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Abstract Throughout life, bone is continuously remodelled.
Bone is formed by osteoblasts, from mesenchymal origin,
while osteoclasts induce bone resorption. This process is tight-
ly regulated. During inflammation, several growth factors and
cytokines are increased inducing osteoclast differentiation and
activation, and chronic inflammation is a condition that initi-
ates systemic bone loss. Rheumatoid arthritis (RA) is a chron-
ic inflammatory auto-immune disease that is characterised by
active synovitis and is associatedwith early peri-articular bone
loss. Peri-articular bone loss precedes focal bone erosions,
which may progress to bone destruction and disability. The
incidence of generalised osteoporosis is associated with the
severity of arthritis in RA and increased osteoporotic vertebral
and hip fracture risk. In this review, we will give an overview
of different animal models of inflammatory arthritis related to
RA with focus on bone erosion and involvement of pro-
inflammatory cytokines. In addition, a humanised endochon-
dral ossificationmodel will be discussed, which can be used in
a translational approach to answer osteoimmunological
questions.
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RA Rheumatoid arthritis
RANKL Receptor activator of nuclear factor-kB ligand
RORγt Retinoic acid-related orphan nuclear hormone

receptor γt
SCW Streptococcal cell wall
SpA Spondyloarthritis
STAT Signal transducer and activator of transcription
TNF Tumour necrosis factor
TNFr1 TNF type 1 receptor
TRAP Tartate-resistant acid phosphatase
TYK2 Tyrosine kinase 2
Wnt Wingless
ZAP70 z-associated protein 70

Bone Destruction in Rheumatoid Arthritis

Osteoclast Differentiation in Inflammatory Arthritis

Osteoclasts are multinucleated motile cells derived from
hematopoietic stem cells during a multistep differentiation
process called osteoclastogenesis through cell-cell contact
or the secretion of local factors. Osteoclast differentiation
is regulated by two essential cytokines: the macrophage
colony-stimulating factor-1 (M-CSF) and the receptor acti-
vator of nuclear factor-kB ligand (RANKL) [1, 2]. M-CSF
is considered a crucial factor responsible for the survival
and proliferation of osteoclast precursor cells [3]. RANKL
was cloned from activated T cells as a new member of the
tumour necrosis factor (TNF) superfamily in 1997 [4].
RANKL is expressed by cells of mesenchymal origin in
bone and is a direct regulator of osteoclast formation and
bone turnover. In addition, cells of the immune system,
such as T cells [5, 6] and B cells express RANKL [2,
7, 8]. The role of RANKL as the critical osteoclastogenic
factor was demonstrated using knockout mice. These mice
developed severe osteopetrosis due to complete absence of
osteoclasts [9]. The receptor for RANKL is RANK, a type
I transmembrane protein expressed on osteoclast precursor
cells and mature osteoclasts. The binding of RANKL to
RANK is inhibited by the decoy receptor osteoprotegerin
(OPG). The RANKL/OPG ratio is an important determi-
nant for the balance in osteoclastogenesis.

Osteoclasts are designed to resorb bone by generating a
sealing zone, an actin ring made of densely packed
podosomes, beneath their ruffled border, into which they se-
crete hydrochloric acid to solubilise calcium from bone and
proteolytic enzymes, such as matrix metalloproteinases, ca-
thepsin K and phosphatases (tartrate-resistant acid phospha-
tase (TRAP)) to degrade the remaining matrix.

Increase of osteoclast numbers and activity is a hallmark of
inflammatory bone loss. The inflammatory microenvironment
promotes not only precursor recruitment from bone marrow

but also their subsequent differentiation into mature osteo-
clasts. The first indirect description of bone-resorbing cells
in RA dates back to the nineteenth century [10] and was re-
vised more than a century later by Bromley and Woolley [11]
and Leisen [12]. Osteoclast in RAwere recently identified and
characterised in more detail by Gravallese et al. [13]. It was
also demonstrated that RA patients with active disease have
greater synovial RANKL expression when compared with
those with lower disease activity, and this increase in RANKL
is accompanied by a decrease in OPG expression [14, 15],
leading to a microenvironment that favours osteoclastogene-
sis. Osteoclast precursor cells accumulate inside the dense
inflammatory synovially derived tissue located both at the
interface with bone and inside the bone erosions themselves
(synovial pannus).

Similar changes are also found in animal models of inflam-
matory arthritis, described in detail in ‘Critical Processes in
Bone Remodelling in Animal Models of Arthritis’. Studies
involving these demonstrated the crucial role of osteoclasts
in the pathogenesis of articular bone erosion in arthritis in-
duced by adjuvant [16], antigen [17], collagen [18–20], serum
transfer [21–23] and TNF [24–26]. By inducing arthritis in
osteoclast-free mice, it was shown that these mice are
completely protected from bone erosions [21, 24]. Further-
more, RANKL knockout mice are also resistant to
inflammation-induced bone loss [21].

Osteoblast Differentiation in Inflammatory Arthritis

Derived from mesenchymal stem cells, osteoblast precursor
cells require up-regulation of the Runx2 [27] and Osterix [28]
transcription factors. Maturation to a non-proliferative matrix-
producing osteoblast is marked by the expression of alkaline
phosphatase, type 1 collagen along with non-collagen proteins
such as osteocalcin, osteopontin and bone sialoprotein. Ma-
ture osteoblasts are capable of producing a characteristic ex-
tracellular collagenous matrix that subsequently becomes
mineralised by deposition of hydroxyapatite crystals
(reviewed in [29, 30]). Osteoblasts are not only responsible
for the synthesis and mineralisation of bone, but they are also
able to modulate osteoclast differentiation by stimulating os-
teoclast differentiation via production of M-CSF and RANKL
[31, 32] or inhibiting osteoclast differentiation by OPG pro-
duction [33, 34]. Other factors involved in osteoblast-
osteoclast interaction include paracrine regulators, such as
parathyroid hormone (PTH) and prostaglandin E2 (PGE2),
which increase RANKL expression by osteoblasts [35, 36].
In addition, bone remodelling relies upon two other key path-
ways that regulate osteoblast differentiation and function, the
canonical Wingless (Wnt) [37, 38] and the tumor growth
factor-beta (TGF-β)/bone morphogenetic protein (BMP)
[39] pathways.
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As described in the previous section, osteoclasts are the
principal cell type responsible for bone loss in RA [21, 40];
however, other cell types, including synovial fibroblasts and
macrophages, might also contribute to bone erosion [41, 42].
Nevertheless, osteoblast differentiation and function has re-
cently been suggested to be abnormal at sites of focal bone
erosion in RA.

A murine study using the K/BxN model of serum transfer
arthritis showed that the rate of bone formation is similar in
arthritic and non-arthritic bone, suggesting that in RA, in-
creased osteoclast resorption activity is not counterbalanced
by osteoblast driven bone formation. Furthermore, within the
arthritic bone, mineralisation of the newly formed bone in
areas adjacent to sites of inflammation is reduced compared
with bone surfaces adjacent to normal bone marrow. This
suggests that inflammatory tissue impairs osteoblast activity
[43]. Using the same K/BxNmodel of serum transfer arthritis,
inflammation and bone erosion were induced and inflamma-
tion was then allowed to resolve completely. Proceeding in-
flammation resolution a significant increase in bone formation
at previous inflammation-bone interfaces is observed, corre-
lating with altered synovial expression ofWnt signalling com-
ponents that favour anabolic signalling [44].

