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Introduction: The molecular characterization of circulating tumor cells (CTCs) is a promising

tool for the repeated and non-invasive evaluation of predictive and prognostic factors.

Challenges associated with CTC characterization using the only FDA approved method for

CTC enumeration, the CellSearch technique, include the presence of an excess of leuko-

cytes in CTC-enriched blood fractions. Here we aimed to identify colorectal tumor-specific

gene expression levels in the blood of patients with and without detectable CTCs according

to CellSearch criteria.
Materials and methods: Blood of 30 healthy donors (HDs) and 142 metastatic colorectal cancer

(mCRC) patients was subjected to CellSearch CTC enumeration and isolation. In all sam-

ples, 95 mRNAs were measured by reverse transcriptase quantitative PCR (RT-qPCR). HD

blood samples and patient samples with three or more CTCs were compared to identify

CTC-specific mRNAs. Patient samples without detectable CTCs were separately analyzed.
Results: Thirty-four CTC-specific mRNAs were higher expressed in patients with �3 CTCs

compared with HDs (ManneWhitney U-test P < 0.05). Among patients without detectable

CTCs, a HD-unlike subgroup was identified which could be distinguished from HDs by the

expression of epithelial genes such as KRT19, KRT20 and AGR2. Also, in an independent

patient set, a similar HD-unlike group could be identified among the patients without

detectable CTCs according to the CellSearch system.
Conclusion: Extensive molecular characterization of colorectal CTCs is feasible and a sub-

group of patients without detectable CTCs according to CellSearch criteria bears circulating

tumor load, which may have clinical consequences. This CTC-specific gene panel for mCRC
; CK, cytokeratin; Ct, threshold cycle; DFS, disease-free survival; HD, healthy donor; mCRC,
vival; QC, quality control; RT-qPCR, reverse transcriptase quantitative PCR.
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patients may enable the exploration of CTC characterization as a novel means to further

individualize cancer treatment.

ª 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction et al., 2007) could have the potential to greatly improve treat-
Colorectal cancer (CRC) is a highly heterogeneous disease, in

its presentation as well as its prognosis. The liver is a predom-

inant site of metastases; approximately 25% of CRC patients

present with synchronous hepatic metastases, while ulti-

mately more than 50% of patients initially presenting with

non-metastatic CRC will develop liver metastases in the

course of their disease (Taylor, 1996). When the metastases

are confined to the liver and are deemed resectable, patients

are increasingly undergoing partial liver resection aiming for

curation (van der Pool et al., 2010; Verhoef et al., 2009). Recent

data suggest that a selected patient group undergoing this

procedure achieves long-term survival (Brouquet et al.,

2011). Nevertheless, up to half of patients undergoing such

major abdominal surgery will develop disease relapse in the

liver or at other distant sites within one year (Abdalla et al.,

2004; Adam et al., 2008; Ito et al., 2008; Zakaria et al., 2007)

prompting the need for prognostic factors discriminating pa-

tients benefiting from this approach versus those who do

not. In primary CRC, several factors have been shown to be

prognostic such as microsatellite instability, mRNAs profiles

and KRAS and BRAF gene mutations (Imamura et al., 2012;

Lochhead et al., 2012, 2013; Mouradov et al., 2013; Phipps

et al., 2013; Russo et al., 2014; Sanz-Pamplona et al., 2012).

However, at the time of metastatic disease, clonal selection

and genomic instability can lead to important discrepancies

between primary tumor and metastases, which can be

augmented by the passing of time and administration of sys-

temic therapy (Campbell et al., 2010). Heterogeneity between

primary tumor and metastases has been described for clini-

cally highly relevant predictive factors such as KRAS (Baldus

et al., 2010; Jiang et al., ASCO Molecular Markers 2010 (abstr

49)). As a result, when attempting to identify factors prog-

nostic or predictive for the behavior of metastatic disease,

such discrepancies between primary tumor and metastases

can be crucial. As such, predictive and prognostic models

should be established in metastatic tissue rather than in the

primary tumor. Unfortunately, metastatic tissue is often

hard to obtain for diagnostic purposes, and only through inva-

sive procedures.

A potential alternative approach for characterizing meta-

static solid lesions is the characterization of circulating tumor

cells (CTCs) (Alix-Panabieres and Pantel, 2013; van de Stolpe

et al., 2011). A CTC count has been identified as a powerful

prognostic marker in metastatic colorectal (Cohen et al.,

2008), breast (Cristofanilli et al., 2004) and prostate cancer

(de Bono et al., 2008). Additionally, CTC characterization for

drug target expression (Attard et al., 2009; Riethdorf et al.,

2010), mutations (Holdhoff et al., 2009) and gene expression

by reverse transcriptase quantitative PCR (RT-qPCR) (Cohen

et al., 2006; Sieuwerts et al., 2011; Smirnov et al., 2005; Xi
ment decision making.

However, significant challenges remain, such as the low

frequency of CTCs in the circulation, and the additional pres-

ence of up to a thousand remaining leukocytes, even after

CellSearch EpCAM-based enrichment (Sieuwerts et al.,

2009a). To enable CTC characterization by RT-qPCR, we have

minimized the potential confounding contribution contami-

nating leukocytes by focusing solely on genes expressed in tu-

mor tissue that are not, or at a much lower level, expressed by

leukocytes. Using stringent selection methods combined with

a sensitive but robust cDNA pre-amplification, wewere able to

reliably quantify a CTC-specific gene panel in blood of meta-

static breast cancer patients (Sieuwerts et al., 2011).

