, dRING/SCE) and canonical PRC1

complexes (PC, PSC, dRING/SCE and PH) indicates that dRYBP only interacts

with dRING/SCE (Figure 2B). Therefore, it seems that the subunit composition of

the non-canonical RYBP-PRC1 complexes may not be conserved between flies

and mammals and perhaps, in Drosophila, the dRYBP protein may impede the

direct interaction between dRING/SCE and PSC [28, 29]. Also, the vertebrate

BCOR complex containing RYBP [30, 31] is considered the equivalent of the

Drosophila dRAF complex. Therefore, it has been generally assumed that dRAF

also contains dRYBP [1]. However, this is not the case as our results show that

dRYBP only interacts with the SCE/dRING and dKDM2 subunits of the dRAF

complex (Figure 2). These results lead us to propose the existence of a dRRK

(dRING, dRYBP, dKDM2) complex, a variant of the dRAF complex that excludes

PSC. Finally, little is known about the dBRE1 interactor proteins. So far, the only

protein reported to interact with BRE1 is RAD6 [7]. However, RAD6 was not

detected as a dRYBP interacting protein in the mass spectrometric analysis. Our

results lead us to propose the existence of a dRB complex consisting of dBRE1 and

dRYBP. The dRRK and dRB complexes may have distinct effects on gene

expression.

dRYBP genetically interacts with Sce, dkdm2 and dBre1

We hypothesized that dRYBP genetically interacts with Sce and dkdm2 to control

gene silencing and with dBre1 to control gene activation. To test this, we analyzed

the PcG genes inactivation related homeotic phenotypes such as: the transfor-

mation of meta- (L3) and meso-thoracic (L2) legs into pro-thoracic (L1) legs

(L2-L3 to L1, Figure 3A, B), the transformation of wings into halteres (W to H,

Figure 3C, D) and the transformation of the forth (A4) abdominal segment

towards the fifth (A5) one in males (A4 to A5, Figure 3 E, F). Furthermore, we

analyzed the trxG genes inactivation related homeotic phenotype such as the

transformation of segment A5 towards segment A4 (A5 to A4, Figure 3E, G).

We first determined the penetrance of these homeotic phenotypes in dRYBP

and dkdm2 double mutant flies. Neither loss of dRYBP function [20] nor loss of

dkdm2 function [11] or the double mutant combination (i.e., dRYBP-/dRYBP-;

dkdm2-/dkdm2-, this study) show homeotic phenotypes. Therefore, we investi-

gated the interaction phenotypes in flies with a sensitized mutant genetic

background i.e. in Polycomb heterozygous mutant flies (Pc3/+) and in trithorax

heterozygous mutant flies (trxE2/+) flies. The use of these sensitized mutant

dRYBP Counteracts Activation and Repression
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Figure 3. dRYBP interacts genetically with Sce, dkdm2 and dBre1. (A) Wild type male legs (L1, L2 and L3). L1 presents the sex comb (arrowhead) not
present in L2 or L3. (B) dRYBP1/dRYBP1; Pc3/dkdm2KG04325 legs showing ectopic sex combs on L2 and L3 (arrowheads). (C) Wild type wing. (D) dRYBP1/
dRYBP1; Pc3/dkdm2KG04325 wing partially transformed to haltere. Scale bars represent 200 mm. (E) Wild type male abdomen. Indicated are the A4, A5 and
A6 segments. Note the pigmentation of A5 and A6. (F) dRYBP1/dRYBP1; Pc3/dkdm2KG04325 male abdomen. Note the patches of pigmentation (arrowheads)
in A4. (G) dRYBP1/dRYBP1; trxE2/+ male abdomen showing patches of de-pigmentation (arrowhead) in the A5. (H-K) Graphs representing the frequency of
the indicated phenotypes in flies of the indicated genotypes. (H) Genetic interaction between dRYBP and dkdm2 in a Pc mutant background. Arrows mark
the frequency of the indicated phenotypes in dRYBP1/dRYBP1; dkdm2KG04325/Pc3 flies (n5100 in all cases). (I) Genetic interaction between dRYBP and
dkdm2 in a trx mutant background. Arrows mark the frequency of the indicated phenotypes in dRYBP1/dRYBP1; dkdm2KG04325/trxE2 flies (n5100 for all
genotypes). (J) Genetic interaction between dRYBP, dkdm2 and Sce (n5100 for dRYBP1/dRYBP1; dkdm2KG04325/+ and dRYBP1/dRYBP1; Sce1/+; n545 for
Sce1/dkdm2KG04325; n570 for dRYBP1/dRYBP1; Sce1/dkdm2KG04325). Arrows mark the frequency of the dRYBP1/dRYBP1; Sce1/dkdm2KG04325. (K) Genetic
interaction between dRYBP and dBre1. Arrow marks the frequency of dRYBP1/dRYBP1; dBre1kim1/dBre1kim1 (n5100 in all cases).

