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Abstract 

Clinical prediction models provide risk estimates for the presence of disease (diagnosis) or an 

event in the future course of disease (prognosis) for individual patients. Although publications 

that present and evaluate such models are becoming more frequent, the methodology is often 

suboptimal. We propose that seven steps should be considered in developing prediction 

models: 1) consideration of the research question and initial data inspection; 2) coding of 

predictors; 3) model specification; 4) model estimation; 5) evaluation of model performance; 6) 

internal validation; and 7) model presentation. The validity of a prediction model is ideally 

assessed in fully independent data, where we propose four key measures to evaluate model 

performance: calibration-in-the-large, or the model intercept (A); calibration slope (B); 

discrimination, with a concordance statistic (C); and clinical usefulness, with decision curve 

analysis (D). As an application, we develop and validate prediction models for 30-day mortality 

in patients with an acute myocardial infarction. This illustrates the usefulness of the proposed 

framework to strengthen the methodological rigor and quality for prediction models in 

cardiovascular research. 

 

Keywords: Prediction model; non-linearity; missing values; shrinkage; calibration; 

discrimination; clinical usefulness  
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Introduction 

Prediction of the presence of disease (diagnosis) or an event in the future course of disease 

(prognosis) becomes more and more important in the current era of personalised medicine. 

Improvements in imaging, biomarkers and ‘omics’ research lead to many new predictors for 

diagnosis and prognosis.  

Clinical prediction models may combine multiple predictors to provide insight into the 

relative effects of predictors in the model. For example, we may be interested in the 

independent prognostic value of inflammatory markers such as C-reactive protein for the 

clinical course and outcome of an acute coronary syndrome . Clinical prediction models may 

also provide absolute risk estimates for individual patients (2) (3). We focus here on the second 

role of such models, which are commonly developed with regression analysis techniques. 

Logistic regression analysis is most commonly used for the prediction of binary events, such as 

30-day mortality. Cox regression is most common for time-to-event data, such as long-term 

mortality. We focus on prediction models for binary events, and indicate differences with time-

to-event data where most relevant.  

We note that rigorous development and validation of prediction models is important. 

Despite a substantial body of methodological literature and published guidance on how to 

perform prediction research, most models suffer from methodological shortcomings, or are at 

least reported poorly (4) (5) (6) (7). We propose a systematic approach to model development 

and validation, illustrated with prediction of 30-day mortality in patients suffering from an 

acute myocardial infarction. We compare the performance of a simple model (including age 
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only) to a more complex model (including age and other key predictors), which are developed 

either in a small or a large data set.  

 

Case study: prediction of 30-day mortality in acute myocardial infarction 

As an illustrative case study, we consider a cohort of 40,830 patients suffering from an acute 

myocardial infarction who were enrolled in the GUSTO-I trial. The data from this trial have been 

used for many analyses, including the development of a prediction model for 30-day mortality  

and various methodological studies . We consider the development of prediction models in 

patients enrolled in the US (N= 23,034, 1,565 deaths, and a small subset with N=259, 20 

deaths). We validate these models in patients enrolled outside of the US (N=17,796, 1,286 

deaths). The first model only includes age as a continuous, linear term in a logistic regression 

analysis, while a slightly more complex model includes age, Killip class, systolic blood pressure 

and heart rate. Programming code for the analyses is available at 

www.clinicalpredictionmodels.org with R software (R Foundation for Statistical Computing, 

Vienna, Austria, www.r-project.org). The original GUSTO-I model was based on 40,830 patients 

and included 14 predictors . 