In the current study, we set out to identify such a CTC-

specific gene panel by qualifying a large panel of mRNAs in

CellSearch-enriched CTCs of metastatic CRC (mCRC) patients

prior to partial liver resection. To this end, we compared the

expression of this mRNA panel between healthy donors

(HDs) and patients without detectable CTCs as defined by Cell-

Search. By measuring these CTC-specific genes in patients

without detectable CTCs, a HD-unlike group was identified,

and the prognosis of these patients was compared with HD-

like patients without evidence of circulating tumor load ac-

cording to their CTC-specific gene expression.
2. Materials and methods

2.1. Patients and blood samples

As part of a prospective study, which included patients with

mCRC about to undergo resection of hepatic metastases, 142

patients were included from June 2008 until June 2011. The

first (primary) cohort of 107 patients was used to perform all

our initial analyses. A second independent cohort of 35 pa-

tients, who were included in the same study under the same

in- and exclusion criteria but at a later time point, was subse-

quently analyzed to substantiate our findings obtained in the

primary cohort. From all these patients, 30 mL blood samples

were taken for CTC enumeration and characterization (for de-

tails see next paragraph) by way of venipuncture before liver

metastasis resection and prior to surgical tumor manipula-

tion. This study was approved by the Leiden University Medi-

cal Center and Erasmus University Medical Center

Institutional Review Boards (METC P05.182) and all patients

were included in the Erasmus University Medical Center, Rot-

terdam, Netherlands, after written informed consent was ob-

tained. Additionally, 30mL blood sampleswere drawn from 30

healthy volunteers (age 21e58) to evaluate gene expression in

HDs. The same HDs were used in the analysis of the primary

and the secondary independent patient set (Figure 1).

http://dx.doi.org/10.1016/j.molonc.2015.01.001
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All included patients

n = 142

Primary set

n = 107

Primary set

n = 98

30 HDs vs. 24 pts   
with >= 3 CTCs

34 mRNAs

30 HDs vs. 33 pts 
w/o detectable 

CTCs

based on the 34 
mRNAs

11 HD-like vs. 22 
HD-unlike pts

51 mRNAs

Not evaluable 

n = 9

Independent 
second set

n = 35

30 HDs vs. 16 pts
w/o detectable

CTCs
based on the 34 

mRNAs

Figure 1 e Flowchart of patient sets for all analyses. Flowchart

depicting the patient set including the primary set and the

independent second set as well as the number of genes identified in

the analysis of healthy donors (HDs) and patients (pts) without (w/o)

detectable CTCs (left bottom branch) and in the comparison of HDs

and patients with ‡3 CTCs (right bottom branch). Nine patients were

excluded from the primary patient set because of insufficient mRNA

quality according to our QC standards (see Materials and Methods).
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2.2. Isolation and enumeration of CTCs

Two samples of 30mL blood from the 142mCRC patients prior

to liver metastasis resection were drawn in CellSave� tubes

(Veridex LLC, Raritan, NJ) for enumeration or in EDTA tubes

for isolation. Prior to CTC enumeration and isolation, a density

gradient-based enrichment step was applied as described

before (Lalmahomed et al., 2010). Briefly, immediately before

subsequent CTC enumeration or isolation, 30 mL blood was

pooled and centrifuged for 10 min at 800 � g. After removal

of plasma, 15mL CTC buffer was added andmixed, and pellet-

ing the total supernatant volume was carefully placed onto

6 mL of Lymphoprep (Axis-Shield, Dundee, Scotland), a Ficoll

density-gradient medium. After centrifugation at 400 � g for

10 min, the top buffer layer was discarded. Then, 7.5 mL of

suspension including the buffy coat was aspirated with a

reversed 10 mL pipette, allowing optimal isolation of the
mononuclear cell layer, and pipetted into a regular

CellTracks� tube (Veridex). For CTC enumeration, samples

were processed on the CellTracks�AutoPrep System (Veridex)

using the CellSearch� Epithelial Cell Kit (Veridex) within 96 h

after collection and CTC counts were determined on the

CellTracks� Analyzer (Veridex) according to the manufac-

turer’s instructions and as described before (Mostert et al.,

2011; Sieuwerts et al., 2009a). A cell was counted as a CTC if

it was an intact, nucleated DAPIþ cell, lacking CD45 and

expressing cytokeratin (CK)8/9/19, according to the manufac-

turer’s instructions.

2.3. mRNA isolation from CTCs, RT-qPCR and quality
control

For gene expression studies, in parallel with the enumeration

studies, 30 mL of blood from patients and HDs was drawn in

EDTA tubes, subjected to Ficoll enrichment as described above

and enriched for CTCs on the CellTracks� AutoPrep System

using the CellSearch� Profile Kit (Veridex) within 24 h after

collection. RNA isolation was performed with the AllPrep

DNA/RNA Micro Kit (Qiagen, Valencia, CA), and cDNA synthe-

sis, pre-amplification, real time PCR and normalization proce-

dures to quantify gene expression levels were performed as

described in detail before (Sieuwerts et al., 2009a). The quality

control (QC) measures that were taken to ensure the linear

and homogeneous nature of pre-amplification, adequate PCR

efficiency and reproducibility of each assay have also been

described in detail before (Sieuwerts et al., 2009a). Only pa-

tients with sufficient QC mRNA signal for 3 reference genes

(GUSB, HMBS and HPRT1 with an average value �26 Ct) were

included in the final analysis, based on which material of 9

from the originally 142 patients (6.3%) were excluded from

the final mRNA analysis.