The Wnt signalling antagonist Dickkopf-1 (DKK-1) is in-
creased in the mouse model overexpressing human TNF-α
(hTNF.Tg). Prophylactic treatment with an antibody against
DKK-1 prevented focal erosion, an effect also due in part to
up-regulation of OPG expression in synovial tissue, suggesting
that DKK-1 can act to inhibit bone formation [45]. In line with
this, DKK-1 levels are higher in the sera of patients with RA than
in either normal controls or patients with ankylosing spondylitis.
Levels of DKK-1 correlate with disease activity in RA [46].

Other factors such as hypoxia and reduced pH in the ar-
thritic bone microenvironment also play a role in impaired
bone formation [47, 48].

Although uncommon, repair of bone erosions through for-
mation of new bone has been described in patients undergoing
conventional disease-modifying anti-rheumatic drug
(DMARDs) therapy. Moreover, the repair occurred predomi-
nantly in patients with low disease activity at the time of
follow-up [49].

Critical Processes in Bone Remodelling in Animal
Models of Arthritis

Disruption of the balance between bone resorption and forma-
tion is observed in several rheumatic diseases. Pro-
inflammatory cytokines, as IL-1, IL-6, IL-17 and TNF-α,
are able to stimulate osteoclast differentiation by expansion
of the osteoclast precursor pool, up-regulation of RANKL
expression in osteoblasts and/or in synovial fibroblasts and
by synergism with RANKL itself, normally resulting in bone

loss [26, 50, 51]. Pro-inflammatory cytokines, such as IL-1,
IL-6 and TNF-α, can be found in high concentrations in the
synovial fluid and tissues of RA patients. Chronic inflamma-
tion in RA leads to focal articular bone erosions within in-
flamed joints, as well as generalised osteoporosis. This bone
loss progresses throughout the disease, correlates with disease
severity and if untreated, it might progress to joint deformity
and fractures [52]. Pro-inflammatory cytokines, secreted pre-
dominantly by macrophages, synovial fibroblasts and lym-
phocytes within the inflamed synovium and pannus, mediate
the erosive process by enhancing osteoclast differentiation and
activity.

Animal models provide the opportunity for investigating
the pathogenesis of RA, to unravel the mechanism related
with bone resorption/formation, to identify drug targets and
test potential therapeutics. These models include induced and
genetically manipulated arthritis models. In this section, we
will describe some of the most commonly used arthritis
models (Table 1) and discuss the role of critical cytokines in
each model (Table 2).

Collagen-Induced Arthritis

The collagen-induced arthritis (CIA) model was first de-
scribed in 1977, when Trentham and his colleagues reported
that immunisation of rats with an emulsion of human, chick or
rat type II collagen (CII) in complete Freund’s adjuvant (CFA)
or incomplete Freund’s adjuvant (IFA) resulted in the devel-
opment of an erosive polyarthritis associated with an auto-
immune response against cartilage [53]. Others also described
similar protocols for induction of CIA inmice [71] and in non-
human primates [72]. One of the aspects of the immune re-
sponse in this model is the production of CII-specific antibod-
ies [73]. As in human RA, mice immunised with CII also
produce rheumatoid factor [74]. The histology of CIA resem-
bles RA and it is possible to observe cell infiltrate in synovial
tissue and destruction of bone and cartilage (Table 1).

CIA susceptibility is linked to the expression of specific
MHC class II molecules, which in mice is referred to as the
H-2 complex. Strains expressing H-2q or H-2r are susceptible
to CIA [75]. The induction of arthritis in mice of a C57BL/6
(H-2b) background [76] has facilitated the use of gene knock-
out mice and more recently by the generation of the congenic
C57BL/6N.Q strain, which expresses the arthritis-susceptible
q haplotype of the MHC class II region [77].

The induction of CIA in mice is mediated by both auto-
reactive T and B cells. Antigen-specific T cells are predomi-
nantly involved in the induction phase of the disease,
supporting the activation of collagen-specific B cells and au-
to-antibodies. These pathogenic antibodies recognise their en-
dogenous antigen in the joint resulting in complement activa-
tion, immune complex formation and triggering of a local
inflammatory response including pro-inflammatory
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cytokines, whereby monocytes, granulocytes and T cells are
attracted to the joint cavity (review in [78]) (Fig. 1; Table 2).
Several studies demonstrated the importance of T cells in the
induction of the disease in the CIA model. Holmdahl et al.
showed that administration of CII-specific T cells can induce

arthritis in naïve mice [79]. Moreover, mice deficient for
CD4+ T cells are less susceptible to CIA than wild-type mice
[80].

Antigen-Induced Arthritis

Antigen-induced arthritis (AIA) is seen after intra-articular
injection of protein antigen (e.g. methylated bovine serum
albumin) into the knee joints of animals that have previously
been immunised with the same antigen [81]. A swelling of the
injected knee appears within the following days. The histo-
pathological appearance of AIA bears similarities to RA, in-
cluding synovial lining layer hyperplasia, perivascular infiltra-
tion with lymphocytes and plasma cells, lymphoid follicles,
pannus and cartilage erosions. The erosiveness is related to the
ability of the antigen to bind cartilage and is also dependent of
the immunisation strategy used [58] (Fig. 1). However, unlike
RA, AIA is a monoarticular disease that affects only the
injected joints. When induced as described above, AIA is
considered to be an acute disease model where the initial in-
flammation subsides after approximately 1–3 weeks, depend-
ing on the immunisation strategy [58]. Moreover, by locally
re-injecting a small amount of antigen, a reactivation of

Fig. 1 Cell types and cytokines involved in bone loss and arthritis
development in different arthritis mouse models. The arthritis
development in the streptococcal cell wall-induced arthritis (SCW)
model is mediated by synovial fibroblast and innate immune cells as
macrophages, γδ T cells and polymorphonuclear cells (PMN). These
cells secrete IL-1, IL-6, IL-23 and TNF-α. No bone erosion is observed
in this acute joint inflammation model. In the antigen-induced arthritis
(AIA) model, macrophages, B cells and Tcells are responsible for disease
induction. In AIA, the main cytokines involved are IL-17A, IL-23 and
TNF-α. In this model, mild (1) to moderate (2) bone erosion can be
observed. The AIA flare-up model is driven mainly by antigen-specific

memory Tcells that activate synoviocytes leading to synovial inflammation
within hours followed by joint destruction. The collagen-induced arthritis
(CIA) is an erosive polyarthritis model associated with an auto-immune
response against cartilage. CIA is mediated by auto-reactive T and B cells
directed against type II collagen. B cells can be differentiated in plasma cells
that produce auto-antibodies. Immune complex-mediated immune
activation and complement play a role in the progression of the disease.
In addition, many pro-inflammatory cytokines such as IL-1, IL-6, IL-17A,
IL-22, IL-23 and TNF-α play a role in the development and/or progression
of CIA. The degree of bone erosion can vary between mild (1) and severe
(3)

