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Abstract: The concept of eradication of the Human Immune Deficiency Virus (HIV) from 

infected patients has gained much attention in the last few years. While combination  

Anti-Retroviral Therapy (c-ART) has been extremely effective in suppressing viral 

replication, it is not curative. This is due to the presence of a reservoir of latent HIV infected 

cells, which persist in the presence of c-ART. Recently, pharmaceutical approaches have 

focused on the development of molecules able to induce HIV-1 replication from latently 

infected cells in order to render them susceptible to viral cytopathic effects and host immune 

responses. Alternative pathways and transcription complexes function to regulate the activity 

of the HIV promoter and might serve as molecular targets for compounds to activate latent 

HIV. A combined therapy coupling various depressors and activators will likely be the most 

effective in promoting HIV replication while avoiding pleiotropic effects at the cellular level. 

Moreover, in light of differences among HIV subtypes and variability in integration sites, 

the combination of multiple agents targeting multiple pathways will increase likelihood of 

therapeutic effectiveness and prevent mutational escape. This review provides an overview 

of the mechanisms that can be targeted to induce HIV activation focusing on potential 

combinatorial approaches. 

Keywords: HIV latency; latency reversing agents; shock and kill strategy; HIV  
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1. Introduction 

Since its discovery in 1983, the Human Immunodeficiency Virus (HIV) has sustained one of the 

major pandemics in the history of mankind. Hopes for the achievement of a cure for HIV infection were 

raised in the late 1990s, after the introduction of Combined Antiretroviral Therapy (c-ART). c-ART 

showed to be effective in controlling viral replication and dramatically decreased AIDS-related 

morbidity and mortality. Following this initial success, early mathematical models based on the viral 

load decay rate in presence of c-ART estimated that eradication could be reached after 2–3 years of 

suppressive therapy [1]. However, it was soon evident that a pool of replication competent viruses 

persists in patients despite therapy, leading to viral rebound upon treatment interruption [2–5]. Thus, to 

control the infection, HIV-1 infected patients must take lifelong medication, turning HIV infection into 

a chronic disease [6]. The chronic aspects of the disease have important consequences on life expectancy 

and management of HIV patients. Lifelong therapy has adverse effects and does not completely restore 

the immune system of infected patients, which maintains higher rates of morbidity and mortality 

compared to healthy individuals. Moreover, from a public health care perspective, providing lifelong 

therapy and health care support for all infected individuals poses a great economic challenge [7]. 

Considering these limitations, a significant effort has been recently put into finding new strategies to 

eradicate the virus or allow the patients to control viral replication in absence of therapy. 

2. Proof of Concept for a Functional Cure 

The use of fully suppressive c-ART has led to important insights into the nature and dynamics of the 

persisting latent viral pool. In c-ART treated patients, HIV viral load in peripheral blood progressively 

decreases over time to undetectable levels using commonly used diagnostic assays. Since the free virus 

has a very short half-life [8] and c-ART effectively blocks new rounds of infection, in treated individuals 

the decay rate of viremia depends on the lifespan of infected cells [1]. Death of infected CD4 T 

lymphoblasts caused by viral cytopathic effects or host immune responses is responsible for the first 

phase of viral load decay, that can be observed within 2 weeks following start of therapy [9]. 

Macrophages, dendritic cells and partially activated CD4s, which are thought to be other infected cell 

sources producing HIV, have longer half-lives and around 4–6 weeks of c-ART is required for their 

elimination. This period corresponds to the second phase of decay. In the majority of patients, this phase 

is followed by the decrease of plasma viral load below the limit of detection. The third phase of decay 

is slower, and it is estimated that nearly 70 years of effective c-ART will be necessary to eradicate HIV 

from infected patients [9]. Because of their extended half-life (44 months) and self-renewal capacity due 

to homeostatic proliferation [4,10,11], CD4 T cells represent the major compartment involved in HIV 

persistence. Two possible mechanisms can account for the long term persistence of HIV in this phase: 

an ongoing low-level replication that continuously replenishes the viral reservoir or the presence of a 

completely silent latent reservoir that can be occasionally reactivated [12]. However, effects of therapy 

intensification trials on residual viremia [13,14] proved to be inconsistent. In addition, studies indicate 

the absence of phylogenetic evolution of HIV during and after years of antiretroviral therapy [15,16]. 