Besides the 3 reference genes, 92 mRNAs (Supplementary

Table 1) were selected to be putatively CTC-specific, i.e.,

were described in silico to be relatively low expressed in leuko-

cytes compared with CRC (SAGE Genie Database of the Cancer

Genome Anatomy Project (http://cgap.nci.nih.gov/SAGE/Ana-

tomicViewer), and could be reliably and linearly measured

based on our previously described QC measures (Sieuwerts

et al., 2009a, 2011). For eachmRNA assay, a first cutoff to elim-

inate false-positivemRNA expression signals due to leukocyte

contamination was established at the median of the expres-

sion in HDs. As a result, H19 and MMP3 were excluded from

the original panel of 92mRNAs, leading to a total of 90mRNAs,

whichwere used for identification of CTC-specificmRNAs and

comparison of HDs to patients without detectable CTCs (see

below and Figure 1).

2.4. Statistical analysis

Stata v13 and Analyse-it v2.26 were used for statistical ana-

lyses and generation of box-plots. The strength of the associ-

ations between continuous variables was assessed with non-

parametric Spearman rank correlation. Differences in the

expression levels in various groups were tested with the

non-parametric ManneWhitney U test or the KruskaleWallis

test, when appropriate, and differences in baseline patient

and tumor characteristics by the Fisher’s exact test. CTC-
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specific profiles were identified by Class Comparison in Bio-

metric Research Branch ArrayTools (http://linus.nci.nih.gov/

BRB-ArrayTools.html), using a permutation P-value cut-off of

<0.05 (two-sample t-test). Hierarchical clustering analysis

was performed using Cluster and Treeview (Eisen et al.,

1998) and a custom Perl script to visualize the gene expression

values. DAVID (Database for Annotation, Visualization, and

Integrated Discovery (Dennis et al., 2003; Huang da et al.,

2009)) was used to functionally annotate genes and identify

the over-represented functions, with P-values corrected for

multiple testing via BenjaminieHochberg’s procedure. Unless

stated otherwise, all statistical tests are 2-sided with P < 0.05

considered statistically significant.
3. Results

3.1. Patient characteristics

Among 107 included mCRC patients about to undergo hepatic

metastasis resection in the primary patient set, 98 patients

were evaluable for mRNA gene expression (Figure 1). The 35

patients in the independent patient set, who were included

in the same study under the same inclusion criteria but at a

later time point and used to further characterize samples

without detectable CTCs, were all evaluable for mRNA gene

expression. Detailed clinicopathological information for the

primary set of 98 patients and the independent second set is

available in Table 1. Patient and tumor characteristics were

well balanced between the primary and independent second

set and no significant differences in the proportions of any

of the patient or tumor characteristics between the two

groups were observed.

3.2. CTC counts

Among all 98 patients from the primary set with QCmRNA, 24

patients (24%) had �3 CTCs per 30 mL blood, 41 patients (42%)

had 1 or 2 detectable CTCs, while in 33 patients (34%) no CTCs

were identified. The number of patients below and above the

cut-off of 3 CTCs was not equally distributed among males

and females; relatively more female than male patients had

CTC counts above 3 cells per 30 mL blood (Fisher’s exact, P

0.004, Table 1). In the second set, six patients had �3 CTCs

per 30 mL blood (17%); while in 16 patients (46%), no CTCs

were identified. The unequal distribution in CTC counts

among males and females was not observed in the smaller

second set of 35 patients.

3.3. CTC-specific mRNAs

As described, besides the 3 reference genes, 90 mRNAs could

be reliably and linearly measured in mCRC CTCs. To select

CTC-specific mRNAs, we compared the mRNA expression be-

tween samples with presumed substantial circulating tumor

gene expression and samples without any circulating tumor

load. We therefore compared the 24 patients with �3 CTCs

in the primary set with the 30 HDs, and thus identified a panel

of 34 mRNAs of which the transcripts were at a permutation

P < 0.05 higher expressed in the patients with �3 CTCs
compared with HDs (Class comparison BRB-array tools,

Supplementary Table 2).

3.4. Unsupervised hierarchical clustering of CTC-specific
mRNAs

After identifying CTC-specific genes, we wished to study

possible heterogeneity in their expression between patients.

To this end, we used the identified 34 CTC-specific mRNAs to

perform unsupervised 2-dimensional average linking hierar-

chical clustering analysis of all 98 patients from the primary

set with available QC mRNA data (Figure 2). This clustering

analysis revealed two main clusters, cluster 1 and 2. Cluster

2 could be further divided into two patient clusters, which,

contrarily to patient cluster 1, were both characterized by a

relatively high expression of epithelial genes such as KRT19

and KRT20. Patient cluster 2a was characterized by the high

expression of genes such as FABP1, CDX1 and CDH17. These

genes are marked by the blue rectangle at the right in

Figure 2. No specific common category was significantly

enriched in this gene cluster by DAVID functional gene anno-

tation analysis. Patient cluster 2b largely lacked expression of

these genes, but did express REG1A, IGFBP5 and AGR2 (genes

are marked by the red rectangle at the right in Figure 2). DA-

VID analysis identified “secreted” as the most significant

category for seven genes (PRSS8, RARRES2, COL4A1, LAD1,

AGR2, IGFBP3, IGFBP5) in this 15-gene cluster (5.3-fold enrich-

ment, Benjamini P 0.04). No significant association was found

between the different patient clusters and CTC counts,

neither the continuous CTC counts (dark green bars at the

bottom of Figure 2) nor a dichotomized CTC count <3 versus

�3 per 30mL blood (green [<3] and red bars [�3] at the bottom

of Figure 2). The patients with �3 CTCs do seem to be

enriched in patient cluster 2a, but differences were not statis-

tically significant. Comparing the patients in the two respec-

tive mRNA clusters (1 and 2a & b) for their baseline

clinicopathological characteristics showed that patients

belonging to clusters 2a and 2b had more frequently had in-

duction chemotherapy administered than those in cluster 1

(P 0.017, Table 1).

