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Introduction
Most of the discoveries from gene expression data are driven 
by a single study claiming an optimal subset of genes that 
play a key role in a specific disease within a particular clini-
cal setting: diagnostic, prognostic, or response to treatment. 
However, poor agreement between the results of differentially 
expressed gene analysis from different gene expression experi-
ments with a similar research question has been reported,1–4 
which is possibly due to the well-known “curse of dimension-
ality” in microarray data.5

Meta-analysis of the available datasets potentially helps 
in getting reliable results so that a real-life application may 
be more successful. Given the costs of experiments and the 
public availability of datasets, combining existing information 
from multiple gene expression experiments is an efficient tool 
to increase statistical power and to obtain more generalizable 
results. Guidelines in conducting a meta-analysis of micro
array gene expression studies have been offered by Ramasamy 
et  al.6 and recently by Gan et  al.7 to specifically combine 
Affymetrix-based datasets. The proposed meta-analysis tech-
niques have found their application in gene expression studies, 
eg, by Yi and Park,8 Li and Gosh,9 and Chang et al.10, as well 
as their application to find promising biomarkers.11,12

The common goal of a meta-analysis is to increase the 
precision of the effect estimate. A cumulative meta-analysis 
combines studies in chronological order so that the change of 
the effect size estimate can be observed when a study is added 
to the analysis.13 However, in general, there is no adjustment 
for repeatedly testing the null hypothesis; nor can the power 
of the statistical analysis be quantified. As an alternative, 
sequential meta-analysis (SMA) has been proposed. SMA is 
not commonly applied yet, but it can be an efficient decision-
making tool.14 In an SMA, we are able to see whether we 
already have enough evidence to draw a conclusion, a property 
that an “ordinary” meta-analysis does not have. This may be 
particularly useful if a series of experiments have already been 
done, to decide to start a new study or not and potentially 
save resources.

This study focuses on the application of SMA to find 
significant gene expression signatures across a number of 
microarray experiments. The sequential method in this study 
is applied to evaluate whether accumulated samples already 
show enough evidence for a certain effect size or whether more 
experiments should be initiated. Application of an SMA is 
illustrated by an example in acute myeloid leukemia (AML). 
We incorporated the between-study variance in the SMA to 
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adjust for the different nature of the experiments, such as the 
experimental setting and sample characteristics.

Methods
We describe the details of the proposed approach in this sec-
tion and summarize them in Figure 1. We distinguished three 
major steps, namely data collection, data preparation, and data 
analysis. Raw gene expression datasets are obtained either as 
available data from different laboratories and/or from a sys-
tematic search in the online repositories. The raw datasets are 
then preprocessed prior to the data analysis. Finally, SMA is 
applied to combine the gene expression studies. As an illustra-
tion, we apply the proposed approach to find genes that are 
differentially expressed between normal controls and patients 
with AML. All statistical analyses described in this section 
were performed in R software.

Step 1: Data collection. In addition to finding a gene 
signature list, the sequential approach that was applied in this 
example also acts as a tool to evaluate the necessity of the next 

prospective experiment. A new experiment needs to be per-
formed when we have not decided yet for all or at least a sub-
stantial number of observed genes to be either differentially or 
nondifferentially expressed, due to insufficient evidence from 
the experiments done so far to draw a conclusion for each 
gene. The datasets may be combined from different experi-
ments/laboratories and/or collected from systematic search in 
online repositories. We recommend using raw data to reduce 
the source of variability due to different preprocessing pro-
cedures. We used the downloaded gene expression datasets 
from ArrayExpress by using acute, myeloid, and leukemia as 
keywords. We included experiments that had been done in 
Homo sapiens and had not used DNA by array assay technol-
ogy. We left out experiments that had samples without class 
labels or that had no raw cell files. As a result, we found seven 
gene expression datasets, as summarized in Table 1 and briefly 
described below.