These observations are consistent with the latter hypothesis and support the notion that the existence of 
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a pool of quiescent latently infected cells is the major source of viral persistence in c-ART treated 

suppressed patients and a barrier to a cure for HIV. 

Recently, several cases have fueled a renewed effort in finding a cure for HIV-1 infection. In the first 

case, T.R. Brown (the “Berlin patient”) who developed acute myelogeneous leukemia, was treated with 

an allogenic hematopoietic stem cells transplant (HSCT) from a donor harboring a mutated form of the 

CCR5 receptor that confers resistance to infection with CCR5-tropic strains. After undergoing the 

transplant in 2007, the patient stopped antiretroviral therapy and did not show any sign of rebounding 

infection [16,17]. A strong reduction of the reservoir size was also observed in two patients who 

underwent HSCT from a wild-type CCR5 donor. Following transplantation, the patients remained on  

c-ART for 2 or more years and showed undetectable levels of HIV RNA, DNA or replication-competent 

virus both in peripheral blood and gut biopsies [18]. Given that the virus remained undetectable for 

multiple years, c-ART was interrupted. However, patients experienced viral rebound after 12 and  

32 weeks, respectively, and developed symptoms consistent with an acute infection process involving 

the transplanted cells. Interestingly, in both cases, phylogenetic analysis demonstrated that viral rebound 

was initiated by one or few latent proviruses consistent with the persistence of a minimal reservoir of 

infected cells despite HSCT [19]. 

The second case, reported in 2013, is that of a child born from an HIV-infected mother not in therapy 

that received antiretroviral drugs within the first 30 h postpartum and was treated for the first  

15 months before therapy interruption [20]. The child did not exhibit signs of viral replication for two 

years after treatment interruption, generating hopes that this would be the second case of cure. Despite 

the recent report of viral rebound in the child [21], this case strongly supports the notion that early  

c-ART can effectively limit the establishment of the reservoir thereby delaying the onset of the disease. 

A similar strategy, limiting the seeding of the reservoir by initiating therapy during acute infection, 

proved to be promising also in adult patients. Recent clinical studies demonstrated that treatment of 

patients in the acute stage not only decreased the levels of cell-associated DNA and the overall size of 

the latent reservoir, but also reduced the proportion of proviruses present in Central Memory T cells, 

which constitute the most long lived population of CD4 T cells [22]. Studies aimed at evaluating the 

efficacy of immediate treatment have identified HIV patients, defined as post treatment controllers, who 

are able to control viremia for several years after therapy interruption [23–26]. In the ARNS VISCONTI 

study, the 14 post treatment controllers displayed a comparable genetic background and immune 

response to chronic patients rather than elite controllers. Thus, in these patients the ability to control HIV 

replication in absence of therapy is attributed to c-ART initiation in the early phase of infection and 

prolonged viral suppression [27]. 

Taken together, these cases constitute the proof-of-concept that a cure is achievable in HIV patients, 

either constituting the complete eradication of the virus (sterilizing cure), or the control of viral load in 

the absence of c-ART for prolonged periods of time (functional cure). In both cases, the fundamental 

step for the achievement of cure is a strong reduction of the size or complete eradication of the  

latent reservoir. 

Since the majority of HIV patients are diagnosed during the chronic phase of the infection, when a 

large reservoir of latently infected cells is already established, the first goal to obtain a functional cure 

is to reduce the size of the existing reservoir. Using a stochastic mathematical model, Hill and coworkers 

recently estimated that a reduction of 1000–3000 fold of the reservoir size will be necessary to allow  
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1 year treatment interruption without rebound. According to this model, achieving complete HIV 

eradication with no risk of viral rebound in the majority of patients will require a minimum 4.8 logs 

reduction of the reservoir size [28]. In chronic patients, this reduction in the latent reservoir could 

theoretically be achieved using therapeutics to induce viral replication from latency. Infected cells 

harboring activated HIV would then be exposed to immune clearance and subject to viral cytopathic 

effects, leading to depletion of the latently infected cells that constitute the reservoir [29,30]. The 

presence of intensified c-ART during reactivation treatment would prevent new rounds of infection by 

replication-competent viruses. This strategy requires two steps: the identification of molecules able to 

stimulate HIV transcription and translation from a large proportion of latently infected cells and the 

boosting of the immune system in order to promote the elimination of cells harboring reactivated HIV. 