3.5. CTC-specific mRNAs and prognosis

For those patients evaluable for relapse-rate, disease-free

(DFS) and overall survival (OS), we assessed the correlation

of the 91 patientsmaking up the three distinct patient clusters

(cluster 1, 2a and 2b) based on the 34 CTC-specificmRNAswith

prognosis. Seventy patients were evaluable for disease recur-

rence rate and survival. Of the other 21, two patients still had

the primary tumor in situ at the time of liver resection, eight

patients underwent liver resection as part of a two-stage

approach and thus still had residual liver metastases in situ

after the liver resection and 11 did not undergo liver resection

because extensive and/or progressive diseasewas seen during

surgery. Of 70 evaluable patients, 49 experienced a relapse.

Comparing the relapse-rate within 1 year after liver resection,

no differencewas seen between the clusters (Pearson’s X2 sta-

tistic 1.22, P 0.5442). Comparing overall survival (OS), a trend

was seen towards shorter OS (HR 1.96 [95%CI 0.88e4.33] Log-

rank trend P 0.098) for patients in cluster 2.

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://linus.nci.nih.gov/BRB-ArrayTools.html
http://dx.doi.org/10.1016/j.molonc.2015.01.001
http://dx.doi.org/10.1016/j.molonc.2015.01.001
http://dx.doi.org/10.1016/j.molonc.2015.01.001


Table 1 e Patient characteristics of the primary patient set, according to CTC count and mRNA cluster, and the second independent patient set.

Patient characteristics Primary patient set Second independent patient set

No. of pts % mRNA cluster P-value CTC count P-value No. of pts % P-value

1 2 <3 �3

All patients 98 100% 36 62 74 24 35

Sex

Female 40 41% 10 30 0.060 24 16 0.004 12 34% 0.550

Male 58 59% 26 32 50 8 23 66%

Age at time of surgery

<60 35 36% 14 21 0.665 25 10 0.625 12 34% 1.000

�60 63 64% 22 41 49 14 23 66%

Presentation of metastasis

synchronous 62 63% 19 43 0.129 48 14 0.629 24 69% 0.682

metachronous 36 37% 17 19 26 10 11 31%

Primary tumor in situ at time of surgery

yes 26 27% 8 18 0.636 21 5 0.598 7 20% 0.502

no 72 73% 28 44 53 19 28 80%

Elapsed time between primary tumor and metastasis resectiona

<6 months 22 22% 7 15 0.612 19 3 0.257 6 17% 0.802

�6 months 64 65% 26 38 47 17 22 63%

CTC count

<3 74 76% 29 45 0.486 29 83% 0.482

�3 24 24% 7 17 6 17%

Primary tumor characteristics

Locationb

right hemicolon 16 16% 4 12 0.299 12 4 1.000 7 20% 0.716

left hemicolon 50 51% 17 33 38 12 18 51%

rectum 32 33% 15 17 24 8 9 26%

Tumor sizeb

T0 1 1% 1 0 1.000 1 0 1.000 0 0% 0.243

T1 0 0% 0 0 0 0 0 0%

T2 13 13% 4 9 10 3 1 3%

T3 64 65% 25 39 50 14 24 69%

T4 9 9% 3 6 7 2 7 20%

Lymph node involvementb

N0 33 34% 18 15 0.091 25 8 0.545 10 29% 0.6746

N1 29 30% 8 21 25 4 13 37%

N2 20 20% 7 13 15 5 9 26%

Dukes classificationb

A 1 1% 0 1 0.11 0 1 0.303 0 0% 0.8964

B 16 16% 10 6 11 5 5 14%

C 16 16% 6 10 14 2 5 14%

D 62 63% 19 43 48 14 24 69%

Gradeb

1 (well differentiated) 3 3% 1 2 1000 3 0 0.179 3 9% 0.2871

2 (moderately differentiated) 58 59% 23 35 41 17 18 51%

3 (poorly differentiated) 7 7% 3 4 7 0 3 9%

Neoadjuvant chemotherapyb

yes 10 10% 6 4 0.086 9 1 0.444 4 11% 0.5049

no 71 72% 22 49 54 17 19 54%

Adjuvant chemotherapyb

yes 9 9% 3 6 1000 8 1 0.676 4 11% 0.4646

no 74 76% 25 49 57 17 18 51%

Induction chemotherapy before liver resectionb

yes 52 53% 15 37 0.017 38 14 0.813 22 63% 0.4291

no 44 45% 21 23 34 10 13 37%

Site of metastasis

liver-only 89 91% 33 56 1000 68 21 0.684 32 91% 1000

liver and other sites 9 9% 3 6 6 3 3 9%

Detailed clinicopathologic characteristics of the 98 patients from the primary patient set with pathology-confirmed colorectal liver metastases

and mRNA data available, depicted according to CTC-count (<3 vs. �3, the clinically relevant prognostic cut-off level and according to mRNA

(cluster 1 vs. 2). The last column depicts the clinicopathologic characteristics of the independent second patients set, whichwere included in the

same study at a later time point and used to validate some of our findings in the primary patient set. Significant P-values as obtained by the

Fisher’s exact test are depicted in italics and P-values are depicted in bold if the value is <0.05.

a Numbers do not add up to 100% because patients undergoing primary tumor resection after liver resection, and patients who have not un-

dergone primary tumor resection at all, were left out.

b Numbers do not add up to 100% because of missing data.