doi:10.1371/journal.pone.0113255.g003
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genetic backgrounds has been previously probed very useful to detect interactions

between PcG and trxG genes [20, 32–34].

Polycomb heterozygous mutant flies (Pc3/+) present PcG-related mutant

homeotic phenotypes (50% L3-L2 to L1; 18% W to H; 10% A4 to A5, Figure 3H).

Flies dkdm2KG04325/Pc3 [11] show an increase in the penetrance of these

phenotypes (90% L3-L2 to L1; 60% W to H; 100% A4 to A5), suggesting that

dkdm2 is an enhancer of Pc [11]. When dRYBP and dkdm2 are concomitantly

inactivated (dRYBP1/dRYBP1; dkdm2KG04325/Pc3, Figure 3H) the penetrance of the

phenotypes was significantly reduced (26% L3-L2 to L1; 38% W to H; 39% A4 to

A5, Figure 3H) suggesting that dRYBP is a suppressor of dkdm2 repressor effect.

Moreover, trithorax heterozygous mutant flies (trxE2/+) present the A5 to A4

transformation with 33% penetrance (Figure 3I) and this frequency is highly

increased in the absence of dRYBP function (94% of the dRYBP1/dRYBP1; trxE2/+,

Figure 3I) indicating that dRYBP is an enhancer of trx [20]. Conversely, the

frequency of the A5 to A4 phenotype of trxE2/+ is decreased in the absence of

dkdm2 function (2% of dkdm2KG04325/trxE2, Figure 3I) indicating that dkdm2 is a

suppressor of trx [11]. When, dRYBP and dkdm2 are simultaneously inactivated

(dRYBP1/dRYBP1; dkdm2KG04325/trxE2), the trx enhancer effect of dRYBP decreases

(from 94% to 31%) and the trx suppressor effect of dkdm2 decreases (from 2% to

31%). Thus, these results indicate that dRYBP and dkdm2 antagonize each other

activities.

Next, we analyzed the genetic interactions with Sce. The heterozygous Sce1/+
mutant flies show neither PcG- nor trxG-related homeotic phenotypes ([35, 36]

and Figure 3J) even when dkdm2 expression is reduced (Sce1/dkdm2KG04325,

Figure 3J). However, the simultaneous inactivation of dRYBP and Sce (dRYBP1/

dRYBP1; Sce1/+) produces both PcG- and trxG-related homeotic phenotypes (L2–

L3 to L1 with a 86% penetrance and A5 to A4 with a 68% penetrance, Figure 3J)

suggesting that dRYBP and Sce are enhancers of Pc and, interestingly that dRYBP

and Sce are enhancers of trx [20]. Notably, the frequency of both of these

phenotypes is significantly decreased (2% L2-L3 to L1 and 6% A5 to A4,

Figure 3J) when the levels of dkdm2 expression are reduced (dRYBP1/dRYBP1;

Sce1/dkdm2KG04325). Therefore, dkdm2 is a suppressor of the dRYBP and Sce

repressor effects (from 86% to 2%) and of the dRYBP and Sce enhancer effects

(from 68% to 6%).

Finally, we studied the genetic interaction between dRYBP and dBre1. As

indicated in Figure 3K, dBre1kim1 homozygous mutant flies (dBre1kim1/dBre1kim1)

show the A5 to A4 transformation with high frequency (80%, Figure 3K).

However, in the absence of dRYBP (dRYBP1/dRYBP1; dBre1kim1/dBre1kim1) there is

a significant decrease in the frequency (2%) of the A5 to A4 transformation,

suggesting that dRYBP suppresses the activator function of dBre1.