3. Latency: The Consequence of a Block in HIV Gene Expression 

Retrotranscription and integration into the host genome are key steps in the HIV viral cycle. 

Following integration, preferentially into actively transcribed genes [31], the HIV genome, similar to an 

endogenous cellular gene, becomes subject to a complex network of molecular mechanisms that 

determine and regulate its expression. The expression of the HIV genome is controlled by the viral 

promoter or 5' Long Terminal Repeat (LTR), whose transcription is critically dependent on the 

availability of host cell transcription factors and their associated cofactors and can lead either to the 

establishment of a productive infection or entry into a repressed latent state. 

3.1. First Block: Transcription Initiation 

Latent proviruses are molecularly characterized by a compacted repressive highly conserved 

chromatin structure. At the 5' LTR, the proviral promoter in its silent state is organized into  

2 nucleosomes, Nuc-0 (−415/−255), Nuc-1 (+10/+155) and DHS-1 (−255/+10), an intervening DNA 

region hypersensitive to digestion with nucleases and restriction enzymes [32]. This latter region with 

absent or poorly positioned nucleosomes presents binding sites for multiple host transcriptional 

regulators [33]. 

The presence of Nuc-0, upstream of the modulatory region, and Nuc-1, flanking the core promoter, 

is the hallmark of a repressed 5' LTR. Nuc-1 is highly repressive to transcription and becomes rapidly 

and specifically disrupted upon activation [34–36]. This strictly defined repressive nucleosomal 

structure is accomplished via at least three epigenetic molecular mechanisms, which the cell has  

co-evolved to regulate gene expression: 1. The activity of chromatin remodeling complexes that use 

energy from ATP hydrolysis to actively position or remodel nucleosomes, 2. The posttranslational 

modifications of histones, including acetylation and methylation to modulate nucleosomal structure, and 

3. DNA methylation. As detailed below all three mechanisms have been shown to play a role in 

regulation of the latent HIV promoter structure and as such represent attractive molecular targets in latent 

HIV re-activation efforts. 

Scattered throughout the HIV LTR are consensus binding sites for a number of cellular transcriptional 

activators, including NF-κB, AP-1, NFAT, LEF1 and SP-1 [33,34,37]. In resting CD4 T cells, which 

exist in a quiescent, metabolically inactive state, many of these factors are sequestered in the cytoplasm 

and are recruited to the nucleus only after cellular activation [38]. Additionally, a number of 
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transcriptional repressors including YY-1, LSF, CbF-1, p50 homodimers have also been described to 

bind to the LTR and repress HIV transcription [33,39–42]. The concerted activity of these transcription 

activators and repressors, and their associated activating or repressive transcriptional cofactors, tightly 

controls expression of the HIV genome. The latent HIV reservoir is thought to be largely formed as a 

consequence of infection of partially activated CD4 T cells that revert to a resting state. During this 

process a number of activators which are essential for HIV expression, such as NF-κB and NFAT 

transcription factors, are sequestered into the cytoplasm, while the establishment of a more condensed 

chromatin landscape further contributes to repression of HIV transcription [38,43]. 

3.2. Second Block: Transcription Elongation; the Critical Role of Tat 

Following chromatin remodeling and the binding of transcription factors, RNA pol II is positioned 

and poised on the transcription start site (TSS) of the HIV promoter. Under basal conditions,  

RNA Pol II pauses close to the TSS and produces only short transcripts due to the presence of the 

negative elongation factors NELF and DSIF [44–47]. To overcome this inhibition and progress through 

to production of full length transcripts, HIV encodes a strong transactivator, Tat. Tat, which specifically 

interacts with the nascent structured TAR RNA sequence located at the 5' HIV LTR, recruits the Super 

Elongation Complex (SEC) to the nascent HIV transcripts [48]. A key component of SEC is the positive 

transcription elongation complex (P-TEFb) which is comprised of cyclinT1 and the kinase CDK9 [49]. 