 

Seven steps to model development 

We propose seven logically distinct steps in the development of prediction models with regression 

analysis. These steps are addressed below, with more detail provided elsewhere (16). A glossary is 

provided which summarizes definitions and characteristics of terms relevant to prediction model 

development and validation (Appendix). 
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1. Problem definition and data inspection: An important preliminary step is to carefully consider the 

prediction problem. Questions to be addressed include:  

- What is the precise research question? In prediction research, we often are both interested in insight in 

what factors predict the endpoint, and in the pragmatic issue of providing estimates of the absolute risk 

for the endpoint, based on a combination of factors (17). Indeed, in the development of the GUSTO-I 

model, the title mentions ‘Predictors of ..’, suggesting a focus on insight in which prognostic factors 

predict 30-day mortality. The analysis however also describes the development of a multivariable 

prediction model, where a combination of factors predicts absolute risk with a logistic regression 

formula . For insight in the importance of predictors, effects are usually expressed on a relative scale, 

e.g. as an odds ratio (OR). For example, older age is associated with higher 30-day mortality, reflected in 

an OR of 2.3 per 10 years in GUSTO-I, with 95% confidence interval 2.2 – 2.4. In contrast, risk predictions 

are expressed as probabilities on an absolute scale between 0 and 100%. For example, predicted risks 

for 30-day mortality are 2% and 20% for 50 and 80-year-old patients, respectively. Uncertainty can be 

indicated with 95% confidence intervals. This is relevant for relative effects, but may confuse rather than 

help patients and clinicians when provided with absolute risk predictions (18). 

- What is already known about the predictors?  Literature review and close interactions between 

statisticians and clinical researchers are important to incorporate subject matter knowledge in the 

modeling process. The full GUSTO-I data set was of exceptional size, such that many modeling decision 

could reliably be guided by findings in the data. With smaller data sets, drawn from GUSTO-I, 

simulations showed that developed prediction models are unstable and produce too extreme 

predictions (11).  

- How were patients selected? Patient data used for model development are commonly collected for a 

different purpose. The GUSTO-I trial was designed to study the therapeutic effects of streptokinase and 

tissue plasminogen activator. The inclusion criteria for the trial were relatively broad, which implies that 
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the GUSTO-I patients may be reasonably representative for the population of patients with an acute MI. 

We recognize that representativeness is usually a concern when RCT data are used for prognostic 

research, but this may be outbalanced by the superior quality of the data. For prediction of risk in 

current medical practice, the GUSTO-I data are likely outdated, since accrual in the trial was over 20 

years ago.   

Another issue is how we should deal with any treatment effects in prognostic analyses. The 

treatment effect may be of specific interest, and adjustment for baseline prognostic factors has several 

advantages in the estimation of a treatment effect that is applicable to individual patients (19) (20). If 

the focus is on absolute risk prediction, treatment effects have often been ignored, also since they are 

usually relatively small compared to the effects of prognostic factors. In our analyses of the GUSTO-I trial 

we study prognostic effects without consideration of the treatment. 

 For diagnostic prediction models, we note that these should be developed in subjects suspected 

of having a particular condition (3). The selection should mimic the clinical setting, e.g. we may consider 

patients with chest pain suspected of obstructive coronary artery disease for a diagnostic prediction 

model that estimates the presence of obstructive disease . 

- Were the predictors reliably and completely measured? Many data sets are incomplete with respect to 

the values for some potential predictors. By default, patients with any missing value are excluded from 

statistical analyses (complete case analysis, or available case analysis). This is inefficient since available 

information of other predictors is lost. To solve this problem we may fill in best estimates for the missing 

values, exploiting the correlation between variables in the data set (both predictor, endpoint, and 

auxiliary variables such as calendar time and place) (22). Various statistical approaches are available to 

perform such imputation of missing values. Multiple imputation is a procedure to fill in missing values 

multiple times (typically at least 5 times) to appropriately address the randomness of the estimation 
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procedure. We recognize that imputation should be performed carefully, but is usually preferable to a 

complete case analysis (22). 

In GUSTO-I, the collection of baseline data was prospective, since it was an RCT, and the 

definition of all predictors was carefully documented in the trial protocol. This makes us confident 

regarding the quality of the data. It also limited the occurrence of missing values, which were filled in 

with a single imputation procedure considering correlations between predictor variables .   

