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Abstract

Introduction: Tumor lymphocyte infiltration is associated with clinical response to chemotherapy in estrogen
receptor (ER) negative breast cancer. To identify variants in immunosuppressive pathway genes associated with
prognosis after adjuvant chemotherapy for ER-negative patients, we studied stage I-III invasive breast cancer
patients of European ancestry, including 9,334 ER-positive (3,151 treated with chemotherapy) and 2,334 ER-negative
patients (1,499 treated with chemotherapy).
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Methods: We pooled data from sixteen studies from the Breast Cancer Association Consortium (BCAC), and
employed two independent studies for replications. Overall 3,610 single nucleotide polymorphisms (SNPs) in 133
genes were genotyped as part of the Collaborative Oncological Gene-environment Study, in which phenotype and
clinical data were collected and harmonized. Multivariable Cox proportional hazard regression was used to assess
genetic associations with overall survival (OS) and breast cancer-specific survival (BCSS). Heterogeneity according to
chemotherapy or ER status was evaluated with the log-likelihood ratio test.

Results: Three independent SNPs in TGFBR2 and IL12B were associated with OS (P <10−3) solely in ER-negative
patients after chemotherapy (267 events). Poorer OS associated with TGFBR2 rs1367610 (G > C) (per allele hazard
ratio (HR) 1.54 (95% confidence interval (CI) 1.22 to 1.95), P = 3.08 × 10−4) was not found in ER-negative
patients without chemotherapy or ER-positive patients with chemotherapy (P for interaction <10−3). Two SNPs in
IL12B (r2 = 0.20) showed different associations with ER-negative disease after chemotherapy: rs2546892 (G > A)
with poorer OS (HR 1.50 (95% CI 1.21 to 1.86), P = 1.81 × 10−4), and rs2853694 (A > C) with improved OS (HR 0.73
(95% CI 0.61 to 0.87), P = 3.67 × 10−4). Similar associations were observed with BCSS. Association with TGFBR2
rs1367610 but not IL12B variants replicated using BCAC Asian samples and the independent Prospective Study of
Outcomes in Sporadic versus Hereditary Breast Cancer Study and yielded a combined HR of 1.57 ((95% CI 1.28 to
1.94), P = 2.05 × 10−5) without study heterogeneity.

Conclusions: TGFBR2 variants may have prognostic and predictive value in ER-negative breast cancer patients treated
with adjuvant chemotherapy. Our findings provide further insights into the development of immunotherapeutic targets
for ER-negative breast cancer.
Introduction
Breast cancer is still the leading cause of cancer-related
death in women despite improving survival rates of can-
cer patients due to earlier detection and expanded treat-
ment options [1], representing nearly 15% of cancer
deaths in women [2]. Although at least half of newly di-
agnosed patients present with early-stage breast cancer,
about 20% of these women will experience recurrence at
a distant site within 10 years of diagnosis despite chemo-
therapy and hormonal therapy options [3]. Therefore,
limitations of current therapeutic modalities, in particu-
lar for estrogen receptor negative (ER-negative) tumors
and ER-negative/progesterone receptor (PR-negative)
with low expression of human epidermal growth factor
receptor 2 (HER2) (triple-negative (TN)) tumors, have
led to search for new prognostic tools and therapy
targets.
Tumor immunoevasion is recognized as an emerging

hallmark of cancer, in addition to the tumor-promoting
inflammation [4]. Inhibition of immune response may
result from an immunosuppressive state in the tumor
microenvironment [5]. Two main types of immune
cells involved in the immunosuppression of cancer
are the regulatory T cells (Treg cells) and the mye-
loid derived suppressor cells (MDSCs). Treg cells refer
to a subset of T lymphocytes normally expressing
CD4 + CD25 + FOXP3+, which play an important role
in maintenance of self-tolerance and regulation of
immune response [6,7]. MDSCs are a heterogeneous
population of immature myeloid cells with expression of
CD11b + GR1+ including precursors of macrophages,
granulocytes and dendritic cells, which are also involved
in tumor immunosuppression [8,9]. Tumor infiltration
by immune cells, including Treg cells and MDSCs, has
been implicated in cancer patient prognosis after chemo-
therapy [10-13]. ER-negative tumors typically show
higher levels of tumor-infiltrating lymphocytes than ER-
positive tumors [14,15]. Indeed, tumor lymphocyte infil-
tration, including Treg cells has been associated with
clinical response to chemotherapy and with prognosis in
ER-negative breast cancer [12,13,15], possibly due to the
sensitivity of infiltrating lymphocytes to chemotherapeu-
tic agents [16-18].
Therefore, we hypothesized that inherited common