Table 2 The contribution of pro-inflammatory cytokines to the arthritis
development in selected mouse models of arthritis

Arthritis model IL-17A IL-6 IL-1 TNF IL-23 References

CIA + + ++ + + [53, 54]

AIA + + NR + + [59]

SCW-acute - + + + + [68]

SCW-flare + + + + + [69]

K/BxN + + + + NR [70]

K/BxN serum transfer - - ++ + + [60]

SKG ++ ++ + + NR [61]

Gp130 NR ++ NR NR NR [62]

IL-1Ra-/- ++ - NR ++ NR [63]

hTNF.tg NR - ++ ++ NR [64]

BXD2 ++ [65, 66]

DNA II−/−IFN-IR−/− + + + + NR [67]

NR not reported

Clinic Rev Allerg Immunol (2016) 51:27–47 31



arthritis, called flare-up reaction can be induced. While acute
AIA involves besides T and B cells also macrophages and
immune complex formation, flare-up AIA is predominantly
mediated by memory T cells [68] (Fig. 1; Tables 1 and 2).
Susceptibility to AIA is not MHC class II restricted, and this
makes the model useful for studies involving transgenic and
gene knockout mice.

Streptococcal Cell Wall-Induced Arthritis

A single systemic injection of group A streptococcal cell wall
(SCW) peptidoglycan-polysaccharide complexes results in
the development of a chronic erosive polyarthritis in geneti-
cally susceptible female Lewis rats [82]. A variation of this
model involves the local injection of SCW directly into the
ankle joint in rats or knee joint in mice potentially followed by
systemic challenge with SCW. The initial intra-articular appli-
cation of SCW causes a local, acute TLR2/NOD2-driven in-
flammatory reaction. This acute phase is clinically evident
within 24 h after the injection, and it is histologically
characterised by neutrophil and monocyte infiltration into
the synovium (Fig. 1; Tables 1 and 2). The systemic
(intravenous) challenge with SCW causes pronounced reacti-
vation of the arthritic response in the joint [55]. This model of
‘reactivation’ results in an immunologically mediated inflam-
matory response that mimics the exacerbation of a chronic
arthritic course. The chronic erosive arthritic stage is related
to effector T cell activation and the dysregulation of macro-
phage function, characterised by accumulation of mononucle-
ar cells with release of pro-inflammatory cytokines and ero-
sive destruction of subchondral and peri-articular bone and
cartilage [57, 83, 84]. Local challenge with SCW leads to a
reactivation of arthritis and a flare-up reaction can be induced;
this results in chronic inflammation, bone erosion and carti-
lage damage without involvement of adjuvant such as CFA.

Spontaneous Models

K/BxN

K/BxNmice, which express both the T cell receptor transgene
KRN, a TCR specific for a peptide from bovine pancreatic
ribonuclease and the MHC class II molecule Ag7, develop
arthritis [85]. In this model, the T cell receptor recognises
the ubiquitous cytoplasmic enzyme glucose-6-phosphate
isomerase (GPI) and provokes, through B cell differentiation
and proliferation, high levels of anti-GPI antibodies. These
antibodies are directly pathogenic upon transfer and appear
to recognise endogenous cationic GPI, which seems to asso-
ciate preferentially with the cartilage surface, in a
complement- and FcγR-dependent manner [60, 86, 87]. This
process is known as K/BxN serum transfer model.

SKG and gp130

Sakaguchi et al. [61] described a model of arthritis that oc-
curred spontaneously (SKG). These mice harbour a mutation
of the gene encoding the Src homology 2 domain of z-
associated protein 70 (ZAP70), a key signalling molecule in
T cells [61]. The aberrant T cell receptor signalling, as a result
of aberrant ZAP-70, leads to a failure in thymic deletion and
the emergence of auto-immune T cells.

Mice with a homozygous mutation in the gp130 IL-6 re-
ceptor subunit spontaneously develop arthritis due to en-
hanced gp130-mediated STAT3 activation and develop
lymphocyte-mediated RA-like joint disease [62].

IL-1Ra−/−

Transgenic IL-1a overexpression was shown to induce chron-
ic, destructive arthritis [88]. On the other hand, IL-1 receptor
antagonist (IL-1Ra)-deficient mice spontaneously develop ar-
thritis due to an increased sensitivity to IL-1. Elimination of
IL-1Ra results in a model of arthritis dependent on T cells.
When generated on a BALB/c (but not on C57BL/6), this
mouse spontaneously develops a polyarthritis. These mice
showed synovial and peri-articular inflammation, with inva-
sion of granulation tissue and articular erosion. It also gener-
ates antibodies against type II collagen, IgG and (unlike the
SKG mouse) double-stranded DNA but not IgM rheumatoid
factor [63]. Disease is evident as early as 5 weeks of age, with
morbidity exceeding 80 % by 8 weeks.

hTNF.tg

Human TNF-α transgenic (hTNF.tg) mice, which possess a
modified human TNF-α gene, that resulted in pronounced
TNF-α overexpression developed chronic inflammatory ar-
thritis, from which no joints are spared, with a 100 % inci-
dence. The histopathology in this model is characterised by
hyperplasia of the synovium, inflammatory infiltrates in the
joint space, pannus formation and cartilage and bone destruc-
tion. hTNF.tg mice are used as a model of RA for the inflam-
matory and bone destruction phases since this arthritis by-
passes the adaptive initiation phase of arthritis [64].

BXD2

The BXD2 recombinant inbred mouse generated by inbreed-
ing the intercrossed progeny of C57BL/6J and DBA/2J mice
for more than 20 generations develop spontaneous erosive
arthritis [65]. This progresses as the mice age. These mice
show hallmarks of autoimmune disease, including increasing
titers of circulating immune complexes and correlate with
joint disease [66].
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DNase II−/−IFN-IR−/−

A large amount of chromosomal DNA is degraded during
programmed cell death and definitive erythropoiesis. DNase
II is an enzyme that digests the chromosomal DNA of apopto-
tic cells and nuclei expelled from erythroid precursor cells
after macrophages have engulfed them. DNase II−/− mice die
as embryos as a result of the constitutive production of
interferon-β (IFN-β), and this lethality can be rescued by a
deficiency of the IFN-I receptor (IFN-IR) gene. DNaseII−/
−IFN-IR−/− mice develop an inflammatory polyarthritis asso-
ciated with high levels of anti-cyclic citrullinated peptide an-
tibody and rheumatoid factor. Inadequate degradation of
mammalian DNA from erythroid precursors and apoptotic
cells by macrophages lead them to produce TNF-α, which
activates synovial cells to produce various cytokines, leading
to the development of chronic polyarthritis [67].

Pro-inflammatory Cytokines in Bone Remodelling

TNF-α

TNF-α is expressed mainly by macrophages and synovial
lining cells, as well as by activated T cells, within the RA-
inflamed joint [89]. Within the RA-inflamed joint, TNF-α is a
dominant pro-inflammatory cytokine and is able to induce the
production of other pro-inflammatory cytokines (IL-1, IL-6
and IL-8) [90].