Figure 2 e Cluster analysis of mRNA data. Unsupervised hierarchical clustering analysis comparing mRNA expression profiles in CellSearch-

enriched blood samples of 98 mCRC patients with available mRNA data. Each horizontal line corresponds to a gene; each vertical line represents a

patient. Red color signifies a transcript level above the median level, white color represents an intermediate level and blue color a transcript level

below the median level of the particular mRNA in all samples. Three patient clusters (1 and 2a and b) can be distinguished. Clusters 2a and b were

characterized by two gene clusters (depicted by the blue and red rectangles, respectively). CTC count as enumerated by CellSearch is depicted on

the bottom of the graph; in the ‘CTC count’ panel, the number of CTCs is represented by the size of the green bars (range 0e35), the red line

signifies the cut-off of 3 CTCs. In the “CTC count 0 vs. <3 vs. ‡3” panel, a green bar to a CTC count <3 and a red bar to a CTC count ‡3 per

30 mL blood.
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3.6. Circulating tumor load in patients without
detectable CTCs: mRNA analysis

Based on the results of our previous study in breast cancer

(Sieuwerts et al., 2009b, 2011), we hypothesized that patients

without detectable CTCs, i.e., as defined by the CellSearch

enumeration definition, could harbor tumor-specific gene

expression in the CellSearch-enriched fractions of their blood.

This circulating tumor load would nonetheless not be identi-

fied and counted as CTCs by the CellSearch enumeration pro-

cedure. To this end, we assessed whether or not the blood of

the 33 patients without detectable CTCs contained gene tran-

scripts related to circulating tumor load. For this analysis we

took an unbiased approach and employed an unsupervised hi-

erarchical clustering analysis (Figure 3) using the top 75% vari-

ably expressed genes (n ¼ 69, Supplementary Table 2) in this

cohort of the 33 patients without detectable CTCs according

to CellSearch criteria (marked in red at the bottom bar) and

30 HDs (marked in green at the bottom bar). This analysis

revealed 2 clear subgroups. Interestingly, a subgroup of pa-

tientswithout detectable CTCs according to the CellSearch sys-

tem (the HD-unlike cluster; marked in red at the top bar) was

clearly distinct from HDs and other patients without CTCs

(the HD-alike cluster; marked in blue at the top bar). These pa-

tients had high expression of epithelial genes such as KRT19
and KRT20, but also of the genes IGFBP5, AGR2, S100A16 and

LAD1, which were previously established to identify epithelial

tumor load in breast cancer patients (Sieuwerts et al., 2011).

This result strongly suggested that the blood of the HD-unlike

patients indeed contained CTCs or fragments thereof, which

were not detected by the CellSearch enumeration procedure,

but nevertheless were captured by the CellSearch Profile Kit.

To gain further insight into the possible effect of stochastic

variation between the CTC enrichment and enumeration

tubes, we also performed this analysis with patients with 1

enumerated CTC. While some of these patients cluster

together with healthy donors, probably due to stochastic vari-

ation, the majority of these patients (23 out of 31) end up in

the HD-unlike cluster (Supplementary Figure 1).

While we analyzed genes that are not or at a very low level

expressed by leukocytes, we wished to exclude the possibility

that the mRNA expression from the leukocyte background,

that is still present after EpCAM enrichment, accounted for

the clustering of HD-unlike patients with patients with detect-

able CTCs. For this, we compared the expression of PTPRC

(CD45, a leukocyte marker) between HDs, HD-unlike and HD-

like patients. We did see a higher PTPRC expression in healthy

donors compared to patients (Supplementary Figure 1), but no

difference between HD-like and HD-unlike patients (data not

shown).

http://dx.doi.org/10.1016/j.molonc.2015.01.001
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Figure 3 e Clustering of HDs and patients without detectable CTCs. Unsupervised hierarchical cluster analysis comparing mRNA gene

expression profiles in CTC-enriched fractions from 33 mCRC patients without detectable CTCs and mRNA data available for 30 HDs. Data

shown have been subjected to median normalization of each individual sample across all genes followed by median normalization of each

individual gene across all samples. Columns represent patient samples, rows represent the 69 genes that were the top 75% variably expressed

between the patients without detectable CTCs and the HDs. Red color indicates a transcript level above the median level, white color indicates a

median transcript level, and blue color indicates a transcript level below the median level of the particular mRNA in all samples. Depicted gene

clusters were identified at an average linkage correlation greater than 0.2. At the top, the HD-unlike patient cluster is indicated in red; the HD-

alike patient cluster in blue. Healthy donors (HD, green) and patients (pt, red) are depicted on the bottom of the graph.
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3.7. Identification of HD-unlike patients in an
independent patient set