variation in genes of the immunosuppressive pathway,
including Treg cells and MDSCs, could modulate re-
sponse to adjuvant chemotherapy, particularly among
ER-negative breast cancer patients. We evaluated genetic
associations of single nucleotide polymorphisms (SNPs)
located in or near (within 50 kb upstream and down-
stream) 133 candidate genes of the immunosuppressive
pathway with overall survival (OS) and breast cancer-
specific survival (BCSS) in breast cancer patients of
European ancestry from 16 Breast Cancer Association
Consortium (BCAC) studies [19] and performed replica-
tions for the variants with the strongest associations
using two independent patient samples.

Methods
Study sample
We selected women of European ancestry diagnosed
with histologically verified primary invasive but not
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metastatic breast cancer (stage I to III disease) and re-
stricted to women with available age information, be-
cause age is an important risk factor for breast cancer
(flow chart of patient selection in Additional file 1:
Figure S1). The cause of death for an individual patient
was recorded by hospital, cancer registry or health of-
fices in the respective studies. The majority of the stud-
ies were all carried out in developed countries where
deaths were accurately and mandatorily reported and
causes of death had to be reported by the physicians,
thus, the vast majority of deaths were reliably captured.
Follow up was censored at 10 years from study entry.
Studies with fewer than 10 events for all-cause mortality
within this period were excluded as well as women with
missing information on ER status, adjuvant chemother-
apy, vital status and cause of death. Excluded patients
had a similar mean age as compared to patients included
in the study (55.7 versus 56.8 years), had more family
history of breast cancer (30.53% versus 23.01%), had a
lower frequency in receiving adjuvant chemotherapy
(30.56% versus 39.85%), and had similar distribution in
tumor stage, grade, size, and ER/PR/HER2 status. A total
of 11,668 patients (9,334 with ER-positive disease, 2,334
with ER-negative disease) from 16 studies in BCAC were
included (Additional file 2: Table S1a). Of these patients,
4,650 patients (3,151 with ER-positive disease and 1,499
with ER-negative disease) had received adjuvant chemo-
therapy, 7,018 patients (6,183 with ER-positive disease
and 835 with ER-negative disease) did not receive
chemotherapy.
For the replication analyses in ER-negative patients

who had received adjuvant chemotherapy, we used four
Asian studies in BCAC as one sample set and the
Prospective Study of Outcomes in Sporadic versus
Hereditary breast cancer (POSH) study (consisting of
early-onset patients of European ancestry) as a second
sample set [20,21]. As for the discovery, we included
only ER-negative patients treated with adjuvant chemo-
therapy and restricted follow-up to 10 years after diag-
nosis. Thus, 372 breast cancer patients (42 events) from
the BCAC Asian studies and 127 early-onset breast can-
cer patients (62 events) in the POSH study were in-
cluded (Additional file 2: Table S1b). All studies were
approved by the relevant ethics committees and all par-
ticipants had signed an informed consent (Additional
file 2: Table S1a and S1b).

SNP selection and genotyping
Genes related to Treg cell and MDSC pathways were
identified through an extensive and comprehensive lit-
erature review in PubMed [22-34], using the search
terms immunosuppression/immunosuppressive, regula-
tory T cells/Treg cells/FOXP3+ T cells, myeloid derived
suppressor cells/MDSCs, immunosurveillance, and tumor
escape, as only the broader immune pathways were access-
ible in the KEGG [35] and GO [36] databases. The final
candidate gene list included 133 immunosuppression-
related genes (Additional file 2: Table S2). SNPs with minor
allele frequency (MAF) >0.05 within 50 kb upstream and
downstream of each gene were identified using HapMap
CEU genotype data and dbSNP 126 as references [37].
For the BCAC studies, study samples were genotyped

for 211,155 SNPs using a custom Illumina iSelect array
(iCOGS) designed for the Collaborative Oncological
Gene-Environment Study (COGS) [19]. Of the 211,155
SNPs, 4,246 SNPs were located in the candidate genes
within a window of ±50 kb. A series of centralized qual-
ity controls after genotyping led to exclusion of 243
SNPs. The exclusion criteria included a called rate <95%
in all samples genotyped with iCOGS; being mono-
morphic; deviation from Hardy-Weinberg equilibrium
(HWE) with a P-value <10−7, and concordance in dupli-
cate samples <98%. After restricting the study sample to
the subjects eligible (n = 11,668), we additionally ex-
cluded 393 SNPs with MAF <0.05 and deviation from
HWE (P-value <10−7). A total of 3,610 SNPs passed all
quality controls and were analyzed.
We used imputed genotype data of the POSH study.