Once recruited to the HIV promoter, CDK9 phosphorylates NELF and the carboxy-terminal domain of 

RNA pol II, overcoming NELF and DSIF inhibition and increasing RNA pol II processivity [50,51]. 

Besides recruiting SEC, Tat, which is itself subject to extensive post-translational modifications [52] 

invites the docking and activity of additional transcriptional co-activators, such as acetyltransferases and 

ATP-dependent chromatin-remodeling complexes to activate transcription [48]. 

Due to its prominent role in transcription regulation, intracellular levels of P-TEFb are tightly 

controlled. Availability of P-TEFb relies on two mechanisms: its interaction with 7SK small nuclear 

ribonucleoprotein complex (snRNP) which sequesters P-TEFb in a metabolically inactive state and the 

intracellular levels and activity of its components CycT1 and CDK9. The 7K snRNP complex contains 

several proteins, including the nuclear proteins HEXIM1 or HEXIM2, which inhibit the kinase activity 

of CDK9. In actively replicating cells, the majority of P-TEFb is sequestered into the 7SK snRNP 

complex and Tat activity induces its release by competing with HEXIM for CycT1 binding [53]. 

In contrast, in resting CD4 T cells, the levels of 7SK snRNP are very low, thus the main P-TEFb 

regulatory mechanism in these cells is likely to be the posttranslational regulation of CycT1  

levels [54–56]. In these cells, reactivation of HIV will require accumulation of CycT1, activation of 

CDK9, assembly into the 7SK snRNP complex and Tat mediated recruitment to the HIV LTR. 

4. Cell Model Systems in the Study of HIV Latency 

In order to devise strategies to reverse HIV latency it is essential to unravel the complex molecular 

nature of HIV latency and identify the key molecular mechanisms and players involved in maintenance 

of HIV latency and its re-activation. Critical to these investigations is the development and availability 

of suitable and efficient model systems that allow molecular examination of HIV latency. Latent HIV 

infected CD4 T cell and monocytic cell lines are widely used model systems that have proven to be 
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immensely useful for studies aimed at delineating the molecular mechanisms that control HIV latency 

and transcription. These models include clonal cell lines that contain integrated minimal HIV-derived 

viruses harboring mutations in the HIV Tat-TAR axis, or its replacement by a Tet-on system resulting 

in low basal but inducible transcription [57–60]. Studies using these cell lines have generated much 

insight as to the molecular determinant of transcription at the HIV LTR. The J-Lat model system was 

established based on selection of Jurkat clones that contained single integrated latent but 

transcriptionally competent HIV-derived minimal or full length HIV viruses. These HIV-derived latent 

viruses drive the expression of a reporter gene such as GFP [61–64], allowing the mechanistic 

characterization of latency establishment and re-activation. Because they are amenable to large scale 

biochemical analysis and screens, the latent HIV cell line models have enabled the molecular 

examination of HIV latency and transcriptional re-activation. Studies using these models and have led 

to the identification and characterization of not only transcription regulatory factors and signaling 

pathways involved in HIV latency but also of potential therapeutic molecules for re-activation. However, 

these are immortalized T cell clones, harboring latent HIV whose activity is susceptible to genomic 

position and clonal effects of the uniformly integrated latent provirus. Therefore studies using cell line 

models of HIV latency have limitations as they are not representative of the in vivo reservoir of resting 

memory CD4 T cells harboring a small pool of heterogeneous latent HIV integrations.  