E-GEOD-12662. The main objective of this study was to 
characterize acute promyelocytic leukemia (APL), which is a 
subtype of AML. The experiment was conducted on 106 sam-
ples. The RNA samples were drawn from 76 de novo adult 
patients with AML and 30 healthy bone marrow donors.15

E-GEOD-14924. Peripheral blood samples from newly 
diagnosed patients with AML were used to observe the effect 
of having AML on the patients’ T cells. The peripheral blood 
T cells from healthy volunteers served as a control to be com-
pared with patients with AML. The study used CD8 and 
CD4 T cells in the experiment for both patients with AML 
and normal controls, resulting in four groups with 10 samples 
each. In our analysis, we took the 20  samples from CD4 T 
cells from patients with AML and normal controls.16

E-GEOD-17054. Gene expression datasets were obtained 
from University of Michigan and Stanford University to 
study dysregulated pathways between normal bone mar-
row hematopoietic stem cells (HSC) and leukemic stem cells 
from patients with AML (AML LCC) samples. A set from 
Stanford University only was available and therefore included 

Step 1 Data collection

Collect the datasets from the possible resources of gene expression studies,
eg, using available data from different laboratories and/or doing systematic
search from the online repository by following these steps    

(i)   Define keywords, inclusion and exclusion criteria

(ii)  Manual screening

(iii) Download gene expression raw datasets

Step 2 Data preparation

(i)   Preprocess gene expression raw datasets

(ii)  Annotate probes

Step 3 Data analysis

(i)   Pool gene expression datasets by sequential meta-analysis

(ii)  Interpret result

Figure 1. General proposed approach to apply sequential meta-analysis 
to gene expression datasets. The details for each step are described in 
the Methods section.

Table 1. Characteristics of the seven selected microarray experiments.

Data ID ArrayExpress ID Year Affy 
Platform

Sample size P1 P1* P2 P2* PDEG Range  
(min; max)(Control; AML)

1 E-GEOD-12662 2008 HG-U133 Plus 2 106 (30;76) 54675 19851 25323 11989 6085 1.80; 14.31

2 E-GEOD-14924 2009 HG-U133 Plus 2 20 (10;10) 54675 19851 35570 15319 4306 2.48; 14.23

3 E-GEOD-17054 2009 HG-U133 Plus 2 13 (4;9) 54675 19851 27504 13125 440 2.46; 14.38

4 E-MTAB-220 2011 HG-U133 Plus 2 43 (10;33) 54675 19851 38997 16432 882 2.15; 14.67

5 E-GEOD-33223 2012 HG-U133 Plus 2 30 (10;20) 54675 19851 32472 14771 906 1.85; 14.93

6 E-GEOD-35010 2012 HG-1.0 st.v1 12 (6;6) 32321 19878 19772 13688 501 2.09; 12.94

7 E-GEOD-37307 2012 HG-U133A 47 (17;30) 22283 12496 19168 11355 1130 3.24; 14.22

Notes: P1: The initial number of probesets. P1*: The number of unique genes among P1 (replicated genes were summarized by their median). P2: The number 
of probesets after filtering. P2*: The number of unique genes among P2 (replicated genes were summarized by their median). PDEG: The number of differentially 
expressed genes determined by LIMMA and FDR 5% for the corresponding gene expression dataset. Range: The range of gene expression datasets after 
normalization and log2 transformation (1).
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in our analyses, which contains nine AML LCCs and four 
normal HSCs.17

E-MTAB-220. C133+ cell fractions were isolated from 
the bone marrow of 33 patients with AML and 10 healthy 
donors, and their transcriptional profiles were assessed with 
Affymetrix HG U133 Plus 2.0. The experiment had been ini-
tiated to assess the association of WNT/β-catenin signaling 
with AML.18

E-GEOD-33223. Thirty peripheral blood mononuclear 
cell (PBMC) samples were included in an experiment that was 
aimed at observing the factors that influence the prognosis in 
CEBPA-mutated AML. The participants were categorized 
into three groups, ie, control patients (n = 10), AML patients 
with multilineage dysplasia (MLD, n = 9), and AML patients 
without MLD (n = 11). We regrouped the samples into AML 
and normal controls.19

E-GEOD-35010. Short-term (ST-HSC) and long-term 
HSC (LT-HSC), as well as granulocytic monocytic and pro-
genitors (GMP) from patients with AML were compared in 
gene expression to healthy controls. The gene expression data 
from the GMP were used in our analysis, with six patients in 
the AML group and six healthy controls.20

E-GEOD-37307. Microarray gene expression experi-
ment was carried out in 30 AML patients and 19 normal HSC 
donors to identify genes that were differentially expressed 
between those groups. The gene expression data were obtained 
either from cryopreserved mononuclear cells or from testis 
cells. We excluded the two samples that had been obtained 
from testis cells.

Step 2: Data preparation. We followed a common pro-
cedure in preprocessing raw gene expression datasets for fur-
ther analysis.