Imputation of POSH genome-wide association study
(GWAS) data (genotyped using the Illumina 660-Quad
SNP array, San Diego, CA, USA) was performed utiliz-
ing MACH 1.0 [38] based on the CEU population from
HapMap phase 2 [37] and a posterior probability of 0.9.
Imputation data were excluded based on MAF <0.01
and HWE with P-value <10−4. More details of POSH
data are described elsewhere [39].

Statistical methods
Cox proportional hazard regression analysis with right
truncation at 10 years after diagnosis was applied to
model patient survival. Each single SNP was assessed as
an ordinal variable (coded as 0, 1 and 2 respectively,
according to number of minor allele). Analyses were
adjusted for age at diagnosis and nine principal compo-
nents to account for population substructure and strati-
fied by study. To account for possible confounding due
to differences in patient characteristics, we included
tumor size, tumor grade and node status as further co-
variates. Delayed entry (left truncation) was used to re-
duce potential survival bias due to eligible patients who
died before recruitment into the study or before the
blood draw. Follow-up time was thus calculated from
the date of interview or blood draw until event or cen-
soring (date of last follow up). To determine the number
of independent SNPs for adjustment of multiple testing,
we applied the option, –indep-pairwise, in PLINK [40].
SNPs were pruned by linkage disequilibrium (LD) of
r2 < 0.2 for a window size of 50 SNPs and step size
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of 10, yielding 699 independent SNPs. The significance
threshold using Bonferroni correction corresponding to an
alpha of 5% had a P-value <7.15 × 10−5.
In the primary analysis, we modeled OS in a multivari-

ate Cox proportional hazard regression framework for
ER-negative breast cancer patients separately for those
who received adjuvant chemotherapy and those who did
not receive adjuvant chemotherapy. To investigate
whether SNP associations were restricted to ER-negative
breast cancer, we assessed heterogeneity of associations
between these two subgroups by using interaction terms
between chemotherapy and SNPs, which were evaluated
using likelihood ratio tests, comparing models with and
without the interaction term. We also assessed whether
selected SNPs associated with OS in ER-negative breast
cancer patients who received adjuvant chemotherapy
were associated with OS in ER-positive breast cancer pa-
tients treated with chemotherapy. Possible heterogeneity
in the associations of SNPs with OS for patients who
received chemotherapy according to ER status was
assessed statistically by using interaction terms between
ER status and SNPs and evaluated using likelihood ratio
tests. In secondary analysis, we evaluated SNP associa-
tions with OS separately for ER-negative/PR-negative
and TN breast cancer patients who received or did not
receive adjuvant chemotherapy, respectively. Addition-
ally, we assessed the associations of the SNPs with breast
cancer-specific survival (BCSS) in ER-negative patients
who received adjuvant chemotherapy. All statistical tests
mentioned above were two-sided and conducted using
SAS 9.2 (Cary, NC, USA).
For genes with multiple associated SNPs, HaploView

was used to examine LD between SNPs. To identify po-
tentially independently associated SNPs, we ran models
including multiple associated SNPs within a gene. The
proportional hazard assumption for the associated SNPs
was assessed according to Grambsch and Therneau [41]
and no significant deviation was noted. Cluster plots for
the most significant SNPs were examined among BCAC
samples and all showed good discrimination of three
genotypes.
Meta-analyses were performed to summarize the re-

sults from the discovery and replication studies and to
determine study heterogeneity using the I2 index and
Q-statistics [42,43] and forest plots were generated
using R (version 2.15.2).