Primary cell models have been recently generated in which HIV latency is established in CD4 T cells 

derived from healthy donors. In the natural host, establishment of HIV latency is thought to occur via 

two alternative mechanisms: via the transition to the resting state of a cell that was infected with HIV in 

the active state but becomes quiescent in the process of memory cell generation, or via the direct 

infection of a resting cell [43]. Currently available primary models of HIV latency attempt to recapitulate 

these two processes in vitro and therefore can be divided in two groups according to the process that is 

mimicked by the protocol. To reproduce the establishment of latency during transition of an active CD4 

T cell to a resting state, cells are infected in the active state and then kept in culture to allow the reversion 

to the resting state of a subset of the infected population while the activated infected cells die due to 

apoptosis. The use of defective viruses or antiviral compounds limits the infection to a single replication 

cycle. This group of protocols includes the Bosque and Planelles method, which results in the 

establishment of latency in a subset of cells phenotypically similar to the central memory CD4 T cells, 

which play a major role in the long term maintenance of HIV latency [65]. Conceptually similar methods 

have increased the efficiency of latently infected cells generation by extending the life span of the 

cultures through the exogenous expression of the antiapoptotic protein Bcl-2, which promotes the 

resistance of CD4 cells to apoptosis [66], or trough co-culturing infected cells with a feeder  

cell line [56,67]. 

In the second group of protocols, latency is generated in cells infected without prior  

activation [68–71]. Although this approach results in the production of latent HIV infected Transitional 

and Central memory T cells, the main cell types containing latent HIV, infection using in this method is 

very inefficient and HIV integration infrequent. 

The establishment of primary cell models of HIV latency has been very important for HIV eradication 

studies, particularly for the testing and characterization of putative therapeutic molecules capable of 

activating latent HIV. However, a recent study showed that there are significant differences in the 

responses of different models to latency reversing agents (LRAs). This difference is likely due to the 



Viruses 2014, 6 4587 

 

fact that each model is representative of only a subset of the in vivo target CD4 sub-populations harboring 

HIV and a restricted number of pathways that contribute to the generation of latency [72]. 

Confirmation using ex vivo monitoring of HIV reactivation in cells derived from patients is therefore 

required in order to assess the efficacy of LRAs. Ex vivo activation of latent HIV in infected patient cells 

represents the most relevant and powerful system for testing of putative therapeutic molecules and 

rational drug design. This method is based on the purification of high numbers of resting CD4 T cells 

from stably suppressed patients followed by treatment with various candidate LRAs [3,5,73,74]. Since 

the patients enrolled in these studies have no signs of viral replication, it is accepted that HIV present in 

these cells is in a latent or defective form. However, the very low numbers of CD4 T cells estimated to 

contain replication competent latent HIV (1:100,000–1:1,000,000)—represent a serious technical hurdle 

for quantification of HIV re-activation [75]. Viral reactivation can be detected either by quantification 

of the HIV cellular associated RNA or by co-culturing the cells with uninfected targets in order to 

amplify and detect re-activated virus. Detection of cellular associated RNA by means of nested or digital 

droplet PCR is relatively easy to implement and has been proven to be very sensitive in detecting the 

presence of HIV transcripts [76]. However, it poses some technical challenges such as the necessity to 

distinguish between read through and LTR-driven transcripts and it does not assess actual virus 

production [77]. As an alternative, HIV reactivation can be detected via co-culture assays which, 

although less sensitive and less quantitative, is able to demonstrate actual production of infective virions, 

which is considered the final goal of reactivation strategies [78,79]. 

A quantitative co-culture assay together with the single copy assay for the detection of viral RNA in 

plasma represent the current gold standard methods for measuring HIV reactivation and viral reservoir 

size in clinical trials [80–82]. However, both assays present some limitations mainly related to their 

suboptimal sensitivity [83,84]. Given the pivotal role that these assays will have in determining the 

overall efficacy of shock and kill therapies in in vivo studies, the development of more accurate and 

manageable assays is greatly needed. 

5. Cellular Targets of Latency-Reversal Therapeutics 

Our understanding of the key signaling pathways regulating HIV transcription has provided new 

insights into mechanisms that can be targeted to induce HIV replication and purge the latent  

reservoir [85]. Initial efforts to induce HIV activation from latency were focused on the use of cytokines 

and other mitogenic stimuli [86,87]. However, cytokine treatment can lead to a general state of activation 

causing deterioration of the immune response of the patient, and/or stimulate homeostatic proliferation, 

thereby increasing the overall number of infected CD4 T cells [11,88]. 