To assess whether a HD-unlike patient groupwas also present

in an independent patient set, we analyzed the 34 genes that
were differentially expressed between HDs and patients

with �3 CTCs in the primary patient set and thus CTC-

specific (see above) also in the independent secondary set con-

sisting of 35 patients. We chose to do this analysis based on

the 34 CTC-specific genes, as we hypothesized that the HD-
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unlike patients were distinct from HDs and HD-like patients

due to presence of circulating tumor load. By using the 34

CTC-specific genes, we anticipated to be able to identify a sub-

group of patients without detectable CTCs but with evidence

of circulating tumor load in the independent patient set. As

described above, characteristics of the HD-unlike patients

did not differ significantly from the original set of 98 patients

(Table 1). We clustered our 16 patients with zero CTCs from

the secondary set as well as the 33 patients with zero CTCs

from the primary set with the 30 HDs to be able to view

whether patients with evidence of circulating tumor load

indeed clustered with the previously identified HD-unlike pa-

tients. Indeed, we again observed a distinction into HD-alike

and HD-unlike patients (Figure 4), and the previously identi-

fied HD-unlike patients from the primary set were again

distinguished as such. Of the 16 patients without detectable

CTCs that were added from the second patient set, three

grouped in the HD-unlike cluster independently confirming

the existence of HD-unlike patients amongst those without

detectable CTCs.
3.8. Prognosis in HD-unlike and HD-like patients

Thus, we had identified a HD-unlike patient group without

detectable CTCs according to CellSearch criteria, but with ev-

idence of circulating tumor load by CTC-specific gene
Figure 4 e Clustering of patients from the primary and secondary sets wit

hierarchical clustering analysis comparing mRNA gene expression profiles i

CTCs and QCmRNA available (33 from the primary set and 16 from the ind

median normalization of each individual sample across all genes followed b

Columns represent patient samples, rows represent genes. Red color indica

median transcript level, and blue color indicates a transcript level below th

clusters were identified at an average linkage correlation greater than 0.2. A

alike patient cluster in blue. Healthy donors (HD, green), primary patients

bottom of the graph.
expression. Next, we wished to conduct an exploratory anal-

ysis to assess whether this circulating tumor load also

conferred to a poorer prognosis compared with HD-like pa-

tients. Only 11 HD-like and 14 HD-unlike patients were evalu-

able (two patients still had the primary tumor in situ at the

time of liver resection, two patients underwent liver resection

as part of a two-stage approach and thus still had residual

liver metastases in situ after the liver resection and four did

not undergo liver resection because extensive and/or progres-

sive disease was seen during surgery). The 1-year recurrence

rate in the HD-unlike group and the HD-like group were both

36%. Likewise, no differences were seen in overall survival

(HR; 1.54, P 0.53).
3.9. CTC detection markers in HDs and patients without
detectable CTCs

Abovewe showed that a group of HD-unlike patients in whose

blood no CTCs were detected with CellSearch CTC enumera-

tion nevertheless showed evidence of circulating tumor

load. A possible explanation for the inability to enumerate

CTCs in these patients could be an insufficient expression of

epithelial markers needed for CTCs to be enumerated accord-

ing to the CellSearch criteria (the cytokeratins KRT8, KRT18

and KRT19), while sufficient EpCAM expression did enable

their capture for subsequent gene expression profiling. To
hout enumerated CTCs with healthy donors (HDs). Unsupervised

n mCRC CTC-enriched fractions from 49 patients without detectable

ependent second set) and 30 HDs. Data shown have been subjected to

y median normalization of each individual gene across all samples.

tes a transcript level above the median level, white color indicates a

e median level of the particular mRNA in all samples. Depicted gene

t the top, the HD-unlike patient cluster is indicated in red; the HD-

(pt, bright red) and secondary patients (dark red) are depicted on the

http://dx.doi.org/10.1016/j.molonc.2015.01.001
http://dx.doi.org/10.1016/j.molonc.2015.01.001
http://dx.doi.org/10.1016/j.molonc.2015.01.001


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 9 2 0e9 3 2928
explore this hypothesis, we focused on the expression levels

of the epithelial markers EPCAM and KRT8, KRT18 and KRT19

in the RNA fractions isolated from CellSearch-enriched blood

of 30 HDs, 49 patientswithout detectable CTCs (23 HD-alike, 26

HD-unlike), and 30 patients with �3 CTCs (Figure 5). The

expression levels of cytokeratins 8 and 19 significantly

differed between HDs and patients with �3 CTCs (Bonferroni

contrast; KRT8, P < 0.0001; KRT19, P < 0.0001), whilst those of

cytokeratin 18 (KRT18, P 1.000) and EpCAM (P 0.2849) did not

(Figure 5). When we tested for differences in expression be-

tween HD-alike and HD-unlike patients, those of the cytoker-

atins 8 and 19 were again significantly different, whereas

EPCAM and cytokeratin 18 were not (KRT8, P < 0.0001; KRT19,

P < 0.0001; KRT18, P 0.1411; EPCAM, P 1.0000).
4. Discussion

CTCs offer an exciting new opportunity to assess prognostic

and predictive markers repeatedly during the course of can-

cer. CTCs are presumed to represent actual metastatic tumor
E
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Figure 5 e Expression of CTC-markers in CellSearch-enriched blood from

patients with three or more CTCs. Expression levels of EPCAM, KRT8, KR

and 30 patients with three or more CTCs from the whole patient set. Expres

(CellSearch) blood fractions and are depicted as deltaCt to the median of

median, 95% confidence interval (box) and outlier (D; >1.5 and <3 inte

significance tested with KruskaleWallis test followed by post-hoc contrast
load, and may thus provide more accurate information to

guide treatment decisions than the primary tumor. After hav-

ing previously shown the feasibility of measuring a CTC-

specific gene panel in the CTCs ofmetastatic breast cancer pa-

tients (Sieuwerts et al., 2011), we show here that, using genes

clinically relevant in CRC, a similar approach can be success-

fully applied to CTCs frommCRC patients with overall a much

lower CTC count. Moreover, we show the presence of circu-

lating tumor load as suggested by epithelial gene expression

in a large subgroup of patients without detectable CTCs.