The results from our study of the genetic interaction of dRYBP, dkdm2 and Sce,

indicate that dRYBP associates with these proteins to counteract and alleviate the

dKDM2-mediated transcriptional repression. Additionally, the study of the the

genetic interaction between dBre1 and dRYBP show, for the first time, the

function of dBRE1 as a trxG protein in the regulation of homeotic gene expression
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PLOS ONE | DOI:10.1371/journal.pone.0113255 November 21, 2014 8 / 17



and indicate that dRYBP associates with dBRE1 protein to counteract and

alleviate the dBRE1-mediated activation.

dRYBP modulates levels of H2Aub, H2Bub and H3K36me2

Our biochemical and functional results showing interactions of dRYBP with

dkdm2, Sce and dBre1 raised the possibility that the ability of dRYBP to counteract

both transcriptional repression and activation is a result of the modulation of

post-translational histones modifications. To investigate this possibility, we

focused the analysis on the levels of H2Aub, H3K36me2 and H2Bub as these are

the main targets of dKDM2, SCE and dBRE1 [4, 11, 37]. We also studied

H3K27me3 levels to investigate the dRYBP role on PRC2-mediated recruitment in

Drosophila [12, 14].

To test this, we analyzed histone modifications levels in S2 cells depleted of

dRYBP, SCE, dKDM2, dBRE1 and PC (as a control) by RNAi-mediated

knockdown (KD) (Figure 4). In dRYBP-KD cells, the levels of H3K36me2,

H3K27me3, H2Aub, H2Bub and H3K4me were examined by Western Blot

analysis using specific antibodies (Figure 4). dRYBP depletion caused a strong

decrease in H2Aub and H3K4me and slight decrease in H3K36me2, whereas

H3K27me3 and H2Bub remain unchanged (Figure 4A). Thus, dRYBP stimulates

directly or indirectly H2Aub, H3K4me and H3K36me2.

Next, we analyzed H3K27me3 levels in S2 cells were either dRYBP, SCE,

dKDM2 and PC (as a control) were inactivated. We found that in any of the

analyzed cases H3K27me3 levels were affected (Figure 4B). This results suggest

that dRYBP, SCE and dKDM2, all subunits of the RYBP-PRC1 complex variant,

are not required for H3K27me3 levels and therefore for PRC2 activity and/or

PRC2 recruitment.

Further, we analyzed H2Aub levels in S2 cells where either dRYBP and SCE or

dRYBP and dKDM2 were individually or concomitantly inactivated (Figure 4D).

Reduced levels of H2Aub were observed in the single knockdowns dRYBP-KD

(55%; this reduction is not due to decreased SCE protein levels, Figure 4C), in

SCE-KD (5%), and in dKDM2-KD (44%). This compares to reduction of H2Aub

levels in the double knockdowns dRYBP + SCE-KD (10%) and dRYBP + dKDM2-

KD (51%) (Figure 4D). We also checked H3K36me2 levels. Depletion of dRYBP (

Figure 4A) has a weak effect on H3K36me2 levels while depletion of dKDM2

results, as previously described [11], in increased H3K36me2 levels (Figure 4E).

Interestingly, the double knockdown dRYBP + dKDM2-KD (Figure 4E) strongly

decreases H3K36me2 levels when compared to dKDM2-KD (this reduction is not

due to increased dKDM2 protein levels, Figure 4C). Thus, dRYBP counteracts the

repressor effect of dKDM2 through the modulation of the H3K36me2 levels.

Finally, we investigated whether dRYBP modulates dBRE1-dependent H2B

monoubiquitylation. Depletion of dRYBP (Figure 4A and Figure 4F) does not

have an effect on H2Bub while, as previously described [37] depletion of dBRE1

abolishes H2Bub (Figure 4F). Curiously, the simultaneous depletion of both

dRYBP and dBRE1 results in increased levels of H2Bub compared to H2Bub levels

dRYBP Counteracts Activation and Repression
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Figure 4. dRYBP inactivation modulates levels of histone modifications. Western Blot analysis of whole S2 cells histone extracts or protein extracts to
analyze either levels of histone modifications or protein levels to control dsRNA-inactivation efficiency with the indicated antibodies. The reduction (%) of
expression was calculated measuring and quantifying the intensity of the bands using Fiji imaging software and Tubulin expression as a reference. (A)
Inactivation of dRYBP. Note the slight decrease of H3K36me2 and strong decrease of both H3K4me and H2Aub and the efficiency of the dRYBP inactivation

dRYBP Counteracts Activation and Repression
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in dBRE1-KD (Figure 4F, this reduction is not due to increased dBRE1 protein

levels). Thus, dRYBP may counteract the activating function of dBRE1 by

decreasing, directly or indirectly, H2Bub levels.