To date, molecules under evaluation include modulators of chromatin remodeling processes and 

molecules able to increase the pool of available 5' HIV LTR activators and co-activators. In the following 

paragraphs will provide an overview of the molecules currently under investigation and their  

targeted pathways. 
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5.1. The PKC Pathway 

One of the most critical pathways in activation of the HIV promoter involves PKC proteins,  

a family of serine-threonine kinases that is activated in response to TCR stimulation in CD4 T  

cells [89,90].  

The transcription factors NF-κB, NFAT and AP-1 are downstream molecular effectors of the PKC 

pathway and multiple binding sites for these sequence specific transcription factors are present within 

the HIV promoter. Under basal conditions, the NF-κB binding sites on the HIV promoter are bound to 

the inactive homodimeric form of NF-κB, p50/p50, and the active form of the transcription factor, the 

heterodimer p65/p50, is sequestered in the cytoplasm. Upon PKC activation, the p65/p50 heterodimer is 

translocated to the nucleus where it replaces the inactive dimers [91]. NFAT, which binds the same sites, 

is also translocated in the nucleus as a result of calcium/calcineurine induction following PKC  

activation [92]. Both active NF-κB and NFAT recruit histone acetyltransferases, such as p300/CBP, 

resulting in acetylation of histone tails and opening of the LTR chromatin structure [93,94]. 

Different classes of PKC agonists, including phorbol esters, diacylglycerol and ingenols, are able to 

activate HIV in cellular models of latency and in primary cells from HIV patients. However, given the 

number of cellular events in which PKC is involved, the majority of these molecules also induces cell 

proliferation and immune activation. The phorbol ester prostratin and the macrolactone bryostatin-1 have 

emerged as candidates for HIV activation as they effectively stimulate HIV transcription while showing 

limited effects on global cell activation [95–98]. Interestingly, prostratin treatment was shown to also 

upregulate the expression of p-TEFb in resting CD4 T cells [99]. More recently, a series of prostratin 

analogues have been synthetized with 100 fold increased potency in inducing HIV transcription while 

showing a moderate increase of the expression of CD4 surface activation markers [100]. A hexanoate 

derivative of the PKC inducer ingenol, Ing-B, has been shown to upregulate HIV transcription in cells 

from HIV positive patients under suppressive therapy and to stimulate latent virus reactivation in a 

primate model of HIV latency [101,102]. AV6 is an additional promising anti-latency molecule 

identified through a high throughput screen, which activates latent HIV via stimulation of NFAT 

mediated transcription [103]. 

5.2. The JNK Pathway 

In the JNK cascade, the phosphorylation of c-Jun N-terminal kinase (JNK) drives the activation of 

the oncoprotein c-Jun, which dimerizes to form the activator protein-1 (AP-1) transcription factor. 

Multiple AP-1 binding sites are present along the HIV genome, both at the 5' LTR promoter and inside 

the coding region of the pol gene [33,104]. Interestingly, two mutagenic screenings identified AP-1 sites 

as major players in HIV transcription as the introduction of deletions in these sites increased the 

likelihood of latent infections and inhibited HIV reactivation even in presence of fully functional  

NF-κB signaling [105,106]. 

Triggering TLR signaling induces JNK pathway mediated activation of HIV transcription. 

Pam3CSK4, a TLR-1/2 agonist, was shown to induce translocation of NF-κB and AP-1 to the nucleus 

and concomitant HIV activation in absence of T cell activation and proliferation [107]. A more specific 

activation of the JNK-AP-1 pathway can be achieved following 8-methoxy-6-methylquinolin-4-ol 
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(MMQO) treatment. Interestingly, despite promoting a significant increase in HIV transcription, 

treatment with this compound inhibits transcription from TCR signaling targets, thus reducing the 

likelihood of global cell activation [108]. Farnesyl transferases, additional molecules able to activate 

HIV transcription through a JNK-dependent pathway, have been identified using high throughput 

screening on latently infected cell lines [109,110]. 