TNF-α acts in synergy with RANKL and prompts robust
osteoclastogenesis by osteoclast precursors, via TNF type 1
receptor (TNFr1) and deletion of TNFr1 abrogates this re-
sponse [91]. TNF-α promotes the survival of differentiated
mature osteoclasts [92]. On the other hand, interactions be-
tween TNF-α and IL-1 result in osteoclastic activity indepen-
dently of RANKL [93].

TNF-α induces expression of the stromal cell product M-
CSF, which maintains survival and longevity of osteoclast
precursors. The fact that M-CSF plays a central role in TNF-
induced osteoclastogenesis is confirmed by the capacity of an
antibody directed against the M-CSF receptor, c-Fms, to
completely arrest pathological osteoclastogenesis and bone
resorption, inflammation in a serum-transfer arthritis model
[94].

Osteoclast-associated receptor (OSCAR) is a key receptor
in the process of osteoclast differentiation, expressed by oste-
oclasts at the erosion front and by mononuclear cells around
synovial microvessels. Serum levels of soluble OSCAR were
lower in RA patients than in healthy controls. Moreover,
monocytes with high OSCAR expression exhibited an en-
hanced potential to differentiate into osteoclasts. TNF-α in-
duces OSCAR expression in monocytes of RA patients,

facilitating their differentiation into osteoclasts and bone re-
sorption [95].

The relevance of TNF-α for arthritic bone destruction has
been demonstrated in several experimental models and was
finally confirmed by clinical trials. As discussed in ‘hTNF.tg’,
hTNF.tg mice developed chronic inflammatory arthritis, with
hyperplasia of the synovium, inflammatory infiltrates in the
joint space, pannus formation and cartilage and bone destruc-
tion [64]. Blocking either TNF-α (using anti-TNF-α antibod-
ies) or RANKL (using OPG.Fc) signalling in this murine
model results in reduced osteoclastogenesis and bone erosion
[25]. Low-dose TNF-α-inhibiting therapy, with adalimumab,
also reduces bone erosions by reducing the number of circu-
lating and joint-invading osteoclast precursors. This effect is
uncoupled from its anti-inflammatory action [26]. On the oth-
er hand, treatment with exogenous TNF-α increase numbers
of CD11b1 osteoclast precursor cells [96]. In CIA, the appli-
cation of TNF-specific neutralising antibodies reduced disease
activity and bone damage [97]. In mice with a FcγRIIB-
deficient C57BL/6 background, TNF-α is indispensable while
IL-17 is dispensable in the pathogenesis of arthritis. In this
model, TNF-α mediates the increase in frequency of osteo-
clast precursors in circulation and their migration into the
joints. TNF-α also decreases OPG expression, leading to up-
regulated osteoclastogenesis associated with severe cartilage
and bone destruction [98].

Although the observation in the murine models is largely
mediated by the anti-inflammatory effects of TNF inhibition,
direct reduction of osteoclast-mediated bone loss and augmen-
tation of osteoblast-mediated bone formation are potential
mechanisms by which TNF-α inhibition reduces structural
damage in RA.

The efficacy and safety of the TNF-α antagonists
infliximab, etanercept, adalimumab, golimumab and
certolizumab in RA patients were demonstrated in several
clinical studies, and these drugs are now frequently used in
clinical practice [99] (Fig. 2).

IL-1

The pro-inflammatory cytokine IL-1 belongs to a family of
cytokines that includes IL-1α, IL-1β, IL-18 and the recently
called cytokine IL-36 and IL-37. In RA joints, activated mac-
rophages and synovial fibroblasts are sources of IL-1 produc-
tion [88, 100]. IL-1 signals through its cognate receptor, IL-
1R1 complexed with IL-1RAcP. IL-1 receptor antagonist (IL-
1Ra) is a soluble protein that competes with IL-1 for binding
to the IL-1R1 receptor [101].

IL-1 stimulates bone resorption through a primary action
on osteoblasts, which are induced by IL-1 to transmit a short-
range signal that stimulates osteoclastic bone resorption [102].
In vitro, IL-1 promotes the fusion of osteoclast precursors
[103] and prolongs the survival of mature osteoclasts [104].
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IL-1 also has an important role in osteoclast activation [105].
IL-1 is able to exacerbate osteoclastogenesis by cooperating
with RANKL and M-CSF, while TNF-α is not involved in
this IL-1-stimulated osteoclast differentiation pathway [106].

Data from various animal models suggest an important role
for IL-1 in the pathogenesis of inflammatory arthritis. Over-
expression of IL-1α or IL-1β or deficiency of the soluble IL-
1Ra in arthritis models resulted in the development of disease,
which is associated with bone and cartilage destruction [63,
88, 107, 108]. Mice deficient of IL-1R1 do not develop arthri-
tis after KRN serum transfer [109].

Blocking TNF-α and IL-1 in the hTNF.tg mouse model
leads to an almost-complete remission of disease, suppression
of osteoclast differentiation, synovial inflammation, bone ero-
sion and cartilage. Articular changes caused by chronic over-
expression of TNF-α are not completely neutralised bymono-
therapies that target TNF-α, IL-1, or RANKL. Blocking
TNF-α alone reduces the numbers of osteoclasts and bone
erosion; however, recombinant IL-1Ra treatment is not as ef-
fective as TNF-α treatment [110].

In hTNF.tg mice that are deficient for IL-1, cartilage de-
struction was completely blocked and bone erosion and oste-
oclast formation partly reduced despite the presence of syno-
vial inflammation. Protection of cartilage is based on the loss
of IL-1 on hematopoietic cells. This study suggested that
TNF-mediated cartilage damage is completely and TNF-
mediated bone damage is partially dependent on IL-1, sug-
gesting that IL-1 is a crucial mediator for inflammatory

cartilage and bone degradation [111]. Moreover, lack of IL-1
completely reversed the increase osteoclast formation and
bone resorption in hTNF.tg mice and the increase levels of
RANKL in these mice. Structural parameters and osteoclast
and osteoblast numbers were indistinguishable fromwild-type
mice [112].

IL-1Ra exposure or genetic ablation of IL-1RI ablated
TNF-stimulated osteoclastogenesis, in vivo and in vitro. IL-1
directly targeted osteoclast precursors and promoted the oste-
oclast phenotype in a TNF-independent manner in the pres-
ence of permissive levels of RANKL. IL-1 is able to induce
RANKL expression by stromal cells and directly stimulate
osteoclast precursor differentiation. Thus, IL-1 mediates the
osteoclastogenic effect of TNF by enhancing stromal cell ex-
pression of RANKL and directly by stimulating differentia-
tion of osteoclast precursors [113].

In contrast to these in vivo and in vitro data, targeting IL-1
has not yet provided powerful therapeutics for the treatment of
RA [114] (Fig. 2).