Preprocessing data. Methods are widely available for the 
preprocessing steps, eg, normalization, background correc-
tion, and logarithmic transformation. The choices for pre-
processing microarray gene expression data have been widely 
discussed in the literature.21,22 A different choice of prepro-
cessing methods may lead to a different result. However, 
this particular issue will not be covered in this study. The 
investigator may choose preprocessing methods by familiar-
ity, with good knowledge of their properties. In the practi-
cal example of our proposed SMA approach, we normalized 
the raw datasets by quantile normalization, performed back-
ground correction according to manufacturer’s platform rec-
ommendation, and transformed the expression values to the 
log2 scale.23 For the Affymetrix platforms, median polish was 
used as a summarization method of probes into probesets, to 
deal with outlier probes.24

As is common in microarray studies, we also applied a 
filtering step to reduce the number of noninformative probe-
sets. We only used detection call filtering to minimize the 
risk of excluding informative genes, ie, we retained all probe-
sets whose log2 expression values were greater than 5  in at 
least 10% of the samples. The differentially expressed genes 

resulting from the SMA from filtered and nonfiltered data 
were then compared.

Gene annotation. Deciding the “objects” to be combined 
from multiple studies is another point to consider in pooling 
multiple studies, eg, combining expression values either at 
the probeset level or at the gene level. Due to the fact that 
different platforms may have different probeset names for 
the same genes, we mapped the probesets to the gene level 
to increase the agreement among the experiments. Since all 
the selected experiments had been performed on Affymetrix 
chips, we used the array-specific AffymetrixID by using the 
Bioconductor package (annotation packages: hgu133plus2.db, 
hgu133a.db, hugene10stprobeset.db, hugene10sttranscript-
cluster.db, and hugene10stv1probe).25 To deal with multiple 
probesets referring to the same gene, in each experiment we 
summarized the replicated genes by taking the median of their 
expression values.6

Step 3: Sequential meta-analysis. In each individual 
dataset, we performed a differential expression analysis by 
fitting a linear model using “limma” in R26 and controlling 
the false discovery rate at 5%, defined as the expected propor-
tion of false rejection among the rejected hypotheses, using 
the Benjamini and Hochberg (BH) procedure.27 The resulting 
differentially expressed genes (DEGs) from each study were 
compared between studies.

Next, we applied an SMA following Whitehead’s bound-
aries approach for a double triangular test (TT).28 Sequen-
tial design and analysis was originally developed to monitor 
results of a randomized clinical trial (RCT) in order to draw 
a conclusion when enough evidence is available. There, the 
patient is the unit of analysis. The method can also be applied 
on a higher level, in the setting of a meta-analysis, where the 
unit of analysis is the study. The method can also be applied 
to nonrandomized studies. The application of SMA to micro
array experiments is challenging, in the sense that we are deal-
ing with thousands of end points (expression value of genes) 
that are analyzed simultaneously, and far more complex than 
sequential analysis in the clinical setting, where we usually 
have a single end point.

As previously described, the SMA is applied to each 
and every single gene by testing the null hypothesis that the 
average expression value is equal between two groups against 
the alternative hypothesis that there is a certain difference in 
average expression values between two groups. For gene i, the 
two-sided hypothesis testing is formulated as

	 H i0 0: θ =

	 H i R1 :| |θ θ=

where θi is the standardized mean difference, also known as 
Cohen’s effect size, between average expression values in the 
two groups, and θR is the prespecified relevant effect size.29 
The same θR is assumed for all the genes. The effect size of 
gene i in experiment j is estimated as
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where Y Yij ij0 1( ) is the mean of (base 2) logarithmically trans-
formed expression values of gene i in Group 0 (1). Whitehead30 
defined sij as the square root of the pooled variance estimate of 
the within-group variances. We, however, adopted the defini-
tion of sij as in the limma procedure, by borrowing information 
of variances from all tested genes. To be more specific, sij is the 
square root of the shrunken variance to a common variance by 
applying the empirical Bayes method.31 The estimation of θij is 
slightly biased in small sample sizes. A common simple correc-
tion factor J is

	
J
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where nj0 and d nj1 are the sample sizes in Group 0 and Group 
1, respectively. The unbiased estimate of the effect size becomes 
Jij ij∗θ , and the variance estimate is redefined as J sij ij