5.3. The Wnt Pathway 

After engagement of the Wnt receptors by Wnt ligands [111], the β-catenin destruction complex, 

which keeps cytoplasmic levels of β-catenin low, is inactivated. As a result, β-catenin accumulates in 

the cytoplasm, and translocates into the nucleus where is complexes with LEF1, and activates Wnt target 

genes [111]. The HIV LTR contains several consensus binding elements for LEF1, the downstream 

molecular effector of the classical Wnt signaling pathway and LEF1 as the founding member of 

TCF/LEF transcription factors was originally identified via its interaction with the HIV LTR [112]. We 

have recently shown that activation of the Wnt pathway via natural ligands and small molecule inhibitors 

in latently infected cells stimulates HIV transcription and protein production [113]. Moreover, 

inactivation of the β-catenin destruction complex by siRNA mediated depletion of AXIN1 was shown 

to activate HIV, demonstrating a positive role for LEF1/β-catenin/Wnt signaling in HIV  

transcription [114]. In contrast, several studies mainly focusing on astrocytes have also described a 

repressive role for β-catenin/Wnt on HIV transcription and replication [115–119]. Suppression of HIV 

replication by β-catenin/Wnt was mediated by the activity of TCF4 [115], suggested to overcome the 

LEF-driven activation during HIV infection in astrocytes, where it could represent a latency driving 

mechanism [117,118]. In peripheral blood mononuclear cells treatment with Lithium, a small molecule 

Wnt pathway activator, was shown to inhibit active HIV replication [120]. 

5.4. The AKT Pathway 

In Bcl-2 transduced primary CD4 T cells, NF-κB mediated HIV activation can also be achieved after 

induction of the Akt pathway by Disulfiram treatment [121]. Disulfiram is an inhibitor of acetaldehyde 

dehydrogenase used to treat chronic alcoholism and reduces the activity of PTEN, a negative regulator 

of the Akt signaling pathway [122]. Disulfiram administration to HAART treated patients induced a 

transient increase in plasma viremia. However, 8 weeks after administration the patients showed no 

reduction in HIV reservoir size [82]. 

5.5. Histone Deacetylases (HDACs) 

Histone Acetylation, or the deposition of positively charged acetyl groups by histone acetyl 

transferases (HATs) on the histone tails results in the opening of chromatin structure, and facilitating 

transcription. HDACs are enzymes, which remove the positive acetyl charges from histone tails, 

resulting in the generation of a more closed and rigid chromatin structure, and their activity at the HIV 

promoter plays a major role in transcriptional repression and in the onset of HIV latency. Recruitment 

of HDAC1, HDAC2, HDAC3, as well as HDAC4 to the HIV promoter has been shown to be associated 

with transcriptional repression [123,124]. Multiple DNA-binding complexes have been shown to recruit 
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HDAC activity to the HIV-1 promoter: HDAC1 was shown to be recruited to the Nuc-1 region of the 

HIV LTR via the cooperative binding of LSF and YY-1 [40,125], as well as the LTR-bound transcription 

factors c-Myc and Sp1 [126]. The repressive p50/p50 homodimers occupying the NF-κB LTR sequences 

have also been shown to recruit HDAC1 to the HIV LTR [127]. Finally, a downstream molecular effector 

of the Notch pathway, C promoter binding factor 1 (CBF-1) also recruits HDACs to the latent HIV  

LTR [42,56]. Depletion of YY1, but not c-MYC, in Jurkat cells activated transcription from the HIV 

promoter. However, depletion of these two transcription factors was not sufficient to disrupt the binding 

of HDAC complexes to the HIV LTR in Jurkat cells, suggesting that multiple overlapping pathways 

participate in tethering HDACs to the latent HIV LTR [125]. 