- Is the endpoint of interest? Hard endpoints are usually preferred, such as 30-day mortality in GUSTO-I, 

which was also the primary endpoint in the trial. Another important issue is the frequency of the 

endpoint, which determines the effective sample size (rather than the total number of patients). The 

GUSTO-I data set had 2851 deaths, which allows for reliable prediction modeling, where a common rule 

of thumb is to require at least ten events per variable (EPV) (2) (12).  

 

2. Coding of predictors: Categorical and continuous predictor variables can be coded in different ways. 

Categories with infrequent occurrence may for instance be collapsed with others. In GUSTO-I, location 

of the infarction might well be coded as anterior versus other, rather than as anterior, inferior, other, 

since a location other than anterior or inferior was infrequent (3% of the patients), and did not lead to a 

better model fit (p=0.30, likelihood ratio test for improving the logistic regression model). 

Continuous predictors can often be modeled as a linear association in a regression model, at 

least as a starting point (23). The interpretation of the relative effect of a predictor requires attention for 

the scale of measurement. For example, the importance of age is easier interpreted when scaled per 

decade (OR 2.3, more than a doubling in odds per decade) than per year (OR 1.09, 9% higher odds per 

year older). Linear terms are obviously not appropriate for predictors with non-linear associations, such 

as a J-shape or U-shape. Such shapes can efficiently be modeled using restricted cubic splines (2) or 

fractional polynomials (23). These functions provide flexibility but use only few extra regression 
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coefficients. We emphasize that continuous predictors should not be dichotomized (categorization as 

below versus above a certain cut-off) in the model development phase, since valuable information is lost 

(24). In a later phase we may search for a user-friendly format of the prediction model and categorize 

some predictors (e.g. in 3, 4, or 5 categories), if the loss of predictive information is limited . 

 
3. Model specification: Various strategies may be followed to choose predictors for inclusion in the 

prediction model. Stepwise selection methods are widely used to reduce a set of candidate predictors, 

but have many disadvantages. In particular when the numbers of events are low, the selection is 

instable, the estimated regression coefficients are too extreme, and the performance of the selected 

model is overestimated (2) (10) (16) (26). In the small sample of 259 patients, age and systolic blood 

pressure were statistically significant predictors, but Killip class (p=0.31) and heart rate (p=0.92) were 

not. In the total GUSTO-I data set, the sample size was large enough to rely on statistical testing for 

identification of predictors. All 14 predictors selected for the GUSTO-I model had p-values below 0.01 . 

A related issue is how researchers should deal with assumptions in regression models, such as 

that the effect of one predictor is the same irrespective of the value of other predictors. This additivity 

assumption can be relaxed by including statistical interaction terms (2). In the full GUSTO-I data set, one 

such term was included in the prediction model (age*Killip class) . It appeared that with higher age, the 

prognostic effect of higher Killip class was less strong than for younger patients. For time to event data, 

the Cox model assumes proportionality of effects, which can be tested with interaction terms including 

time (2). 

We note that iterative cycles of testing of the importance of predictors, assumptions in the 

model, and adaptation may lead to a model that fits the data well. But such a model may provide 

predictions that do not generalize to new subjects outside the data under study (“overfitting”) (2) (16). A 

simple, robust model may not fit the data perfectly, but should be preferred to an overly fine-tuned 
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model for the specific data under study. Similarly, predictor selection should usually consider clinical 

knowledge and previous studies rather than solely rely on statistical selection methods (2) (16). 

 

4. Model estimation: Once a model is specified, regression coefficients need to be estimated. For logistic 

and Cox regression models, we commonly estimate coefficients with maximum likelihood (ML) methods. 

Some modern techniques have been developed that aim to limit overfitting of a model to the available 

data, such as statistical shrinkage techniques (27), penalized ML estimation (28), and the least absolute 

shrinkage and selection operator (LASSO) (11) (29). For the model estimated in 259 patients, we found a 

shrinkage factor of 0.82. The regression coefficients should be multiplied by that value to provide more 

reliable predictions for new patients.  