Results
A descriptive summary of characteristics of the study
population with available follow-up information is given
in Table 1. There were 9,334 ER-positive breast cancer
patients and 2,334 ER-negative breast cancer patients, of
whom 1,904 had ER-negative/PR-negative disease and
1,007 TN disease. Of patients who had received adjuvant
chemotherapy, 3,151 had ER-positive disease (376 events),
1,499 ER-negative disease (267 events), 1,271 ER-negative/
PR-negative disease (221 events) and 692 TN disease
(111 events).
A quantile-quantile (QQ) plot for tests of associations

with OS for the 3,610 evaluated SNPs in ER-negative
breast cancer patients who received adjuvant chemother-
apy is shown in Figure 1. Three independent genetic var-
iants in the two genes, TGFBR2 and IL12B, showed
associations with OS (P <10−3) only in ER-negative
breast cancer patients who received adjuvant chemother-
apy. None of the associations was significant after Bonfer-
roni correction (P <7.15 × 10−5) (Table 2). In ER-negative
breast cancer patients who did not receive chemotherapy,
none of the SNPs were associated (P <10−3). The results
for all assessed 3,610 SNPs in ER-negative breast cancer
patients treated with adjuvant chemotherapy are summa-
rized in Additional file 2: Table S3.
In TGFBR2, the strongest association in ER-negative pa-

tients who received chemotherapy was seen for SNP
rs1367610 (G >C) (per allele hazard ratio (HR) 1.54 (95%
confidence interval (CI) 1.22, 1.95), P= 3.08 × 10−4). A re-
gional association plot for all SNPs in TGFBR2 is shown in
Figure 2. The Kaplan-Meier survival curve stratified by
genotype of SNP rs1367610 is shown in Figure 3. For the
univariate survival curves, the P-value of the log-rank test
was 2.0 × 10−4. There was no evidence of heterogeneity for
the association across eight studies with at least ten events in
ER-negative patients with chemotherapy (Additional file 1:
Figure S2). This SNP was not associated with OS in ER-
negative patients who did not receive chemotherapy (P-value
for interaction = 8.82 × 10−4) or with ER-positive patients
who received chemotherapy (P-value for interaction =
2.62 × 10−4). Variant alleles of nine further SNPs in TGFBR2
in strong LD with rs1367610 (r2 ≥ 0.97) were similarly asso-
ciated with poorer OS in ER-negative breast cancer
patients treated with chemotherapy (Additional file 2:
Table S3). After accounting for rs1367610, none of other
nine TGFBR2 variants showed association with OS.
Two independent SNPs in IL12B (r2 = 0.20) showed

associations with ER-negative disease after chemo-
therapy: rs2546892 (G > A) with poorer OS (HR 1.50
(95% CI 1.21, 1.86), P = 1.81 × 10−4), and rs2853694
(A > C) with improved OS (HR 0.73 (95% CI 0.61, 0.87),
P = 3.67 × 10−4). These SNPs were not associated with OS
in ER-negative patients who did not receive chemother-
apy (P-value for interaction: 2.53 × 10−2 for rs2546892,
1.98 × 10−2 for rs2853694), or in ER-positive patients
who received chemotherapy (P-value for interaction:
4.63 × 10−3 for rs2546892, 2.27 × 10−2 for rs2853694)
(Table 2). Three other SNPs in IL12B (rs2853697,
rs2569254 and rs3181225) in high LD with rs2546892
(r2 ≥ 0.81, Additional file 1: Figure S3a) were also associated
with OS (P <10−3) (Additional file 2: Table S3). After