2 2∗ .32

Construction of the double triangular test. The expression 
values of gene i are analyzed in chronological order of experi-
ments. In the TT test, each gene in each experiment contrib-
utes to two statistics, namely Z and V, where Z is the efficient 
score for θi and V is Fisher’s information. The expression val-
ues for gene i in experiment j are transformed to Z and V 
values by the following formulas30:
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where nj is the total sample size in experiment j, ie, n nj j0 1+ . We 
defined sij

*  as the square root of the shrunken variance to a common 
variance from a limma model with intercept only [while White-
head30 defined the sij

*  as the maximum likelihood (ML) standard 
deviation assuming equal means]. To incorporate heterogeneity, a 
weight is assigned to Equation (2), which is calculated by

	

w

V
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+
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The newly adjusted Z and V are then defined as V wij ij
* =   

and Z wij ij ij
* = θ . Methods are available in practice to esti-

mate the heterogeneity or between-study variance τ ij 2: eg, the 
most commonly used method of moments (also known as Der 
Simonian–Laird (DL) method), restrictive maximum likeli-
hood (REML),33 and the variance-component estimator.34 
We used the recommended Paule–Mandel (PM) method to 
estimate the between-study variance.35

The cumulative information from k studies can be entered 
into a TT test as

	
Z Z V Vij

j

k

ij ij
j

k

ij= =
= =

∑ ∑
1 1

* * .and 	 (3)

Cumulative (Zij,Vij) values are then plotted in a TT plot 
(Fig. 2). The boundaries in a TT are based on three prespeci-
fied parameters, namely the type 1 error α, the statistical power 
(1 − β), and the relevant effect size to be detected θR. We used 
the computer software PEST36 to calculate the boundaries for 
the TT with the aforementioned parameters.

A gene i is declared differentially expressed if its sam-
ple path [ie, the path of (Z, V)-values] crosses the upper or 
lower red boundary, and we reject the null hypothesis. We do 
not reject the null hypothesis if the sample path crosses one 
of the blue dashed lines (Fig. 2). We are not able to draw a 
conclusion (yet) if the sample path falls within the boundar-
ies. This also implies that more information is needed from 
future studies.

For a practical example of our proposed approach, we only 
took fully replicated genes, ie, the genes that appeared in all 
experiments, in order to visualize the sample path in the TT 
plot more clearly. As a result, we analyzed 12,211 unduplicated 
genes sequentially in the nonfiltered datasets. The boundar-
ies of the TT were constructed with θrR = 0.8, α = 0.5% and 
(1 − β ) = 80% (this sequential design is named Design 1). Fur-
ther, we applied a Bonferroni correction to α = 5%, resulting in 
α = 0.0004%. (with the same levels of θRr and (1 − β ) as men-
tioned before) to construct a new sequential design, referred to 
as Design 2. Additionally, we also applied similar prespecified 
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Figure 2. Example of a double triangular test (TT) that is designed by 
prespecified α,1 − β. and θR. A decision can be made when the sample 
path crosses one of the boundaries, ie, rejecting the null hypothesis in 
favor of the alternative hypothesis when it crosses the red lines; and 
failing to reject the null hypothesis if the sample path crosses the blue 
dashed lines. No decision can be made if the sample path stays inside the 
boundaries: then more studies need to be included in the analysis. The 
y-axis and x-axis represent the Z and V score, respectively. More detailed 
explanation for the Z and V score is provided in the Methods section.
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parameters [θRr = 0.8, (1 − β ) = 80%, for each α = 5% and 
α = 5% with Bonferroni correction (equal to α = 0.0007%)] in 
filtered gene expression data.

Results
The raw microarray gene expression datasets were collected from 
the ArrayExpress online repository by using the keywords acute, 
myeloid, and leukemia, yielding 377 experiments. The number of 
experiments reduced to 56 after excluding nonhuman experi-
ments and had not used DNA by array assay technology (last 
checked on April 15, 2014). Manual screening of the retained 
studies resulted in seven microarray experiments that provided 
raw cell files and had class label in each individual sample. The 
raw datasets of those experiments were then downloaded. Five 
datasets were generated from gene expression experiments that 
had used Affymetrix HG-U133 Plus 2 (54,675 probesets), 
while the others had used Affymetrix HG-1.0 st. v1 (32,321 
probesets) and HG-U133A (22,283 probesets), respectively. 
Due to different probeset names across platforms, we mapped 
probesets into the genes level. The number of genes in each 
dataset after the mapping process is presented in Table 1, as an 
additional column to the other basic information as well as the 
number of DEGs in each of seven experiments. We performed 
pairwise comparisons of the selected differentially expressed 
genes between the two datasets, and the results are shown in 
Figure  3. There is a high degree of overlapping informative 
genes that were obtained by Data 1 and Data 2, ie, 2,174 genes. 
Meanwhile, there are only 22 genes that were stated as differ-
entially expressed genes by both Data 5 and Data 6. Although 
in general there is a considerable overlap in DEGs between two 
experiments, we found no gene that was stated as a DEG by all 
experiments, which confirms our motivation to aggregate the 
available information as accumulated evidence through SMA.