While several studies have described the expression levels

of up to 10 different genes in the blood of CRC patients

(Koyanagi et al., 2008; Terrin et al., 2008; Xi et al., 2007; Yie

et al., 2008), no work has been published on the broad-scale

molecular characterization of CTCs of mCRC patients after

CellSearch enrichment. This EpCAM-based CellSearch enrich-

ment has the significant advantage of being semi-automated,

but does not result in a pure CTC population. To still enable

reliable measurement of clinically relevant genes, we there-

fore selected, in silico, genes that are not or at a very low level

expressed by leukocytes.
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30 HDs and 49 patients without detectable CTCs compared with

T18 and KRT19 are depicted for 30 HDs, 23 HD-alike, 26 HD-unlike

sion levels were measured in RNA isolated from the EpCAM-enriched

the reference genes (GUSB, HMBS and HPRT1). Box plots represent

rquartile range,*; >3 interquartile range) expression levels. Level of

analysis. HD, healthy donor; pts, patients.
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By comparing HDs and patients with �3 CTCs, we identi-

fied 34 CTC-specific mRNAs. Based on the unsupervised clus-

tering analysis with the 34 CTC-specific mRNAs, we could

distinguish three patient clusters, one of them epatient clus-

ter 1- characterized by the absence of epithelial gene expres-

sion. Patient cluster 2a was characterized by the high

expression of genes such as FABP1, CDX1, CDH17 and

KRT20. FABP1 was previously shown to be higher expressed

in good-prognosis CRC primary tumors and metastases

(Yamazaki et al., 1999) and a marker of differentiation

(Lawrie et al., 2004) but has also been described as a useful

CTC detection marker (Smirnov et al., 2005). CDX1 has been

described as a tumor suppressor gene (Guo et al., 2004)

reducing proliferation through Cyclin D1 (Lynch et al.,

2003), and is frequently rearranged in relation to rearrange-

ments at the APC locus (Domon-Dell et al., 2003). CDH17 me-

diates cellecell adhesion in intestinal epithelial cells

(Berndorff et al., 1994), is specific to cancers of the digestive

system (Su et al., 2008) and has previously been associated

with poor prognosis (Wang et al., 2004). KRT20 is an epithelial

marker, which has also frequently been used to identify

circulating tumor load in CRC patients (Iinuma et al., 2011;

Vlems et al., 2003), but which is not included in the Cell-

Search CTC enumeration kit. Patients in cluster 2b expressed

REG1A, IGFBP5 and AGR2, of which the latter were previously

determined to be epithelial-specific in our breast cancer

studies (Sieuwerts et al., 2011), while AGR2 is also up regu-

lated in microsatellite instability-high (MSI-H) tumors (Kim

et al., 2004; Mori et al., 2004). REG1A is a gene correlated

with poor prognosis (Astrosini et al., 2008) and microsatellite

instability (Lee et al., 2008). Patients in this cluster have a

lower expression of KRT20, making its individual use as a

CTC detection marker doubtful. Noteworthy is that we did

not see a clear relation of the different clusters with CTC-

count, for which the aforementioned issues resulting in dis-

crepancies between CTC enumeration and gene expression

are the most probable explanation. Correlation with disease

free-survival and overall survival showed a trend towards

poorer prognosis in patients in cluster 2 as a whole. It should

be noted that this was an exploratory analysis and because of

the small patient groups, no correction was done for the

administration of induction chemotherapy before liver resec-

tion and clinical risk score, both known important risk fac-

tors for DFS and OS in this patient population (Ayez et al.,

2011).

Remarkably, when comparing patients without detectable

CTCs with HDs, a cluster of patients had a gene expression

profile strongly differing from that of HDs. These HD-unlike

patients were characterized by the expression of known

epithelial markers such as cytokeratins and EPCAM, but also

by the expression of four other genes previously determined

to be epithelial-specific (S100A16, AGR2, IGFBP5 and LAD1

(Sieuwerts et al., 2011)). Others have also described two of

these genes, S100A16 and AGR2, as expressed in CTCs

(Smirnov et al., 2005). Among the 30 other genes were genes

involved in focal adhesion (the collagens and Cyclin D1) and

extracellular matrix (ECM)-receptor interaction (the collagens

and VWF), among others. Also when looking at patients with

zero or one enumerated CTCs as well as in our independent

secondary patient set, a subgroup of patients was identified
with expression of epithelial marker genes in the absence of

counted CTCs. Together, the gene expression pattern of these

patients strongly suggests the presence of circulating tumor

load, CTCs or cell fragments like exosomes, which are not be-

ing detected or recognized as such by the CellSearch system in

the blood drawn in parallel for CTC enumeration. A few fac-

tors could cause this discrepancy between CTC count and

CTC molecular profile. Literature suggests that CRC cells can

lack cytokeratin 8, 18 or 19 expression (Joosse et al., 2012;