 

5. Model performance: For a proposed model, researchers need to determine the quality. Several 

performance measures are commonly used, including measures for model calibration and 

discrimination. We discuss these and measures for clinical usefulness with model validation.  

 

6. Model validity: It is important to separate internal and external validity. Internal validity of a 

prediction model refers to the validity of claims for the underlying population that the data originated 

from (‘reproducibility’) (30). Internal validation may especially address the stability of the selection of 

predictors, and the quality of predictions. Using a random sample for model development, and the 

remaining patients for validation (‘split sample validation’) is a common, but suboptimal form of internal 

validation (13). Better methods are cross-validation and bootstrap resampling, where samples are 

drawn with replacement from the development sample (2). In the small sample of 259 patients, 

bootstrapping indicated that the discriminative ability was expected to decrease from 0.82 to 0.78 in 

new patients. Such internal validation should always be attempted when developing a prediction model.  
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External validity refers to generalizability of claims to ‘plausibly related’ populations (30). 

External validation is commonly considered a stronger test for prediction models than internal 

validation, since it addresses transportability rather than reproducibility. External validity may be 

evaluated by studying patients who were more recently treated (temporal validation), from other 

hospitals (geographic validation), or treated in fully different settings (strong external validation) (30) 

(31). 

 

7. Model presentation: As a final step we propose to consider is the presentation of a prediction model, 

such that it best addresses the clinical needs. Regression formulas can be used, such as the formula 

published with the GUSTO-I model . Many paper-based alternatives are available for easy applicability of 

a model, including score charts and nomograms (2). A recent trend is to present prediction models as 

web-based calculators, or as apps for mobile phones and tablets. In the future, prediction models may 

well be embedded in decision aids and in electronic patient records to support clinical decision-making. 
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An ABCD for model validation 

Whatever the method used to develop a model, one could argue that validity is all that matters 

(7). We propose four key measures in the assessment of the validation of prediction models, 

related to calibration, discrimination and clinical usefulness (32) (33) (34) (35). The measures 

are illustrated by studying the external validity of the models developed in 259 or 23,034 

patients enrolled in GUSTO-I in the US and tested in 17,796 GUSTO-I patients from outside the 

US. 

 

A, Alpha: Calibration-in-the-large 

Calibration refers to the agreement between observed endpoints and predictions (33). For 

example, if we predict a 5% risk that a patient will die within 30 days, the observed proportion 

should be approximately 5 deaths per 100 with such a prediction. Calibration can well be 

assessed graphically, in a plot with predictions on the x-axis and the observed endpoint on the 

y-axis (Figure 1). The observed values on the y-axis are 0 or 1 (dead/alive), while the predictions 

on the x-axis range between 0 and 100%. To visualise the agreement between the observed 

and predicted values, smoothing techniques can well be used to depict the association (36). We 

can also plot the observed proportions of death for groups of patients with similar predicted 

risk , for instance by deciles of predictions. Considering such groups with their deviations from 

the ideal line makes the plot a graphical illustration of the often used Hosmer-Lemeshow 

goodness-of-fit test. We do not recommend this test for assessment of calibration. It does not 

indicate the direction of any miscalibration and only provides a p-value for differences between 

observed and predicted endpoints per group of patients (commonly deciles) (33). Such 
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grouping is arbitrary and imprecise, and p-values depend on the combination of the extent of 

miscalibration and sample size. Rather, we emphasize the older recalibration idea as proposed 

by Cox in 1958 (37). Perfect predictions should be on the ideal line, described with an intercept 

alpha (‘A’) of 0 and slope beta (‘B’) of 1. The log odds of predictions are used as the predictor of 

the 0/1 outcome, or the log(hazard) for time to event outcomes (37) (38). Imperfect calibration 

can be characterized by deviations from these ideal values. 