Table 1 Characteristics of the BCAC European study participants

Characteristics ER-negative patients who
received chemotherapy

Percent ER-negative patients who did
not receive chemotherapy

Percent ER-positive patients who
received chemotherapy

Percent

Number of patients 1499 100.00 835 100.00 3151 100.00

Age at diagnosis (mean ± SD, years) 51.69 ± 10.85 59.46 ± 12.18 51.74 ± 9.88

Family history

No 974 64.98 457 54.73 2233 70.87

Yes 275 18.35 148 17.72 596 18.91

Missing 250 16.68 230 27.54 322 10.22

Tumor stage

1 356 23.75 401 48.02 606 19.23

2 804 53.64 259 31.02 1751 55.57

3 182 12.14 58 6.95 526 16.69

Missing 157 10.47 117 14.01 268 8.51

Histological grade

Well-differentiated 23 1.53 97 11.62 390 12.38

Moderately differentiated 293 19.55 310 37.13 1624 51.54

Poorly/undifferentiated 1183 78.92 428 51.26 1137 36.08

Tumor size

≤2 cm 664 44.30 528 63.23 1387 44.02

≥2 cm to ≤5 cm 744 49.63 271 32.46 1490 47.29

≥5 cm 91 6.07 36 4.31 274 8.70

Lymph node status

Negative 735 49.03 651 77.96 976 30.97

Positive 764 50.97 184 22.04 2175 69.03

PR status

PR-negative 1271 84.79 633 75.81 546 17.33

PR-negative HER2-negative 692 46.16 315 37.72 304 9.65

Results are presented as number of patients unless stated otherwise. BCAC, Breast Cancer Association Consortium; ER, estrogen receptor; PR, progesterone receptor;
SD, standard deviation; HER2, human epidermal growth factor receptor 2.
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adjusting for rs2853694, rs2546892 (but not the other
three SNPs) was still associated with OS, suggesting
that there are two potential independently associated
variants in IL12B.
In the secondary analysis of ER-negative/PR-negative

patients who received chemotherapy, rs1488369 (A > G)
in a further gene, CCR9, was observed to be associated
with an improved OS (HR 0.72 (95% CI 0.59, 0.87),
P = 8.63 × 10−4), besides SNPs in TGFBR2 and IL12B
(Additional file 2: Table S4). An association was not
found for ER-negative PR-negative patients without
chemotherapy (P-value for interaction = 1.78 × 10−2).
This SNP was associated (HR 0.75 (95% CI 0.63, 0.90,
P = 1.70 × 10−3) in patients with ER-negative disease
(Additional file 2: Table S3).
In TN breast cancer patients treated with chemotherapy,

rs2285440 (A > C), rs1726599 (C > A) and rs6956139
(C > A) in moderate LD (r2 ≥ 0.38) located in HDAC9
showed associations with two-fold increased HRs (HR 1.92
to 2.41, P <10−3) (Additional file 1: Figure S3b, Additional
file 2: Table S4). None of the three SNPs was associated
with OS in TN patients who did not receive chemotherapy.
SNP rs2285440 remained strongly associated (HR 2.09
(95% CI 1.06, 4.15) after adjusting for the other two SNPs.
This SNP showed a weaker association in patients
with ER-negative disease (HR 1.47 (95% CI 1.09, 1.98),
P = 1.26 × 10−2) (Additional file 2: Table S3).
Additionally, rs9863120 (A > G) located in EIF2A was

associated with a significantly improved OS in TN pa-
tients who received chemotherapy (per allele HR 0.53
(95% CI 0.38, 0.74), P = 1.87 × 10−4) but not those with-
out chemotherapy (P-value for interaction = 8.02 × 10−4)
(Additional file 2: Table S4). In patients with ER-
negative disease, this SNP showed a weaker association
(HR 0.78 (95% CI 0.65, 0.95), P = 1.43 × 10−2) (Additional
file 2: Table S3).
We also assessed the associations of the immunosup-

pressive pathway SNPs with BCSS among ER-negative



Figure 1 Quantile-quantile (QQ) plot of the observed P-values
for associations with overall survival in estrogen receptor
(ER)-negative patients who received chemotherapy. QQ plot
shows the observed -log10 P-values (y axis) versus the expected -log10
P-values (x axis) for association of 3,610 SNPs in the immunosuppression
pathway, with overall survival in ER-negative breast cancer patients who
received adjuvant chemotherapy. The black dots indicate that there is
inflation for observed associations.
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breast cancer patients who received chemotherapy. The
results were in line with the findings of the OS analysis.
The most strongly associated SNP rs1872987 in TGFBR2
with BCSS is in high LD with rs1367610 (r2 = 0.99, HR
1.69 (95% CI 1.31, 2.19), P = 6.26 × 10−5) and the same
SNPs in IL12B were found to be associated. Additionally,
an SNP, rs658230 (G >A) in PRKCQ, was associated with
an improved BCSS (per allele HR 0.70 (95% CI 0.57, 0.86),
P = 6.95 × 10−4) and an SNP rs9579165 (A >G) in FLT3
showed a poorer BCSS (per allele HR 1.87 (95% CI 1.30,
2.70), P = 7.73 × 10−4) (Additional file 2: Table S5).
We performed two independent replications for the