IL-6

IL-6 belongs to the family of cytokines that includes IL-11,
leukemia inhibitory factor (LIF) and oncostatin M (OSM).
The signalling pathway of IL-6 includes two molecules, a
specific receptor for IL-6 and a cell-surface glycoprotein
called gp130 as a signal transducer [115]. IL-6 can signal via
its membrane bound IL-6 receptor but also via trans-

Fig. 2 New anti-rheumatic drugs targeting osteoclastogenesis and bone
loss. RANKL is a key cytokine in osteoclastogenesis and bone resorption.
Downregulation of RANKL expression by mesenchymal and T cells can
be achieved by targeting IL-6, TNF and IL-1. Also, depleting B cells with
an antibody targeting CD20 can result in lower RANKL expression.
RANKL itself can be blocked directly by denosumab. Small-molecule

tyrosine kinase inhibitors can be used to block Tcell activation. Abatacept
can interfere with osteoclast formation by targeting CD80 and CD86. IL-
17A acts on synovial fibroblast and on osteoblast, influencing osteoclast
differentiation and activity. Odanacatib inhibits cathepsin K, preventing
collagen and other matrix protein degradation during bone resorption
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signalling, meaning that IL-6 forms a complex with soluble
IL-6 receptor. This complex can bind to gp130 on the cell
membrane of cells trigging IL-6 signalling. IL-6 singling is
possible then on cells lacking IL-6 receptor on the membrane.
IL-6 is a pro-inflammatory cytokine with pleiotropic biologi-
cal activities. This cytokine is produced by a variety of cell
types in the inflamed RA bone microenvironment including
macrophages, fibroblast-like synoviocytes and chondrocytes
[116]. IL-6 contributes to the induction and maintenance of
the autoimmune process through B cell modulation and Th17
cell differentiation. In patients with RA, synovial fluid levels
[117, 118] and circulating levels of IL-6 [119] are increased.
Moreover, in synovial fluid IL-6 soluble receptor levels cor-
relate with progressive joint damage in RA [120].

Several studies tried to elucidate the role of IL-6 in bone
formation/resorption. Kurihara et al. demonstrated that IL-6
enhances osteoclast-like multinucleated cell formation in
long-term human bone marrow cultures by inducing IL-1β
release [121]. IL-6 soluble receptor triggers osteoclast-like
multinucleated cell formation by IL-6, suggesting that locally
or systemically produced soluble IL-6 receptor is involved in
IL-6-mediated osteoclast recruitment and osteoclastic bone
resorption [122]. More recently, it was demonstrated that IL-
6 regulates osteoclast differentiation by modulating its inter-
action with the soluble IL-6 receptor complex expressed by
osteoblast lineage cells, leading to an up-regulation of cyclo-
oxygenase (COX)-2-dependent prostaglandin E2 (PGE2) syn-
thesis. This, in turn, up-regulates RANKL expression while
down-regulating OPG expression, resulting in enhanced oste-
oclastogenesis [36]. In vitro, blocking of IL-6 receptor re-
duced osteoclast formation in mouse monocyte cells stimulat-
ed with either RANKL or RANKL plus TNF-α [123]. IL-6
receptor expression increases during in vitro osteoblast differ-
entiation and IL-6 function as a differentiation regulator of
preosteoblast cells but as an apoptosis initiator in more mature
cells [124].

Mice overexpressing IL-6 develop osteopenia with severe
alterations in cortical and trabecular bone microarchitecture,
as well as uncoupling of bone formation from resorption, with
decreased osteoblast and increased osteoclast number and ac-
tivity [125]. On the other hand, mice deficient in IL-6 are
protected against inflammation and bone destruction in an
AIA model [126, 127]. Moreover, IL-6 is an important medi-
ator of bone destruction in AIA once it regulates T cell pro-
duction of key osteoclastogenic cytokines and inflammation-
induced bone marrow osteoclast differentiation [128]. Mice
lacking IL-6 on the DBA/1J are completely protected from
CIA, accompanied by a reduced antibody response to type II
collagen and the absence of inflammatory cells and tissue
damage in knee joints. However, removal of IL-6 in hTNF.tg
mice does not affect the development of the disease, showing
that IL-6 plays a crucial role in the development of autoim-
mune CIA but not in the TNF-α-dependent inflammatory

arthritis (Table 2) [129]. Blocking the IL-6 receptor in a mu-
rine CIA model delayed the onset of inflammation and re-
duced joint destruction. In addition, administration of IL-6
receptor neutralising antibodies at the time of CIA induction
completely abolished the inflammatory response indicating
that IL-6 plays an important role in the initiation of arthritis
[130]. Furthermore, administration of blocking antibodies
against the IL-6 receptor in hTNF.tg mice did not inhibit in-
flammation as described by Alonzi et al. However, it signifi-
cantly reduced osteoclast formation and bone erosion [123],
by reducing the number of osteoclast precursors in bone mar-
row [131]. In several studies, performed in different arthritis
mouse models, blocking IL-6 receptor was very successful.
As a result of these studies, a humanised anti-IL-6 receptor
monoclonal antibody, tocilizumab [132], entered into clinical
trials and it has been shown to be an effective treatment in
several large phase III clinical trials in RA with rapid and
sustained improvement in disease activity, reducing radio-
graphic joint damage and improving physical function [133].
Since then several agents binding either IL-6 receptor includ-
ing sarilumab [134], ALX-0061 [135] or IL-6 sirukumab
[136], clazakizumab [137], olokizumab [138] or MEDI5117
[139] were developed and are now in clinical trials (Fig. 2).

IL-17

IL-17 family of cytokines consists of six members, IL-17A-
IL-17F. IL-17A is not only produced by Th17 but also by
other cells such as, CD8+ T cells, CD4−CD8− γδ T cells,
natural killer (NK) cells, innate lymphoid cells (ILC3) and
potentially by mast cells and neutrophils.

The presence of IL-17-producing cells, in particular
CD4+IL-17A+ cells, in blood and synovial fluid of RA pa-
tients has been correlated with inflammatory activity [140].
IL-17A levels in synovial fluids are significantly higher in
RA patients compared with osteoarthritis patients [141].

Th17 cells besides IL-17A are also able to produce other
cytokines such as IL-17F, IL-21, IL-22 and GM-CSF. Th17
cells can be differentiated from naïve CD4+ T cells by TGF-β
and IL-6 or IL-21. The pro-inflammatory cytokine IL-23 is
not required for the polarisation of Th17 cells but is crucial in
their maturation and stability [142]. The retinoic acid-related
orphan nuclear hormone receptor (ROR)γt acts as a lineage-
specific transcription factor [143]. Th17 cells express the che-
mokine receptor CCR6. Inflamed synovial cells in both SKG
arthritis and human RA also produce CCL20, the ligand for
CCR6, facilitating the migration of arthritogenic Th17 cells to
inflamed joints [144]. As mentioned above, Th17 cells are not
the only cell type able to produce IL-17. Also, γδ T cells and
potentially neutrophils are able to produce IL-17A. Equal
numbers of CD4+ Th17 and IL-17 producing γδ T cells are
found in the joints of CIA mice, and in vitro, both populations
similarly induce osteoclastogenesis. However, individual
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depletion and adoptive transfer studies revealed that, in vivo,
Th17 cells dominated with regard to bone destruction [50].