The intercept A relates to calibration-in-the-large, which compares the mean of all 

predicted risks with the mean observed risk. The parameter hence indicates the extent that 

predictions are systematically too low or too high. At model development observed incidence 

and mean predicted risk are equal for regression models, and assessment of calibration-in-the-

large makes no sense. At external validation, calibration-in-the-large problems have often been 

found, for example for the Framingham model in multiple ethnic groups (39), or the 

Framingham variant developed by NICE for the UK (31). If we test the prediction model 

developed in 23,034 US patients outside of the US, we note a slightly higher mortality (A=0.07, 

p=0.38; equivalent to an odds ratio of non-US vs US of exp(0.07) = 1.07, right panel of Figure 1). 

Note that no intercept is calculated if a Cox model is used at external validation (35). Other 

types of models, such as Weibull regression models, can be used to assess calibration-in-the-

large for survival models (40). 

 

B, Beta: Calibration slope 

The calibration slope B is often smaller than 1 if a model was developed in a relatively small 

data set. For the model based on 259 patients, the slope was 0.70 among the 17,796 non-US 
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patients, in line with what was expected at internal validation (shrinkage factor 0.82). For the 

model based on 23,034 patients, B was close to one at internal validation by cross-validation or 

bootstrapping , as well as at external validation in non-US patients (slope 0.99, p=0.55 for 

comparison to slope=1, Figure 1).  

 

C, Concordance statistic: discrimination  

Discrimination refers to the ability of the model to distinguish a patient with the endpoint 

(dead) from a patient without (alive). A better discriminating model has more spread between 

the predictions than a poorly discriminating model (34). Indeed, a model that predicts for all 

subjects the same predicted risk equal to the incidence shows perfect calibration, but is useless 

since it does not discriminate between patients. A validation plot showing a wide spread 

between predictions as a histogram, or between deciles of predicted risk, indicates a good 

discriminating model (Figure 1). Discriminative ability is commonly quantified with a 

concordance (c) statistic. For a binary endpoint, c is identical to the area under the receiver 

operating characteristic (ROC) curve, which plots the sensitivity (true positive rate) against 1 – 

specificity (false positive rate) for consecutive cut-offs for the predicted risk. For a time-to event 

endpoint, such as survival, the calculation of c may be affected by the amount of incomplete 

follow-up (censoring).  We note that the c statistic is insensitive to systematic errors in 

calibration, and considers the rather artificial situation of classification in a pair of patients with 

and without the endpoint. 

 In GUSTO-I, the c statistic indicates the probability that among two patients, one dying 

before 30 days, and one surviving, the patient bound to die will have a higher predicted risk 
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than the surviving patient.  The more complex prediction model had c statistics over 0.8 (0.813 

[0.802-0.824] and 0.812 [0.800-0.824] at internal and external validation, respectively). This 

performance was much better than a model which only included age (0.75 at external 

validation, left panel in Figure 1). With development in only 259 patients, the apparent c 

statistic was 0.82, but 0.78 at internal validation, and 0.80 [0.79-0.82] at external validation. 

This illustrates that the availability of a smaller data set decreases model performance at 

external validation. 

 

D: Decision curve analysis 

Calibration and discrimination are important aspects of a prediction model, and consider the 

full range of predicted risks. However, these aspects do not assess clinical usefulness, i.e. the 

ability to make better decisions with a model than without (33). If a prediction model aims to 

guide treatment decisions, a cut-off is required to classify patients as either low risk (no 

treatment) or high risk (treatment is indicated). The cut-off is a decision threshold. At the 

threshold, the likelihood of benefit, e.g. reduced mortality as a result of thrombolytic therapy, 

exactly balances the likelihood of harm, e.g. bleeding risk and financial costs. A threshold value 

of e.g. 2% indicates that death of a non-treated patient is 98:2=49 times worse than the 

complications of a bleeding incident and costs of an unnecessarily treated patient. It is usually 

difficult to define a threshold since empirical evidence for the relative weight of benefits and 

harms is often lacking. Further, some patients may be prepared to take higher risk for a possible 

benefit than others. It is therefore advised to consider a range of thresholds when quantifying 

the clinical usefulness of a prediction model (41).  
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Once a threshold has been applied to classify patients as low versus high risk, sensitivity 

and specificity are often used as measures for usefulness. Finding an optimal balance between 

these is again possible with consideration of harms and benefits of treatment, in combination 

with the incidence of the endpoint. The sum of sensitivity and specificity can only be used as a 

naïve summary indicator of usefulness, since such a sum ignores the relative weight of true 

positives (considered in sensitivity) and false positives (considered in 1 – specificity) (42). 