SNPs in TGFBR2 and IL12B specifically associated with
OS only in the ER-negative breast cancer patients
treated with adjuvant chemotherapy using the BCAC
Asian samples and the (European) POSH study. The as-
sociation of TGFBR2 rs1367610 with OS in ER-negative
patients after adjuvant chemotherapy was replicated in
both BCAC Asian samples (HR 2.18 (95% CI 0.85, 5.60),
P = 1.05 × 10−1) as well as in the POSH study (HR 1.59
(95% CI 0.94, 2.69), P = 8.39 × 10−2), and was significant
(HR 1.71 (95% CI 1.08, 2.72) in the replication samples
combined. IL12B rs2853694 and rs2546892 did not rep-
licate in the two studies. Meta-analysis of the discovery
and replication studies yielded for TGFBR2 rs1367610
an HR of 1.57 (95% CI 1.28, 1.94, P = 2.05 × 10−5) without
evidence of heterogeneity (I2 = 0%; P heterogeneity = 0.78)
(Table 3).
Discussion
In this study, we found that common variants in
TGFBR2 have prognostic value for ER-negative breast
cancer patients who received adjuvant chemotherapy.
Our hypothesis was confirmed that this was specific
for ER-negative disease, as the TGFBR2 variants were
clearly not associated with OS in ER-positive breast
cancer patients who received chemotherapy. The
TGFBR2 variants also have predictive value, as the
association with OS in ER-negative breast cancer pa-
tients was significantly differential according to treat-
ment with chemotherapy.
TGFBR2 (3p22) encodes the transforming growth fac-

tor beta (TGF-β) receptor II, which is a transmembrane
serine/threonine protein kinase receptor in the TGF-β
signaling pathway [44]. As an important cytokine in
tumor microenvironment, TGF-β has been considered
to have a dual role in tumor suppression at early stages
but then later promoting tumor invasion and metastasis
[44,45]. Specifically, TGF-β functions as a stimulator in
the tumor microenvironment to promote Treg cell pro-
liferation and immune evasion [46]. An ER-negative
tumor is normally associated with a higher level of infil-
trating lymphocytes [14,15]. TGF-β receptor II plays a
key role in the TGF-β signaling pathway, as all three
TGF-β isoforms bind to this receptor [45]. Early genetic
loss of TGFBR2 may lead to rapid tumor growth [45].
TGFBR2 has been identified as a susceptibility locus for
breast cancer risk [19] and its expression in cancer-
associated fibroblasts was found to be a prognostic
marker for pre-menopausal breast cancer [47]. Since the
immune-modulatory activities of TGF-ß have implica-
tions for many diseases, many drugs targeting the TGF-
ß signaling have been developed. Based on our findings,
it is conceivable that TGFBR2 variants may have prog-
nostic and predictive value also for the outcome of TGF-
ß signal inhibition.
TGFBR2 rs1367610 was recently reported to be pos-

sibly associated with BCSS in ER-negative patients
treated with adjuvant chemotherapy using the COGS
samples, however, replication in independent studies was
not carried out [48]. The prior COGS study examined
associations with breast cancer survival for 7,020 SNPs
in 557 genes related to immune response and inflamma-
tion [48]. There were about 70 genes (1,694 SNPs) that
overlapped between the two studies. The discovery sam-
ple of our study is somewhat smaller due to restriction
to early breast cancer (stage I to III disease) and trunca-
tion of follow up to 10 years to minimize the influence
of comorbidity on survival. However, we confirmed the
prognostic value of TGFBR2 in the independent POSH
study as well as in the Asian samples without study
heterogeneity and also showed TGFBR2 variants to be
related to both OS and BCSS.



Table 2 TGFBR2 and IL12B SNPs associated with overall survival (P-value <0.001) in ER-negative patients with chemotherapy

Chr Gene SNP Minor
allele MAF

ER-negative patients who received
adjuvant chemotherapy

ER-negative patients who did not receive adjuvant
chemotherapy

ER-positive patients who received adjuvant
chemotherapy

Cases,
number

Events,
number

HRa

(95% CI) P-value Cases,
number

Events,
number

HRa

(95% CI) P-value P heterogeneityb Cases,
number

Events,
number

HRa

(95% CI) P-value P heterogeneityc

3 TGFBR2 rs1367610 C 0.14 1499 267
1.54
(1.22, 1.95)

3.08 × 10−4 834 155
0.78
(0.55, 1.13)

0.191 8.82 × 10−4 3151 376
0.88
(0.70, 1.10)

0.251 2.62 × 10−4

5 IL12B rs2546892 A 0.17 1499 267
1.50
(1.21, 1.86)

1.81 × 10−4 835 155
0.99
(0.74, 1.33)

0.968 0.025 3151 376
0.99
(0.82, 1.20)