Taken together, the results from our investigation on the dRYBP modulation of

post-translational modified histone levels (Figure 4), indicates that dRYBP

stimulates H2A monoubiquitylation. We did not observe any effect of dRYBP on

SCE-dependent H2A monoubiquitylation. We believe this is simply due to the

fact that H2Aub is nearly completely absent in SCE depleted S2 cells.

Furthermore, we have shown for the first time that inactivation of dRYBP, SCE

and dKDM2 in S2 cells does not affect H3K27me3, suggesting that these proteins

are not required for PRC2 activity. Moreover, it has been recently shown that

non-canonical PRC1 complexes can be recruited to chromatin independently

from H3K27me3 and suggested that H2Aub landmark established by PRC1 is

responsible for PRC2 recruitment [13–16]. However, our results suggest that in

Drosophila the repressive activity of PRC2 is independent from the PRC1 proteins

dRYBP, SCE, dKDM2 and PC, reinforcing the classical hierarchy PcG complexes

recruitment model [12, 14]. Our results also show that dRYBP slightly stimulates

H3K36me2 levels but strongly suppresses dKDM2-mediated H3K36me2

demethylation suggesting that dRYBP alleviates dKDM2-mediated repression.

Finally, these results show that dRYBP does not influence H2Bub levels but

suppresses the dBRE1-mediated H2B monoubiquitylation, thus suggesting that

dRYBP may alleviate dBRE1-mediated activation.

A model for dRYBP function

The biochemical interaction studies (Figure 2) propose the existence of the dRRK

(composed of dRYBP, dRING/SCE, and dKDM2) and of the dRB (composed of

dBRE1 and dRYBP) complexes. The composition of these putative complexes may

include other subunits that are still to be determined. The mass spectrometric

analysis did not detect interactions with any other of the PRC1 or PRC2

complexes proteins subunits such as PC, PSC, SU(Z)2, PH or even with PHO that

was previously found, in over-expression experiments, to interact with dRYBP

[20]. Neither detected interaction with RAD6, the only protein so far described to

(98%). (B) Levels of H3K27me3 in the indicated KDs. Note that H3K27me3 levels do not change and the efficiency of the inactivation (dRYBP 78%, SCE:
66%, dKDM2: 90%, PC: 56%). (C) Levels of the indicated proteins in the corresponding KDs. Efficiency of dRYBP reduction in dRYBP KD: 97%; in dRYBP +
SCE KD: 98%; in dRYBP + dKDM2 KD: 100%; in dRYBP + PC KD: 100%. Efficiency of SCE reduction in SCE KD: 66%; in dRYBP + SCE KD: 62%.
Efficiency of dKDM2 reduction in dKDM2 KD: 93%; in dRYBP + dKDM2 KD: 98%. Efficiency of PC reduction in PC KD: 62%; in dRYBP + PC KD: 68%. (D)
Levels of H2Aub in the indicated KDs. The intensity of the bands corresponding to H2Aub and H2A was measured and quantified using Fiji imaging software
calculating the different H2Aub/H2A ratios. H2Aub levels reduction (%) in dRYBP KD: 65%, in SCE KD: 95%, in dKDM2 KD: 56%, in PC KD: 5%, in dRYBP
+ SCE KD: 90%, in dRYBP + dKDM2 KD: 49%, in dRYBP + PC KD: 46%. Note that the decrease in H2Aub levels in dRYBP KD shown in (A) and (D) seem
to be slightly different probably due to experimental conditions. Also note the efficiency of the indicated dsRNA-inactivation shown in (C). (E) Levels of
H3K36me2 in the indicated KDs. Note levels of H3K36me2 decrease in dRYBP + dKDM2 KD in comparison to dKDM2 KD and the efficiency of the indicated
dsRNA-inactivation shown in (C). (F) Levels of H2Bub in the indicated KDs. Note that levels of H2Bub increase in dRYBP + dBRE1 KD in comparison to
dBRE1 KD and the efficiency of the indicated dsRNA-inactivation. dRYBP reduction in dRYBP KD: 93%; in dRYBP + dBRE1 KD: 98%. dBRE1 reduction in
dBRE1 KD: 97%; in dRYBP + dBRE1 KD: 100%. Arrowheads indicate the bands corresponding to SCE. Arrows indicate the bands corresponding to
dKDM2. Tubulin, H3, H2A and H2B were used as loading controls. Mock is GFP-dsRNA in all cases. To prove reproducibility of the results between 4–5
replicates of all the experiments were performed.