Recently proposed and more appropriate summary measures include the net benefit 

(NB) (41). This measure is consistent with the use of an optimal decision threshold to classify 

patients (43). The relative weight of harms and benefits is used to define the threshold, and is 

used to calculate a weighted sum of true minus false positive classifications (41).  

For GUSTO-I, we first note that the 7% overall 30-day mortality implies a maximum NB 

of 7%. This is obtained if we use a threshold of 0%. All patients are then candidates for tPA 

treatment since we assume no harm of treatment. If we appreciate that treatment involves 

some harm, the optimal decision threshold is above 0%. We find that treatment decision 

making on the basis of risk predictions from a model would give a slightly higher net benefit 

than treating everyone. For example at a threshold of 2%, we have 1225 true positive 

classifications (candidates for treatment, and died), but also 11,192 false positive classifications 

(candidates for treatment, but survived) among the 17,796 non-US patients. The net benefit is 

calculated as (1225 – 2/98 * 11,192) / 17,796 = 5.6% (Figure 2). This is only slightly better than 

treating all, where NB = (1286 – 2/98 * 16,510) / 17,796 = 5.3%, since 1286 died and 16,510 

survived overall. The difference is 0.3%. This implies that for every 1000 patients where we 

apply the prediction model, 3 extra true positives are identified without increasing the false 
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positive rate. The net benefit was higher for a higher threshold, such as 5% (19 per 1000 extra 

net true positives). Based on age only, the net benefit was virtually absent for a 2% decision 

threshold (0.04%, Figure 2), and in-between for a model based on only 259 patients (0.2%, 

Figure 2). Figure 2 illustrates that using more prognostic information than age increases the 

clinical usefulness of a model, and that a larger sample size leads to a better performing model. 

Documentation and software for decision-curve analysis is publicly available 

(www.decisioncurveanalysis.org), considering both binary and time-to-event end points. 

 

Concluding remarks 

We discussed seven steps to reliably develop a prediction model, and four measures that are 

important at model validation. There are many details to consider for each development and 

validation step, which are discussed in the methodological literature. Involvement of statistical 

experts is usually required to well develop or validate a prediction model. We provided an 

illustration on predicting 30-day mortality in patients with an acute myocardial infarction. The 

exceptional size of the US part of the GUSTO-I trial implied that overfitting was not relevant. 

Overfitting is a key problem in many prediction models. This is either because the number of 

events is small, as illustrated with the substudy in 259 patients, or because many potential 

predictors are studied, such as in genetic or other ‘omics’ analyses. 

At model validation, calibration, discrimination and clinical usefulness should be 

considered. A validation graph such as Figure 1 (or a variant with a ‘calibration belt’ (44)) is an 

important summary tool. We furthermore recognize that a key question is nowadays how we 

can quantify an increase in predictive ability by new markers. For markers we may consider 
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changes in the A, B, C and D measures related to calibration, discrimination and clinical 

usefulness. Miscalibration of predictions is common at external validation (A different from 0, B 