0.940 4.63 × 10−3

5 IL12B rs2853694 C 0.51 1499 267
0.73
(0.61, 0.87)

3.67 × 10−4 835 155
1.06
(0.85, 1.33)

0.596 0.020 3151 376
0.95
(0.82, 1.10)

0.529 0.023

aHR adjusted for age of diagnosis, tumor size, tumor grade, node status and nine principal components to account for population substructure and stratified by study. bP-value for test of heterogeneity between ER-negative
breast cancer patients who received adjuvant chemotherapy and ER-negative breast cancer patients who did not receive adjuvant chemotherapy. cP-value for test of heterogeneity between ER-negative breast cancer patients
who received adjuvant chemotherapy and ER-positive breast cancer patients who received adjuvant chemotherapy. TGFBR2, transforming growth factor, beta receptor II; SNP, single nucleotide polymorphism; ER, estrogen
receptor; Chr, chromosome; MAF, minor allele frequency; HR, hazard ratio; IL12B, interleukin 12B; and CI, confidence interval.
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Figure 2 Regional association plot for single nucleotide polymorphisms (SNPs) in TGFBR2. The regional plot shows associations with
overall survival in ER-negative breast cancer patients who received adjuvant chemotherapy, for all SNPs in TGFBR2. The y-axis shows the -log10
P-value. The purple diamond indicates SNP rs1367610, with the most significant association in TGFBR2. Chr, chromosome.
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All the top SNPs (P-value <10−3) in TGFBR2 were in
the intron of this gene. According to the UCSC genome
browser, the best-hit rs1367610 is located in the tran-
scription factor binding site, and rs1019856, rs1841528
and rs6550007 are in both the DNase I hypersensitivity
clusters and transcription factor binding sites. In
Figure 3 Kaplan-Meier survival curves of overall survival in
estrogen receptor (ER)-negative patients who had chemotherapy
for TGFBR2 rs1367610. The survival curves for TGFBR2 rs1367610
(G > C) stratified by genotype are shown for the Breast Cancer
Association Consortium European sample. The P-value of the
log-rank test was 2.0 × 10−4. The number of events and cases in
parenthesis for each genotype are GG (180/1139, blue line), GC
(80/338, green line) and CC (7/22, red line) respectively.
addition, from the HaploReg online tool, we found
that rs6550007 (r2 = 0.98 with rs1367610) may change
the binding site of forkhead box P3 (Foxp3), which is
an important transcription factor and a typical surface
marker of Treg cells (Additional file 1: Figure S4). The
top TGFBR2 SNPs associated with breast cancer OS are
not included in the GeneVar gene expression variation
database [49]. They lay in a different LD block from that
of the reported breast cancer risk-associated SNPs that
led to the identification of TGFBR2 as a breast cancer
susceptibility locus [19]. Neither rs1367610 nor SNPs in
high LD was associated with breast cancer risk in the
BCAC studies. It would be worth looking for potential
regulatory SNPs further than 50 kb away, and further
functional analyses are necessary to identify the causal
variant.
Although IL12B was found to be associated with

OS and with BCSS, also reported as possibly associ-
ated in the previous publication [48], we were not
able to replicate this finding using the two studies,
which were smaller than the discovery sample. If a
real association was overestimated in the discovery
sample, a much larger study sample would be re-
quired for replication. IL12B (5q31.1-q33.1) encodes
IL12 p40, which acts as a subunit of the heterodi-
meric structure of cytokine IL12 and IL23, two im-
portant immune cytokines in cell-mediated immunity
[50,51]. IL12 and IL23 can separately promote naïve
T cells into T helper (Th)1 cells and Th17 cells
in vivo [51], and the balance between Th17 cells and
Treg cells is a key factor in maintaining a normal
immune response [52].



Table 3 Associations of TGFBR2 and IL12B SNPs with overall survival in discovery and replication samples

Breast cancer patients TGFBR2 rs1367610 (G > C) IL12B rs2546892 (G > A ) IL12B rs2853694 (A > C)

Cases,
number

Events,
number

HR (95% CI) P-value Cases,
number

Events,
number

HR (95% CI) P-value Cases,
number

Events,
number

HR (95% CI) P-value

Discovery

ER-negative and received
chemotherapya

1499 267 1.54 (1.22, 1.95) 3.08 × 10−4 1499 267 1.50 (1.21, 1.86) 1.81 × 10−4 1499 267 0.73 (0.61, 0.87) 3.67 × 10−4