doi:10.1371/journal.pone.0113255.g004
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interact with BRE1 [7]. Our genetic interaction results (Figure 3) show that dRRK

and dRB function to regulate homeotic gene expression and therefore these

complexes are required for morphogenesis. Importantly, we show that dBRE1 is

also involved in the process of morphogenesis mediated by the homeotic genes (

Figure 3K). The results indicate that dRYBP enhances the repressor effect of Sce

and also that dRYBP counteracts the dkdm2 repressor effect. Our findings also

show that dRYBP suppresses the activator effect of dBRE1. How does dRYBP

control these antagonistic effects? We propose that dRYBP modulates modified

histone levels to generate both a transcriptional repression state that is relatively

weaker than the one promoted by dRAF complex and a transcriptional activator

state that is relatively weaker than the one promoted by dBRE1. Thus, dRYBP

epigenetically regulates gene expression through its ability to generate crosstalk

between repression and activation: it promotes the alleviation of repression and

the alleviation of activation of transcription. In this model (Figure 5), the

interaction of dRYBP with SCE/dRING and dKDM2 generates the dRRK complex

that, in turn, may exclude PSC from dRAF thereby impeding dKDM2

demethylase activity. The concurrent hypothetical decrease in H2Aub levels (due

to the absence of PSC-E3 ubiquitin ligase) and increase in H3K36me2 levels

causes a decrease in dRAF mediated transcriptional repression and generation of a

comparatively lower state of transcriptional repression. Also in this model, the

interaction of dRYBP with dBRE1 to form the dRB complex, may inhibit dBRE1

activity. The relatively lower levels of H2Bub will result in a relatively lower state

of transcriptional activation. This model is supported by recent findings

indicating that RYBP target genes expression present moderate levels of repression

[9]. Perhaps the presence of dRYBP at specific cis-regulatory regions of target

genes may serve to maintain different levels of expression in different cells or

different parasegments (ps). For example, this system may help to control the

expression of the homeotic Ultrabithorax protein in the ps5 or ps6 of the embryo

or expression of the homeotic Abdominal-B gene in ps10, ps11 or ps12 [38].

Moreover, the ability of dRYBP to modulate both repression and activation may

Figure 5. Hypothetical model for dRYBP function. (A) The dRRK complex (dRYBP + dRING + dKDM2) counteracts dRAF-mediated repression by
increasing H3K36me2 levels and perhaps, decreasing H2Aub due to the absence of PSC. (B) The dRB complex (dRYBP + dBRE1) counteracts dBRE1-
mediated activation by lowering H2Bub levels.

doi:10.1371/journal.pone.0113255.g005
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serve to provide epigenetic transcriptional plasticity that underlies the control of

developmental transitions, homeostasis and pathological states.

Materials and Methods

Drosophila strains and handling

Flies y1, Df(1)w67c23 were used as control. The PcG and trxG mutant alleles used

were: Sce1 and Pc3 [35], trxE2 [39], dkdm2KG04325 [11], dBre101640 [40], dBre1kim1

[41] and dRYBP1 [20]. All crosses were performed at 25 C̊.

Cell cultures and RNAi-mediated knockdowns

Drosophila S2 cells were cultured in Schneider’s media (Invitrogen) supplied with

10% FBS and treated and incubated for 4 days with double-stranded RNA

(dsRNA) as described [42]. dsRNA was synthesized using the Ambion Megascript

T7 kit according to manufacturer’s protocol. Primer sequences used to generate

dsRNA directed against dRYBP were:

59TTAATACGACTCACTATAGGGAGAGTGATCGAGGAGAACTTCTGG 39,

59 TTAATACGACTCACTATAGGGAGAGCTGTCGTTGCTCTCGCTGAA 39.

Primer sequences used for dsRNA directed against SCE, dKDM2 and PC were

previously described [11], dBRE1 [41]. After 4 days, histones were isolated from

samples by acid extraction [11] and used for protein detection. When required

cells were treated with proteasome inhibitors as described in [43].