In mouse, Th17 cells directly contribute to bone damage as
they express receptor activator of RANKL and have the ability
to activate RANK expression on bone-resorbing osteoclasts
[144]. IL-17 induces differentiation of osteoclast progenitors
into mature osteoclasts in vitro, by first acting on osteoblasts,
which stimulates both COX-2-dependent PGE2 synthesis and
osteoclast differentiation factor gene expression [141]. Treat-
ment of human monocytes with only IL-17 induces osteoclas-
togenesis. This effect could be inhibited by adding OPG and
infliximab, suggesting that TNF-α and RANKL are, at least in
part, responsible for the IL-17-induced osteoclastogenesis
[145]. IL-17A gene transfer, using minicircle DNA, induced
the expansion of IL-17RA+CD11b+Gr1low osteoclast precur-
sors. The expansion preceded noticeable joint inflammation
[146]. In CIA mice overexpression of IL-17, using a viral
vector, in the knee joint promotes osteoclastic bone destruc-
tion by enhancing RANKL expression and up-regulating the
RANKL/OPG ratio in the synovium. Systemic OPG treatment
prevents joint damage induced by local overexpression of IL-
17 [147].

Interestingly, in mice lacking IL-17, CIA was markedly
suppressed. In this model IL-17 is responsible for the priming
of collagen-specific T cells and collagen-specific IgG2a pro-
duction [148]. Lubberts et al. used anti-IL-17 antibody thera-
py to demonstrate that IL-17 plays a role not only in early
stages of CIA but also during disease progression. Anti-IL-
17 antibodies therapy suppress joint inflammation and prevent
cartilage and bone destruction. Furthermore, treatment re-
duces IL-6 levels and the number of synovial IL-1-positive
and RANKL-positive cells [149]. Neutralisation of IL-17, in
a T cell-mediated model of AIA, prevents joint swelling and
significantly suppress joint inflammation, cartilage proteogly-
can depletion and reduces bone erosions. Synovial expression
of cathepsin K, RANKL, IL-1β and TNF-α was suppressed
by blocking IL-17 [59]. Transfer of IL-17-deficient donor
bone marrow into CIA DBA/1J mice inhibits development
and severity of clinical arthritis, due to reduction in the secre-
tion of the pro-inflammatory cytokines TNF-α, IL-1β and IL-
6 [150]. Mice lacking IL17-RA were similarly to IL-23-
deficient mice completely protected against CIA [151] and
from bone pathology. Mice deficient in IL-17 or IL-23 present
less bone destruction and osteoclast formation in a lipopoly-
saccharide (LPS)-induced model of inflammatory bone de-
struction, which is not induced by an autoantigen but is T cell
dependent. This suggests that IL-23-stimulated proliferation
of Th17 cells plays a pivotal role in inflammatory bone de-
struction by inducing RANKL through an IL-17 effect on
mesenchymal cells [152].

The development of spontaneous arthritis is completely
suppressed in the progeny of IL-1Ra-deficient mice when
crossed with IL-17-deficient mice, indicating that IL-17 and

IL-1 are necessary for this spontaneous development of arthri-
tis [153].

Several blockers for IL-17 pathway are been evaluated in
clinical trials as secukinumab, a fully human IgG1k anti-IL-
17A monoclonal antibody [154, 155], ixekizumab (a
humanised IgG4 anti-IL-17A monoclonal antibody) [156,
157] or brodalumab, a fully human IgG2 anti-IL-17RAmono-
clonal antibodies [158, 159] (Fig. 2). However, none of these
are yet approved for the treatment of RA.

IL-23

Interleukin-23 is a heterodimeric cytokines belonging to the
IL-12 family. IL-23 is a pro-inflammatory cytokine composed
of two subunits, p19 and p40. The p40 subunit is shared with
IL-12. IL-23 is mainly expressed by macrophages, monocytes
and DCs. The IL-23 receptor (IL-23R) is composed of IL-
12Rβ1 combined with a specific chain, IL-23R and is found
on T cells, NK cells, macrophages and DCs (reviewed in
[160]).

Several studies suggested a role of IL-23 in osteoclastogen-
esis. Chen et al. demonstrated that IL-23 drives osteoclast
development by acting directly on myeloid precursor cells
and indirectly by stimulating RANKL production in osteo-
blasts [161].

IL-23 induced osteoclastogenesis in cultures of human pe-
ripheral blood mononuclear cells (PBMCs) in the absence of
osteoblasts or exogenous RANKL. This process was inhibited
by osteoprotegerin, anti-IL-17 antibody or TNF inhibition,
indicating the involvement of RANKL, IL-17 and TNF in
IL-23-induced osteoclastogenesis [162]. Recently, a novel
pathway involving IL-23 in myeloid cells was identified as a
major mechanism for the stimulation of osteoclastogenesis in
inflammatory arthritis. In human PBMCs, IL-23 induces the
expression of MDL-1, a PU.1 transcriptional target during
myeloid differentiation, which orchestrates osteoclast differ-
entiation through activation of DNAX activating protein of
12 kDa and its ITAMs. IL-23-elicited osteoclastogenesis is
independent of the RANKL pathway and uses a unique mye-
loid DNAX activating protein of 12-kDa-associated lectin-1+/
DNAX activating protein of 12 kDa+ cell subset [163].

IL-23 induced RANKL expression by CD4+ T cells; how-
ever, the effects of IL-23 on osteoclastogenesis via T cells are
less clear because both stimulatory and inhibitory effects have
been described [164–166].

IL-23p19-deficient mice are protected from CIA. IL-23
gene-targeted mice do not develop clinical signs of disease
and are completely resistant to the development of joint and
bone pathology [58]. In vivo blockade of endogenous IL-23
activity by treatment with anti-IL-23 antibody attenuates CIA
in rats by preventing both inflammation and bone destruction
[162]. In mouse, administration of anti-IL-23p19 before clin-
ical CIA onset results in a milder disease [58].
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Systemic IL-23 exposure using hydrodynamic delivery of
IL-23minicircle DNA in vivo induced chronic arthritis, severe
bone loss and myelopoiesis in the bone marrow and spleen,
which resulted in increased osteoclast differentiation and sys-
temic bone loss [167].

Clinical studies performed with antibodies targeting the
p40 subunit of IL-12 and IL-23 (ustekinumab and
briakinumab) or the p19 subunit of IL-23 (tildrakizumab and
guselkumab) have been performed in patients with psoriasis,
ankylosing spondylitis and psoriatic arthritis [168]. However,
no studies were yet described for the application of these in the
treatment of rheumatoid arthritis (Fig. 2).