Based on the cumulative information of the seven 
experiments that were evaluated by TT using Design 1, with 

prespecified parameters θRr = 0.8, α = 0.5%, and (1 − β) = 80%, 
there are 313 DEGs, 2,838 non-DEGs, and 9,060 genes that 
needed more experiments in order to draw a conclusion. 
Of the 12,211 tested genes, the selected α. level yielded an 
expected number of 62 false-positive genes. Methods for con-
trolling the number of false-positive findings are widely avail-
able. For α = 5%, with a conservative Bonferroni correction 
of α = 0.0004% (Design 2), 60 DEGs from the seven experi-
ments were found, in which those were also stated as differen-
tially expressed genes by Design 1. As compared to Design 1, 
Design 2 yielded far less DEGs, given the conservative cor-
rection in the type 1 error rate for 12,211 tested genes.

The TTs for the two designs in nonfiltered datasets 
are summarized in Figure  4. The figures are dominated by 
the orange region, which implies more experiments are to 

21742
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Figure 3. Pairwise comparisons of the differentially expressed genes 
in individual selected experiments. The number within each block 
represents the overlap of differentially expressed genes between two 
experiments, which is then represented by the color. The x-axis and 
y-axis represent the experiment number.

Cumulative experiments

Genes

Cumulative experiments
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 4. Heatmaps of the 12,211 fully replicated genes. The colors represent the status of each gene in sequential tests: orange, no decision can be made; 
red, do not reject the null hypothesis; white, reject the null hypothesis. The y-axis represents the genes that appeared in all experiments, while the x-axis 
is the cumulative number of experiments used in the sequential test following Whitehead’s boundaries approach. The boundaries were constructed for a 
relevant effect size θR = 0.8, power 1 − β = 80%, and a type 1 error α = 0.5% (left) or α = 0.0004% (right, Bonferroni correction for α = 5% and 12,211 tests).
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be initiated in order to make a conclusion for the genes of 
interest, especially when Design 2 is used to construct the tri-
angular test.

We selected four genes, presented in Figure 5, to show 
the sample paths of cumulative evidence based on SMA 
for Designs 1 and 2. The sample paths for the two differ-
ent designs are identical in pattern but they do differ in the 
moment the conclusion can be drawn, due to the fact that 
the TTs have wider boundaries for the Bonferroni-corrected 
design. Considering gene G55704 for instance, two experi-
ments are enough to decide that the gene is informative when 
it is evaluated by a TT that was constructed with Design 1. 
Meanwhile, we need cumulated samples from six experiments 
in order to draw a conclusion when Design 2 is used to evalu-
ate the gene.

We filtered genes with low expression values and took 
7,455  genes that appeared in seven experiments. We then 
performed TTs by applying Design 1. The sequential analy-
ses detected 202 genes as DEG, while 1,392 and 5,861 genes 
were classified as uninformative and undecided, respectively. 

When the boundaries of the TT were constructed by 
α = 0.0007% (Bonferroni correction for α = 5% in 7,455 
tests) with the same relevant effect size and statistical power 
as in Design 1, we found 40 DEGs with 580 genes classified 
as uninformative and 6,835 genes that needed more experi-
ments in order to make a conclusion. As compared to the 
nonfiltered data, we found fewer DEGs in the filtered data, 
which might be due to the exclusion of potential informa-
tive genes during the filtering process. The comparisons of 
the DEGs found based on the nonfiltered and filtered data 
as well as with and without multiple testing correction are 
given in Table 2.