< 1), but we would expect this to be similar when adding a marker to a model. Some 

performance measures, such as the Net Reclassification Improvement require well calibrated 

predictions to be meaningful (45) (46). Discrimination (C) only shows modest increases for most 

currently available markers in cardiology (47). Some researchers have blamed the c statistic as 

being insensitive. One might argue that we should merely accept that markers with statistically 

significant effects, but with a modest relative effect size, will not impact tremendously on 

identifying those with or without the endpoint (48). Cost-effectiveness analyses should 

eventually guide us on the question whether an increase in performance is important enough 

to measure an additional marker in clinical practice . Measures for clinical usefulness such as 

the net benefit (which may be shown in decision curves, D) are easy to calculate, increasingly 

used, and give a first impression of effectiveness in terms of potentially better patient 

outcomes (43). The net reclassification improvement (NRI) is very similar in behavior to 

measures for discrimination (50). We hence did not discuss this quite popular measure in detail 

here. A fierce debate is ongoing on the relevance of the NRI in the evaluation of the predictive 

value of markers (42) (46) (51). 

We see a role for our proposed framework to support methodological researchers who 

develop and validate prediction models. More importantly, clinical researchers may use the 

framework to systematically and critically assess a publication where a prediction model is 

developed or validated. We anticipate that following the framework, admittedly with room for 
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refinements, will strengthen the methodological rigor and quality of prediction models in 

cardiovascular research. 
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Table 1 Illustration of seven steps for developing a prediction model with the GUSTO-I data 
(n=40,830)   

Step Specific issues GUSTO-I model 

1. Problem definition and 

data inspection 

 

Aim: predictors or predictions? 

 

 

Selection, predictor definitions 

and completeness, endpoint 

definition 

Aim is both insights in which 

predictors are important and to 

provide individualized risk 

predictions 

Prospective data collection in a 

randomized trial with a hard 

endpoint (30-day mortality). Missing 

predictor values were imputed. 

2. Coding of predictors Continuous predictors 

 

Combining categorical predictors 

Extensive checks of transformations 

for continuous predictors 

Categories kept separate, e.g. for 

location of infarction 

3. Model specification Selection of main effects? 

 

Assessment of assumptions? 

Stepwise selection; appropriate 

because of very large sample size 

Additivity checked with interaction 

terms; one included (age*Killip class) 

4. Model estimation Shrinkage included? Not necessary 

5. Model performance Appropriate measures used? Calibration and discrimination, but 

no indicators of clinical usefulness 

6. Model validation Internal validation including 

model specification and 

estimation? 

Bootstrap and 10 fold cross-

validation 

7. Model presentation Format appropriate for audience No; complex formula in appendix 
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Table 2. Overview of four measures (ABCD) for model performance. 

Aspect Measure Visualisation Characteristics 

Calibration A: alpha 

Calibration-in-the-large 

Calibration plot Intercept in plot; compares mean 
observed with mean predicted 

 B: beta 

Calibration slope 

 Regression slope in plot; related to 
shrinkage of regression coefficients 

Discrimination C statistic ROC curve Interpretation for a pair of subjects 
with and without the endpoint 

Clinical usefulness Decision curve analysis 

Net benefit 

Decision curve Net true positive classification rate by 
using a model over a range of 
thresholds 
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Appendix 

Glossary of terms relevant to prediction model development and validation 

Term Definition Characteristics  

Continuous predictors   

Restricted cubic 
splines 

Smooth functions with linear tails.  

 

One to three extra regression coefficients 
are sufficient to adequately model most 
non-linear shapes.(2) 

Fractional polynomials A combination of 1 or 2 polynomial 
transformations such as x2 + x-1, with 
powers from the set (-3, -2, -1,-
0.5,0,0.5,1,2,3). 

An automatic search can find 
transformations to adequately model non-
linear shapes, including reciprocal, 
logarithm, square root, square and cubic 
transformations.(23) 

Missing values   

Complete case analysis Analysis that considers patients with 
complete information on all predictors 
and the endpoint available 

Performed by default in statistical packages, 
but inefficient.(22) 

Multiple imputation Fill in missing values multiple times to 
allow for analyses of completed data sets 

Statistically efficient, but relies on 
assumptions of the missing value generating 
mechanism, and a correct imputation 
model.(22) 

Reliable estimation   

Events per variable The number of patients with the event of 
interest divided by the number of 
predictor variables considered. 