Bone Repair: New Tools, Possible Interventions
and Perspectives

Endochondral Ossification

In addition to animal models of inflammatory arthritis, there is
a high interest in humanised in vivo models to study the link
between the immune system and bone remodelling. Besides
bone erosion, two of the most important factors common to
many arthropathies are insufficient bone repair and excessive
bone formation. Interestingly, both of these processes involve
the process of endochondral ossification [169, 170], which is
insufficient in one instance and undesirable in the other. In
order to study the roles of specific cytokines on the various
stages of bone erosion, insufficient bone formation and osteo-
phyte formation new in vivo models are needed. In the field of
regenerative medicine, much interest is now focused on the
harnessing of this process to generate new bone and repair
large bone defects, often mediated by mesenchymal stem cells
(MSCs) [171–176]. This model could be harnessed to deter-
mine the effects of specific cytokines on all stages of bone
formation and erosion in a controlled humanised model of
bone formation. Indeed, the important role of TNF-α in endo-
chondral bone formation using fracture healing models has
already been established [177–179]. In this new model of
endochondral ossification, MSCs can be chondrogenically
primed in vitro in various biomaterials or as scaffold-free pel-
lets. The early stages of condensation and chondrogenic dif-
ferentiation in the presence of various cytokines can thus be
assessed in vitro. Upon subcutaneous implantation of these
constructs, they undergo complete endochondral ossification,
becoming vascularised and forming marrow-containing bone.
To date, this model has been used to demonstrate the effects of
IL-1β on the various in vitro and in vivo stages of bone for-
mation [180, 181]. We propose that the cytokines discussed in
this review can also be combined in such a system to repro-
ducibly determine their role in early chondrogenesis, bone
formation, cell migration, vascularisation, marrow formation
and ultimately, bone remodelling and erosion. This model

represents an excellent system to analyse the specific effects
of cytokines implicated in the sub-optimal repair of bone ero-
sions in RA and the unwanted formation of osteophytes in
spondyloarthritis (SpA) and osteoarthritis (OA).

Novel Therapeutic Targets

Current treatment strategies for RA include nonsteroidal anti-
inflammatory drugs (NSAIDs), corticosteroids, disease-
modifying anti-rheumatic drugs (DMARDs), such as metho-
trexate, hydroxychloroquine, leflunomide or sulfasalazine,
and biologic response modifiers (‘biologicals’). The latest
have specific mechanisms of action, including inhibiting the
action of individual cytokines, blocking cell-cell interactions
and depleting certain cell types. The therapeutic goals of all
these treatments are the clinical remission as well as structural
joint protection, prevention of erosion formation, articular car-
tilage loss and peri-articular bone loss/osteoporosis in and
around the affected joints. The suppression of inflammation
and prevention of bone loss, are closely associated with each
other, since as discussed in previous sections there are clear
evidences linking both. Inflammatory RA is associated with
reduced bone density and increased risk of fragility fractures/
osteoporosis. Furthermore, suppression of inflammation halts
generalised bone loss, thereby preventing increased fracture
risk in RA patients [182].

In ‘Pro-inflammatory Cytokines in Bone Remodelling’, we
mentioned the biologicals available that target TNF-α, IL-1,
IL-6, IL-17 and IL-23 cytokine pathways. Now, wewould like
to discuss new treatment options that have as a target: B cells
(rituximab), T cell costimulation (abatacept), JAK
(tofacitinib), RANKL (denosumab) and cathepsin K
(odanacatib).

B Cell Depletion (Rituximab)

Rituximab is a monoclonal chimeric anti-CD20 antibody that
recognises a determinant expressed on intra-medullary pre-B-
to B-memory stage lymphocytes, this antibody is used as a B
cell depletive therapy [183] (Fig. 2).

The efficiency of rituximab was demonstrated in patients
who had responded inadequately to treatment with a TNF-α
antagonist in combination with background methotrexate
therapy [184] and in those who had responded inadequately
to methotrexate therapy [183]. Rituximab improved the signs
and symptoms of RA 24 weeks after the start of the treatment.
Among patients that do not respond to TNF-α antagonist ther-
apy, progression of bone erosion and joint space narrowing on
plain radiographs was slower in patients treated with combi-
nation treatment with rituximab compared with methotrexate
alone in [185, 186].

In RA patients treated with rituximab, there was a decrease
of RANKL expression in the synovium and a decrease in
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RANK-positive pre-osteoclasts [187] (Fig. 2). Moreover, ri-
tuximab treatment reduced levels of sera markers of bone
resorption and bone formation. This reduction correlates with
the decrease in disease activity [188].

Concerning the safety profile despite the fact that ritux-
imab does not deplete fully mature plasma cells, repeated
administration of the biologic agent frequently induces a
reduction of immunoglobulins, particularly IgG, which
may carry an increased risk of infection. Reactivation of
occult hepatitis B infection has been reported in patients
with RA treated with Rituximab. Moreover, rare occur-
rence of a usually fatal central nervous system demyelin-
ating disease, progressive multifocal leukoencephalopathy
has also been reported [189].

Inhibition of T Cell Costimulation (Abatacept)

Abatacept is a recombinant fusion protein comprising the ex-
tracellular domain of human cytotoxic T lymphocyte antigen
4 (CTLA4) and a fragment of the Fc domain of human IgG1
that selectively modulates the CD80/CD86:CD28 co-
stimulatory signal required for full T cell activation. CTLA4
(CD152) is a surface protein on T lymphocytes, which nega-
tively regulates T cell activity [190].

In rats with CIA, abatacept treatment results in reduced
synovitis and osteoclasts number in the synovium [191]. In a
hTNF.tg model, CTLA4 directly inhibit the formation of os-
teoclast through binding to CD80/86 on monocytes and there-
by preventing these cells to develop to osteoclasts [192].

In patients with active RA inadequately responsive to a
TNF antagonist, abatacept in combination with background
DMARD therapy was more effective than background
DMARD therapy alone in reducing the signs and symptoms
of RA and improving physical function (Fig. 2). [193]. The
combination of Abatacept and methotrexate was also more
effective than methotrexate monotherapy in controlling the
signs and symptoms of RA and in improving physical func-
tion among patients with RA active despite methotrexate ther-
apy [194]. Moreover, in combination with background meth-
otrexate therapy, abatacept slowed significantly the progres-
sion of bone erosion and joint cartilage space narrowing on
plain radiographs [194, 195]. Abatacept treatment of inade-
quate responders to methotrexate reduces the progression of
erosions in RA patients compared with patients treated with
placebo [196].

The safety profile of abatacept is favourable, particularly in
relation to serious (including opportunistic) infections in com-
parison with anti-TNF agents [197]. The most common infec-
tions reported are pneumonia, urinary tract infection and cel-
lulitis. Antibodies to abatacept developed in ≤3 % of patients,
with no association between immunogenicity and adverse
events [198].

JAK Inhibitors (Tofacitinib)

The binding of cytokines, as for example IL-1, IL-2, IL-6, IL-
8, GM-CSF and IL-10 to their receptors activates the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT), which further translocate to the nucleus and regulate
gene expression. The JAK family comprises four members,
namely JAK1-3 and tyrosine kinase 2 (TYK2) [199].

Studies performed by Changelian P. team demonstrated
that administration of tofacitinib (CP-690,550), an inhibitor
JAK3 and JAK1, in the two arthritis animal models CIA and
adjuvant-induced arthritis, reduced the clinical and histologi-
cal manifestations of joint inflammation including bone and
cartilage damage [200]. Moreover, similar experiments per-
formed by La Branche et al., using an adjuvant-induced ar-
thritis model showed that tocacitinib decreases edema, inflam-
mation and suppress osteoclast-mediated structural damage to
arthritic joints, being this secondary to a decrease in RANKL
production [201]. Tofacitinib reduces metalloproteinase and
interferon-regulated gene expression in rheumatoid synovial
biopsies, and clinical improvement correlates with reductions
in STAT1 and STAT3 phosphorylation [202]. Others suggest a
role for JAKs in the differentiation of human dendritic cells,
once tofacitinib decreases CD80/CD86 expression and T cell
stimulatory capability through suppression of type I IFN sig-
nalling [203].