Discussion
This study has extended the application of SMA into the 
genomic field. We described and applied the proposed algo-
rithm to find potential differentially expressed genes in AML 
by taking advantage of the public availability of gene expression 
datasets from published studies as suggested by the MIAME 
(Minimum Information About a Microarray Experiment) 
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Figure 5. Triangular tests of four selected genes. The boundaries were constructed for a pre-specified effect size θR = 0.8, power 1 − β = 80%, and type 
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Table 2. Comparisons of the differentially expressed genes that were found with and without incorporating Bonferroni correction in the filtered 
and non-filtered gene expression data. The numbers represent the number of overlap differentially expressed genes between two different 
settings.

Design 1 
(Filtered data, 202 DEGs)

Design 2 
(Filtered data, 40 DEGs)

Design 1 
(non-filtered data, 313 DEGs)

Design 2 
(Filtered data, 40 DEGs)

40

Design 1 
(non-filtered data, 313 DEGs)

125 31

Design 2 
(non-filtered data, 60 DEGs)

39 21 60
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guideline.37 The systematic search in the ArrayExpress online 
repository and manual screening resulted in seven microarray 
studies to be analyzed further. We followed a published rec-
ommendation6 to conduct a meta-analysis in microarray gene 
expression data by downloading raw datasets in order to reduce 
the source of variation due to preprocessing procedures that 
might vary across experiments.

To the best of our knowledge, application of an SMA 
(following Whitehead’s boundaries approach) to combine 
microarray gene expression studies has not yet been employed 
to detect differentially expressed genes. It is worth mention-
ing, however, that sequential analysis has been proposed in 
single microarray experiments for interim analysis.38 An 
“ordinary” meta-analysis is also a well-known method to com-
bine information from different experiments in genome-wide 
association studies (GWAS). As mentioned in Introduction, 
the goal of a meta-analysis is to estimate the effect size (or 
fold change, in case of differentially expressed gene analysis) 
without evaluating the adequateness of cumulative evidence to 
draw a conclusion. The SMA approach could also be a useful 
tool to decide whether more experiments are needed to draw a 
conclusion for each and every gene of interest, a property that 
an “ordinary” meta-analysis lacks.

The effect size described in Equation (1) is similar to 
the t-statistic to assess the mean difference between two 
groups, where the denominator is the square root of the 
pooled variance. The estimation of variance is known to be 
unstable in small samples. Severe underestimation of vari-
ance would inflate the statistic, causing false-positive find-
ings. On the other hand, large fold-changed genes would 
have small statistics if the variance is overestimated. In 
the analysis of microarray data, empirical Bayes moderated 
t-statistics came as one of the alternatives to produce stable 
variances by shrinking extreme variances toward the overall 
mean variance. Empirical Bayes t-statistics has been proven 
to outperform ordinary t-statistics.39 Hence, we adopted for 
the concept of variance estimation from empirical Bayes 
t-statistics in the estimation of the effect size for each and 
every gene.

The summaries of the TTs from the 12,211 genes show 
that almost all the genes need more than one experiment to 
be declared as either noisy or informative (Fig. 4). Further, the 
271 samples from seven experiments are even not enough to 
draw a conclusion for 9,060 genes when evaluated by Design 1 
and 10,994 genes by Design 2 in nonfiltered data. On the other 
hand, 274 and 55  genes are already classified as redundant 
genes by single experiments in Designs 1 and 2, respectively. 
This result also tells us that the signal of expression values 
differ across the genes. A gene may have a strong signal, so it 
is easy to be classified as an informative gene without involv-
ing a large sample size. Since microarray technology simulta-
neously measures thousands of genes, more experiments are 
needed to cumulatively gather information, particularly for 
indecisive genes.

Given the curse of dimensionality in microarray studies, 
filtering redundant genes is commonly applied in practice, 
eg, removing genes with low variations and/or low expres-
sion values.40 The filtering procedure has a risk of exclud-
ing the informative genes when gene expression datasets are 
cumulated across experiments via SMA. This was clearly 
shown by the identification of some differentially expressed 
genes on nonfiltered data that were not found in the result of 
SMA on filtered data. The consequence is even more severe 
when hard filtering by removing genes with low expression 
and low variance is applied. Hence, we recommend avoiding 
any filtering procedure if the computational resources allow 
doing so.