Moll et al., 1992), the markers by which a CTC is defined in

CellSearch. In breast cancer as well, we have described a

lack of cytokeratin expression for certain breast cancer sub-

types (Mostert et al., 2015), reflecting the epithelial-to-

mesenchymal (EMT)-like phenotype of these cells. A lack of

cytokeratin 8/18/19 expression would not affect the enrich-

ment of CTCs by immunomagnetic enrichment, which is

based on their EpCAM-expression. However, the lack of cyto-

keratin expression would result in these cells not being iden-

tified as epithelial cells and thus not counted as CTCs in the

subsequent enumeration step. Indeed, KRT8 and KRT19

mRNAs were significantly higher expressed in HD-unlike

than in HD-alike patients without detectable CTCs, while

this difference was not apparent for EPCAM or KRT9. EpCAM-

based immunomagnetic isolation leads to capture of about a

thousand leukocytes per 7,5 mL blood in both HDs and pa-

tients, which would explain the lack of difference in EPCAM

expression. KRT8 and KRT19, however, are only expressed by

epithelial cells, and the expression of KRT8 and KRT19 in HD-

unlike patients alludes to the presence of circulating tumor

load. The presence of this KRT mRNA expression apparently

does not always lead to the identification of CTCs by the Cell-

Search enumeration method, possibly because these cells or

cell fragments do not meet the morphologic criteria for

CTCs. To further study the possible influence of EMT on the

detection of circulating tumor load by RT-qPCR in the absence

of enumerated CTCs, it would be of great interest to measure

EMT-associated genes such as vimentin (VIM ). However,

because these genes are also abundantly expressed by leuko-

cytes (Sieuwerts et al., 2009a), we could not measure these

genes reliably in our current samples, which still contained

a leukocyte background despite the CellSearch enrichment.

Single-cell CTCs or a pure population of CTCs could circum-

vent these problems, and should thus be a major focus of

research in this field.

Other reasons for the discrepancies between CTC counts

and gene expression could be an imperfect correlation of

mRNA and protein expression and the well-known issue of

stochastic variation (Allan and Keeney, 2010). Stochastic vari-

ation leads to differences in CTC content in two blood tubes

drawn in parallel, and becomes particularly important when

highly sensitive techniques such as PCR are applied to sam-

ples containing low CTC numbers such as in this study. If

we assume the CTC enrichment and enumeration tubes to

be paired tests, the chance of the enumeration tube to contain

zero CTCs while the expected value is one (as occurs in the

CTC enrichment tube), is 0.37. The chance of finding circu-

lating tumor load in the enriched CTCs of 21 patients out of

35 patients with zero enumerated CTCs, is 0.013,making it un-

likely that stochastic variation is an important factor in our

findings. In addition, the strict morphological criteria that
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have to be met for cells to be counted as CTCs exclude the

counting of small CTCs or CTC fragments (Coumans et al.,

2010), both of which nonetheless can confer an mRNA signal.

Themethod of cell fixation is also a variable differing between

the CTC enumeration and CTC isolation method. The blood

for CTC enumeration is kept in CellSave tubes containing a

preservative enabling their storage for up to 96 h before pro-

cessing, while the blood for CTC isolation is kept in EDTA

blood and processed within 24 h. The stability of the CTC

enumeration sample has been tested and shownby themanu-

facturer. We have tested the stability of mRNA in EDTA,

showing stability for at least 24 h (Supplementary Figure 2).

Nonetheless, the difference in fixation and storage time could

theoretically confer to a difference in CTC enrichment effi-

ciency. We did not see a difference in leukocyte-specific

mRNA expression between HD-like and HD-unlike patients

(KruskaleWallis, P 0.27), and while we measure genes that

are not or at a low level expressed in leukocytes, we cannot

completely exclude an effect of the number of background

leukocytes after CTC enrichment on the measured gene

expression.

Whatever the cause, measurement of epithelial gene

expression seems to be able to detect circulating tumor load

among patients without detectable CTCs. The prognostic

value of small CTCs or CTC fragments not meeting the criteria

of CTC according to the CellSearch procedure, has recently

been described for prostate cancer (Coumans et al., 2010). In

this small study, an exploratory analysis did not show a corre-

lation of the HD-unlike profile with poor prognosis, but this

will have to be repeated in a larger study group. Exosomes

have gained the interest of researchers as they are thought

to function as crosstalk between tumor cells and themicroen-

vironment, and as such could be directly involved in the pro-

cess of metastasis. No broad consensus has been reached on

the optimal method for isolation of exosomes from blood

plasma, and no data are available on possible co-isolation of

exosomes when performing CellSearch EpCAM-based enrich-

ment of whole blood. Because CTC isolation in this study was

preceded by a Ficoll-based density gradient enrichment, it

seems unlikely that exosomes would still be present in our

samples. However, comparison of the gene expression in iso-

lated single or purified CTCs versus exosomes would be of

great interest to further increase our understanding of the

mechanism of tumor metastasis, and could provide more

insight into the source of the measured HD-unlike mRNA

expression in our patient samples.

Our CRCCTC-specific 34-gene panel enables the large-scale

characterization of CTCs despite their presence among an

excess of contaminating leukocytes. This method might in-

crease the sensitivity of CTC detection, making it more suit-

able to use in mCRC and possibly localized CRC as well. We

can also explore the value of CTCs as a surrogate biopsy ofme-

tastases and improve our insight into metastasis biology.

Moreover, CTC characterization by the CTC-specific profile

permits studies assessing the use of CTC gene transcripts as

a predictive tool to guide treatment decisions.

In conclusion, the generation of this CRC CTC-specific gene

panel enables the exploration of CTC characterization as a

novel means to further individualize cancer treatment based

on better prognostic and predictive factors.
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