I2c = 86.7%; P heterogeneityd = 5.00 × 10−4 I2c = 78.5%; P heterogeneityd = 9.50 × 10−3 I2c = 75.9%; P heterogeneityd = 0.016

Replication

ER-negative and received
chemotherapy

BCAC Asian studiesa 372 42 2.18 (0.85, 5.60) 0.105 372 42 0.62 (0.30, 1.26) 0.187 372 42 1.03 (0.63, 1.67) 0.919

POSH studyb 127 62 1.59 (0.94, 2.69) 0.084 127 62 1.09 (0.67, 1.78) 0.715 127 62 0.87 (0.62, 1.22) 0.408

Combined replication

ER-negative and received
chemotherapy

499 104 1.71 (1.08, 2.72) 0.022 499 104 0.91 (0.61, 1.36) 0.659 499 104 0.92 (0.69, 1.21) 0.535

I2c = 0%; p heterogeneityd = 0.567 I2c = 40.4%; P heterogeneityd = 0.20 I2c = 0%; P heterogeneityd = 0.577

Combined overall

ER-negative received adjuvant
chemotherapy

1998 371 1.57 (1.28, 1.94) 2.05 × 10−5 1998 371 1.11 (0.70, 1.76) 0.653 1998 371 0.78 (0.67, 0.90) 8.00 × 10−4

I2c = 0%; P heterogeneityd = 0.781 I2c = 68.3%; P heterogeneityd = 0.04 I2c = 6.4%; P heterogeneityd = 0.344
aHR adjusted for age of diagnosis, tumor size, tumor grade, node status and principal components to account for population substructure and stratified by study. bHR adjusted for age of diagnosis, tumor size,
tumor grade, node status and metastasis status. cI2 index derived on the basis of effect estimate and variance in each study. dP-value for test of heterogeneity between studies using the DerSimonian-Laird test.
TGFBR2, transforming growth factor, beta receptor II; SNP, single nucleotide polymorphism; HR, hazard ratio; ER, estrogen receptor; BCAC, Breast Cancer Association Consortium; IL12B, interleukin 12B; CI,
confidence interval; and POSH, Prospective Study of Outcomes in Sporadic versus Hereditary Breast Cancer.
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Further genes, LZTFL1/CCR9, HDAC9 and EIF2A, as
well as PRKCQ and FLT3, were implicated to play a role
in OS and/or BCSS for ER-negative patients after
chemotherapy. These findings warrant follow up in large
patient samples, because more variants in immunosup-
pressive pathway genes are potentially associated with
prognosis of breast cancer.
Three GWAS studies to date have been carried out

to investigate inherited genetic variants associated
with overall or breast cancer-specific mortality of
breast cancer [39,53,54]. In part due to the moderate
study size involved, few associations have been iden-
tified and confirmed. On the other hand, a GWAS of
clinical outcome in breast cancer patients who re-
ceived adjuvant tamoxifen therapy identified a new
locus associated with recurrence-free survival [55].
Therefore, germ-line genetic variation associated with
breast cancer prognosis may be more easily detected
when considering specific treatment subgroups and/or
cancer subtypes.
The main strengths of this study include the uniform

genotyping procedures, stringent centralized quality
controls and large sample size, which provides us with
sufficient statistical power to detect associations be-
tween genetic variants with moderate effects and
breast cancer prognosis. The availability of centrally
collated and harmonized information on molecular
subtype, clinical treatment, and follow up in BCAC
allowed us to assess potential differential SNP associa-
tions according to chemotherapy and also according to
ER status. We used the iCOGS array with 3,610 SNPs
to comprehensively assess these pathways. However,
tagging SNP coverage varied across different candidate
genes and could not capture variation entirely across
all of the immunosuppressive pathway-related loci.
Only genotyped data but not imputed data were used.
As we focused on single SNP assessment and did not
perform multi-marker analyses, we might have not
captured all truly associated loci. Two independent
study samples were employed to replicate the most
promising findings. The replication in the Asian popu-
lation, a different ethnic group, also suggests that the
observed association with TGFBR2 variants is likely to
be real. However, further genetic and functional stud-
ies are still required to identify the causal variants and
the mechanisms underlying the associations observed
in this study.

Conclusions
Our findings indicate that elucidating genetic variants,
which influence inhibition of tumor immunity, may pro-
vide prognostic and predictive markers of chemotherapy
for ER-negative breast cancer and could lead to further
therapy targets.
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