We kept analyzing every gene until information from all 
experiments was gathered, although the sample paths for some 
genes had already crossed one of the TT’s boundaries. With 
the common sequential design, the analysis can be stopped 
once the sample path crosses a boundary for reason of efficacy 
or futility. However, investigators might also continue the 
sequential analysis although the boundary is crossed, in order 
to optimize the available information, a condition called over-
running.28,41 In some genes, the overrunning analysis has as 
a consequence inconsistency in conclusions. We found genes 
that were declared noisy genes (non-differentially expressed 
genes) by TT once they crossed a lower boundary, but then 
turned out to be informative genes (differentially expressed 
genes) as more information was accumulated. The inverse case 
was also found, ie, informative genes became noisy genes when 
more studies were included. Although more information was 
gathered and the conclusion changed, the overall fraction of 
rejected null hypotheses was close to the predetermined type 
1 error rate. We provided examples of genes that changed 
the conclusion when the overrunning analysis was performed 
(Fig. 6). We also noticed that the phenomenon of a switched 
conclusion happened only for the genes that had a sample path 
close to the inner boundary of the TT. We found no gene that 
crossed both upper and lower boundaries during the sequen-
tially cumulated process.

FMS-related tyrosine kinase 3 (FLT3) is an important 
gene in the development of AML. However, all designs in 
TTs could not classify FLT3 as being differentially expressed, 
since the selected cumulative samples could not provide enough 
information to make a conclusion for this particular gene 
(Fig. 7). Further, the selected studies15–20 also did not mention 
this particular gene as a potential biomarker for distinguish-
ing patients with AML from normal healthy controls.

The boundaries of a TT depend on prespecified para
meters, namely the effect size, type I error rate, and statisti-
cal power. In this study, we used θrR equal to 0.8, which is 
a relatively large effect size in epidemiological settings.29 It 
is important to keep in mind that the gene expression data 
was analyzed on the log2 scale, so that our chosen θRr = 0.8 is 
equal to a fold change of 1.7 on the original scale. This refer-
ence fold change is relatively low compared to the common 
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cut-off value to state a gene as differentially expressed, eg, two 
or threefold.

Type 1 error is another crucial parameter in the determi-
nation of the boundaries of TT. We employed the conserva-
tive Bonferroni approach to correct for multiple testing, which 
depends on the number of tested genes. In the given example, 
we analyzed the genes that occurred in seven experiments. 
When a new study is available and Bonferroni correction is 
applied, the whole process of sequential analysis can be repeated 
if the investigator would like to include the fully replicated 
genes only in the analysis. When non-fully-replicated genes 
(ie, genes that appeared in less than seven experiments) are 
also included in the analysis, applying Bonferroni correction 
is most likely to change the conclusions for some previously 
evaluated genes, since the sequential design is also changed 
due to different levels of α used. One solution is dividing the 
chosen classical α = 5%, for instance, by the total number of 
known genes in the whole genome, which yields an extremely 
conservative type 1 error rate. The methods involving ordering 
of the P-values, such as the Benjamini–Hochberg correction, 
are unfortunately less easy to apply in a triangular test, since 
we were unable to automatically produce P-values associated 
with the Z and V statistics in R software. The other option to 
correct for the multiple testing is to use a lower but less con-
servative α, for instance, choosing α = 0.5% rather than the 
classical α = 5% to reduce false-positive findings.

The TT is one of a group of sequential methods. We 
specifically chose TT following Whitehead’s boundaries 
approach. Other similar methods like the sequential probabil-
ity ratio test (SPRT) may also be considered. With the same 
prespecified parameters, it is easier for the SPRT compared to 
the TT to detect the required effect size earlier in the sequen-
tial testing if the effect size is real or if no relevant difference 
exists. However, TT minimizes the maximum amount of 
information needed to come to a conclusion compared to the 
SPRT. We refer to van der Tweel and van Noord42 for further 
details regarding the comparison of TT and SPRT particu-
larly in the case–control study setting. We analyzed the gene 
expression data also by SPRT and found comparable results 
with the TT (results are not shown).

We tested gene expression values from different micro
array experiments with a group sequential method. Further, 
we showed that the time to make a decision varies across the 
tested genes. This study shows the application of a sequential 
method in continuous outcome data. Such application may 
also be extended to count data (Poisson-distributed outcome 
data, such as in RNA sequencing) or survival outcome data.

Conclusion
We have shown that samples from one experiment are most 
likely not enough to classify a gene as informative or nonin-
formative. This study showed a method to determine whether 
there is enough evidence at a certain time point to draw 
a conclusion for a particular gene or to hold the conclusion 

until the evidence is adequate to make conclusion for all the 
genes under study. SMA following Whitehead’s boundaries 
approach offers an alternative method to find a gene signature 
list by evaluating the adequacy of the accumulated evidence.
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