In humans, the efficiency of tofacitinib was demonstrated
in different clinical trials and is the first small molecule ap-
proved by the US Food and Drug Administration (FDA) for
the treatment of RA (Fig. 2). Clinical trials demonstrated that
tofacitinib has comparable efficacy with TNF-α inhibitor
treatment in patients with RA under methotrexate treatment
[204], and that tofacitinib in combination with methotrexate is
also an effective treatment for TNF non-responders [205]. In
patients who had not previously received methotrexate,
tofacitinib monotherapy was superior to methotrexate in re-
ducing signs and symptoms of RA and inhibiting the progres-
sion of structural joint damage [206]. Moreover, several stud-
ies demonstrated that tofacitinib has a sustained efficacy in the
treatment of RA patients who have an inadequate response to
methotrexate, etanercept, infliximab or adalimumab [69, 207,
208].

Relative to the safety profile of tofacitinib, treatment with
this inhibitor has been associated with an increased risk of
serious infections, infestations, malignancy and lymphoma.
Frequently, patients had an increase in both low-density and
high-density lipoprotein cholesterol, alanine aminotransfer-
ase, aspartate aminotransferase and serum creatinine levels
and an reduction in neutrophil counts [199].

Several other JAK inhibitors are being developed with the
aim to treat RA, among them some are in preclinical, as
filgotinib (a JAK1/2 inhibitor, GLPG0634) [209], AG490 (a
JAK2 inhibitor) [210], CEP-33779 (a JAK2 inhibitor) [211] or
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already in clinical development, as baricitinib (a JAK1/2 in-
hibitor, LY-3009104 or INCB028050) [212, 213] and
decernotinib (a selective JAK3 inhibitor, VX-509) [214].

Anti-RANKL (Denosumab)

Denosumab (formerly known as AMG162) is a humanised
IgG2 monoclonal antibody that inhibits RANKL activity
and has been studied in clinical trials in patients with osteo-
porosis resulting in strongly suppressed bone resorption, by
inhibiting the activation, proliferation and survival of osteo-
clasts [215].

In a study in RA patients, there was no evidence of an effect
of denosumab on joint space narrowing or on disease activity.
Addition of twice-yearly injections of denosumab to ongoing
methotrexate treatment inhibited structural damage evident on
magnetic resonance imaging, produced a sustained decrease
in markers of bone turnover and resulted in increased bone
mineral density, with no increase in the rates of adverse events
as compared with placebo [216] (Fig. 2).

Patients receiving methotrexate for erosive RA treated in
combination with denosumab were protected against erosion,
and not only prevented bone loss but increased hand bone
mineral density [217].

The rate of hospitalised infection among RA patients re-
ceiving denosumab concurrently with biologic agents for RA
was not increased compared with those receiving zoledronate
[218].

Cathepsin K Inhibitor (Odanacatib)

Cathepsin K is selectively expressed in osteoclasts and syno-
vial fibroblasts and is secreted to degrade collagen and other
matrix proteins during bone resorption.

Mutations in the cathepsin K gene are linked to
pycnodysostosis, an autosomal recessive osteochondrodysplasia
characterised by osteosclerosis, bone fragility and decreased
bone turnover [219].

In RA patients, serum levels of cathepsin K were elevated
and correlated with radiological destruction [220]. Moreover,
rheumatoid factor positivity is associated with increased joint
destruction and up-regulation of cathepsin k gene expression
in the peripheral blood in patients treated with methotrexate
[221].

The rationale for cathepsin K inhibition is that it will inhibit
a protease and affect matrix degradation rather than osteoclast
differentiation or apoptosis. This means that the number of
osteoclasts and their function should not be reduced. This
may allow osteoclast to osteoblast communication that con-
tributes to maintaining bone formation, while suppressing
bone resorption.

Indeed, animal studies demonstrated that cathepsin K inhi-
bition reduces bone resorption without inhibiting bone

formation [222, 223]. Deletion of cathepsin K in a hTNF.tg
model results in reduced area of bone erosion although cathep-
sin K did not completely protect against inflammatory bone
lesions [224]. In CIA mice, inhibition of cathepsin K delays
the onset and reduces the disease severity, bone erosion and
cartilage degradation [225].

Odanacatib is designed to avoid uptake by lysosomes
(Fig. 2). The efficiency of odanacatib in osteoporosis treat-
ment has been evaluated. Both phases 2 and 3 studies have
been completed and fracture reduction has been demonstrated
[226–228]. The report of the pivotal phase 3 fracture trial
called The Long-Term Odanacatib Fracture Trial (LOFT),
with the background and study design of fracture end point
trial and baseline characteristics of its participants was recent-
ly described [226]. The results were presented last year but are
still not fully published [229]. In the LOFT trial, odanacatib
significantly reduced the risk of three types of osteoporotic
fractures compared with placebo in the primary efficacy anal-
ysis, and also reduced the risk of the secondary endpoint of
clinical vertebral fractures. The rates of adverse events overall
in LOFT were generally balanced between patients taking
odanacatib and placebo; however, morphea-like skin lesions
and atypical femoral fractures occurred more often in the
Odanacatib group than in the placebo group.

To our knowledge, there are no clinical studies about the
possible application and efficacy of odanacatib for the treat-
ment of RA; however, based in preclinical studies in animals
and in the data obtained in the clinical trials for osteoporosis is
reasonable to speculate about a positive outcome of the use of
this inhibitor in the treatment of RA.

Concluding Remarks

Osteoclasts have been recognised as the critical bone-
resorbing cells. Studies in arthritis models have revealed the
importance of many pro-inflammatory cytokines that can in-
fluence the activity of these cells directly or indirectly. The
RANKL-RANK-OPG system is critical in the differentiation
and activation of osteoclasts and many of the pro-
inflammatory cytokines produced during persistent joint in-
flammation act via this pathway in the bone-resorbing pro-
cess. Moreover, new data may indicate also RANKL-
independent osteoclastogenesis for TNF-α and IL-23. The
different animal models reflect different aspect of the patho-
genesis of arthritis also in terms of cellular interactions and
mediators involved in osteoclast activation and bone erosion.
From these in vivo studies, the list of potential therapeutic
options to treat RA inflammation including the bone-
resorbing process is growing but the real proof needs to come
from clinical trials. Humanised models to study bone forma-
tion and erosion might be useful to fulfil the gap between
mouse and human studies. A real challenge for the future is
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how to repair damaged bone after controlling the inflammato-
ry destructive process. New options via modulation of theWnt
signalling and the TGF-β/BMP pathway and perhaps the bal-
ance between IL-23, IL-17 and IL-22 might be a promising
way to go; however, further research is needed on how to
stimulate osteoblast activity after resolving inflammation.
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