Indicates effective sample size, which is 
lower than the total number of patients. 
The count of predictor variables should 
include all regression coefficients 
considered for all candidate predictors (not 
only the predictors that are finally selected 
for a prediction model).(2) 

Stepwise selection Procedure to eliminate candidate 
predictors that are not relevant to making 
predictions 

Reduces the set of predictors. Many variants 
of stepwise selection are possible, all with 
disadvantages especially in small data 
sets.(16) 

Shrinkage Reduce regression coefficients towards 
zero, such that less extreme predictions 
are made. 

Improves predictions from models, 
especially in small data sets. Specific 
methods include penalized estimation, such 
as the LASSO.(11) 
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Validation   

Internal validation Assesses the validity of claims for the 
underlying population where the data 
originated from (‘reproducibility’)  

Common methods are cross-validation and 
bootstrap resampling.(2) 

External validation Assesses the validity of claims for 
‘plausibly related’ populations 
(‘generalizability, or ‘transportability’). 

Study patients who were more recently 
treated (temporal validation), from other 
hospitals (geographic validation), or treated 
in fully different settings (strong external 
validation).(30) 

Evaluation of predictions  

Calibration Agreement between observed and 
predicted risks  

Calibration is usually near perfect at model 
development, and especially of interest at 
external validation. (16) 

Discrimination Ability to distinguish a patient with the 
endpoint from a patient without  

Discrimination is a key aspect of model 
performance, but the concordance statistic  
(‘C’) refers to the artificial situation of a 
considering a pair of patients.(33) 

Evaluation of classifications  

Decision threshold Cut-off for a predicted risk to define a 
low and a high risk group 

The optimal threshold is defined by the 
balance between the harm of a false-
positive classification and the benefit of a 
true-positive classification.(41)  

Sensitivity (specificity) Probability of true-positive (true-
negative) classification among those 
with (without) the end point 

Traditional measures to quantify 
classification performance, conditional on 
knowing the endpoint.(33) 

Net benefit A weighted sum of true-positive and 
false-positive classifications 

Novel measure to quantify classification 
performance, taking a decision-analytic 
perspective.(41) 
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Figure 1 
Validation plots for clinical prediction models applied in 17,796 patients enrolled in GUSTO-I 

outside the US. The models contained the predictors age (left panel), or age plus Killip class, 

blood pressure, and heart rate (right panels, with n=259 or n=23,034 US patients for model 

development). 

A: calibration-in-the-large, calculated as the logistic regression model intercept given that the 

calibration slope equals 1; B: calibration slope in a logistic regression model with the linear 

predictor as the sole predictor; C: c statistic indicating discriminative ability. 

Triangles represent deciles of subjects grouped by similar predicted risk. The distribution of 

subjects is indicated with spikes at the bottom of the graph, stratified by endpoint (deaths 

above the x-axis, survivors below the x-axis). 

 
 
Figure 2 

Decision curves for the prediction models applied in 17,796 patients enrolled in GUSTO-I 

outside the US. Solid line: Assume no patients are treated, net benefit is zero (no true positive 

and no false positive classifications); Grey line: assume all patients are treated; Dotted lines: 

patients are treated if predictions exceed a threshold, with 30-day mortality risk predictions 

based on age only, or a prediction model with age, Killip class, blood pressure, and heart rate, 

developed in n=259 or n=23,034 US patients. The graph gives the expected net benefit per 

patient relative to no treatment in any patient (“Treat none”). The threshold defines the weight 

w for false-positive (FP, treat while patient did not die) versus true-positive (TP, treat a patient 

who died) classifications. For example, a threshold of 2% implies that FP classifications are 

valued at 2/98 of TP classifications, and w is 0.02 /(1 – 0.02) = 0.0204. The clinical usefulness of 

a prediction model can then be summarized as: NB = (TP - w FP)/N, where N is the total number 

of patients (41). 
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