Plasmids, GST-pulldowns and Co-immunoprecipitations

dRYBP and dRYBPDNZF [20] cDNAs were cloned into pGEX2TKN, a derivate of

pGEX-2TK (Pharmacia) using the primers: 59 TTTCATATGATGGACAAGA-

AATCCTCGCCG 39, 59 TTTCATATGGCCTCCGGATCACGGCATGGC 39 and

59TTTTCTAGACTAACTCCGGCTGTCGTTGCT 39. Proteins were expressed as

glutathione S-transferase (GST) fusion proteins and purification and GST-

pulldowns were performed as described [44]. Co-IPs were performed as

previously described [11].

Western Blot analysis

Protein samples were separated on 8, 12, 15 or 18% SDS-PAGE gel and WB were

performed following standard procedures. The primary antibodies used were:

Mouse: a-Ub (1:1000) (Millipore clone FK2), a-Tubulin (1:8000) (Sigma),

a-H2Aub (1:250) (Merck, clone E6C5), a-H2Bub (Millipore, clone 56), (1:1000);

Rabbit: a-dRYBP (1:250) [19], a-PC (1:500) [11], a-PH (1:500) [11], a-dBRE1

(1:1000) [41], a-H2A (1:500) (Abcam 13293), a-H2B (1:2000) (Upstate 07-371),

a-H3 (1:2000) (Abcam 1791), a-H3K36me2 (1:2000) (Upstate 07369),

a-H3K27me3 (1:1000) (Upstate 07-449), a-H3K4me3 (1:1000) (Active Motif

39159) a-H3K4me (1:500) (Abcam ab8895); Guinea pig: a-PSC (1:250) [11],
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a-SCE (1:500) [11], a-dKDM2 (1:250) [11], a-E(Z) (1:500) [11]. AP (Alkaline

Phosphatase) coupled secondary antibodies were used (Sigma-Aldrich).

Mass spectrometric analysis

Drosophila nuclear protein extracts from 0-12h wild type embryos were prepared

as previously described [45] and incubated with two different affinity purified

antibodies (dRYBP #194 and dRYBP #195) directed against dRYBP [19]

previously coupled to sepharose A beads (GE Healthcare). After incubation, beads

were extensively washed with buffers containing either 400 mM or 800 mM KCl

and 0.1% NP-40. dRYBP immunopurified fractions were resolved by SDS-PAGE

and visualized by silver staining following standard protocols [46]. Proteins

present in bands excised from the gel were identified by nanoflow LC-MS/MS at

the Proteomics Center, Erasmus Medical Center, Rotterdam.

Cuticle preparation

Flies were dissected and mounted as previously described [22]. Images were generated

using a Zeiss CCD microscope and processed using Adobe PhotoShop CS5.

Supporting Information

Figure S1. Analysis of dRYBP binding to ubiquitin and ubiquitylated proteins

from S2 cell extracts untreated with proteasomal inhibitors (Lactacystin and

MG132). (A) Western Blot using a-dRYBP and a-Ub antibodies of S2 cells

protein extracts untreated (Mock) and treated with proteasome inhibitors (+MG-

132+ Lactacystin). Note that a-dRYBP detects 17 kDa and 25 kDa bands and that

a-Ub detects a 25 kDa band. (B) Pulldown assay performed using S2 cell extracts

(Input) with GST-protein (Mock) and fusion proteins dRYBP-GST and

dRYBPDNZF-GST. Proteins were analyzed by immunoblotting with a-Ub

antibody. Note levels of ubiquitylated proteins are very low, including the Input.

doi:10.1371/journal.pone.0113255.S001 (PDF)

Figure S2. dRYBP does not interact biochemically with PSC, PC, PH and EZ.

(A) Drosophila embryonic wild type nuclear extracts (Input) or pre-immune

serum (Mock) were immunoprecipitated using a-PSC, a-PC, a-PH and a-E(Z)

antibodies. Eluted proteins were resolved by SDS-PAGE and analyzed by Western

Blot for dRYBP, SCE, dKDM2, PSC, PC, PH and E(Z) detection. Note dRYBP

protein does not interact with any other protein. Arrowheads point to the

corresponding protein bands detected with the indicated antibodies (other bands

may be non-specific or correspond to modified proteins).

doi:10.1371/journal.pone.0113255.s002 (PDF)
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