Because of their role in repressing transcription at the HIV LTR, HDACs are an important target in 

pharmacological approaches to de-repress and activate latent HIV. HDAC inhibitors (HDACis) are a 

family of molecules already used in clinical practice that facilitate transcription by inhibiting the activity 

of HDACs. Indeed, HDAC inhibition was shown to disrupt Nuc-1 and increase HIV  

transcription [79,128–130]. Valproic acid (VPA), an HDACi used in epilepsy and bipolar disorders, was 

the first compound tested in the context of shock and kill strategies in chronic patients. In the first proof 

of concept study, Lehrman et al. showed a significant decrease in the size of reservoirs after VPA 

treatment coupled to HAART intensification, however further clinical studies failed to reproduce this 

finding [131–133]. Recently, Vorinostat, Givinostat, Droxinostat, Panobinostat, Romidepsin and 

Entinostat showed stronger in vitro activation properties compared to VPA in latently infected cell lines 

and in ex vivo latency models [134–136]. Notably, considerable differences in the efficacy of these 

compounds in reverting HIV latency may be observed among different cellular models, probably due to 

differences in the abundance of the specific HDAC isoform inhibited by each compound [137]. 

Importantly, a well-tolerated dose of Vorinostat (suberoylanilide hydroxamic acid/SAHA) was shown 

to induce HIV transcription from latently infected cells obtained from HAART treated patients [29]. 

HDACi-mediated induction of intracellular HIV transcription was confirmed in clinical studies 

evaluating the effect of multiple daily doses of Vorinostat and thrice-weekly, every-other-week dosing 

of Panobinostat [138,139]. However, low-level transient increase of viremia was observed only after 

Panobinostat administration [81]. It is worth noting that viremia is generated by reactivation of intact 

viruses and that the majority of proviruses found in vivo is defective and thus cannot be effectively 

targeted by latency reversal treatments. In addition, Ho et al. recently showed that a consistent proportion 

of replication competent proviruses is refractory to latency reversal [75]. A clinical study in which HIV 

patients were treated with Vorinostat according to the therapeutical scheme in use for cancer patients, 

showed that Vorinostat treatment induced increase in HIV cellular associated RNA only after the first  

exposure [80]. Compensatory mechanisms regulating chromatin acetylation are likely at play and may 

be responsible for decreasing the subsequent response to additional doses during the 24-h dosing 

intervals tested. 

HDAC inhibition promotes activation of different HIV subtypes without inducing massive T cell 

activation. Therefore, inhibition of these complexes is an attractive approach in re-activation efforts. 

However, a number of cellular processes depends on histone acetylation and the use of HDACis needs 

extensive testing in order to minimize unwanted pleiotropic effects [140,141].  



Viruses 2014, 6 4591 

 

5.6. Histone Methyl Transferases (HMTs) 

Nucleosomal structure of the silenced LTR is characterized by additional markers of condensed 

heterochromatin such as histone methylation. In particular, methylation of Histone 3 (H3) at position 9 

and 27 is generally associated with transcriptional repression [74] and histone methylation marks have 

been shown to be associated with HIV transcriptional silencing in different latency models [142,143]. 

Consistently, the HMTs G9a and SUV39H1, the two enzymes that catalize di- and tri-methylation of 

H3K9 have been shown to physically associate with the latent LTR and mediate repression in latently 

infected cells from HIV patients [143–145]. EZH2, another HMT, is an integral subunit of the Polycomb 

group repressive complex 2 (PRC2) and catalyzes H3K27 trimethylation of histones. EZH2 was found 

associated with the latent HIV promoter [142] and is thought to mediate a chromatin environment for 

sequential docking of other repressive complexes including HDACs, HMTs, DNA methyltransferases 

and PRC1. 

As major players in the epigenetic silencing of the latent HIV promoter, HMTs provide attractive 

targets for inhibition in HIV re-activation and as a consequence, HMTi’s have been tested as therapeutic 

inducers of HIV transcription. Thus far, inhibitors targeting the activity of Suv39H1 and G9a, have been 

tested for HIV re-activation potential. Chaetocin, a specific inhibitor of Suv39H1, and the G9a inhibitor 

BIX-01294 were both found to induce chromatin relaxation causing HIV reactivation in resting memory 

CD4 T cells from HAART-treated patients [146,147]. Despite these promising results, due to toxicity 

and their side effects, these compounds cannot be safely administrated to humans and further studies are 

needed to identify additional safer HMTi’s for potential therapeutic use. 

5.7. DNA Methyltransferases 

In a screening for the identification of cellular factors involved in HIV latency, Kauder et al. identified 

the methyl-CpG-binding domain protein (MBD2) as a transcriptional repressor. Further investigations 

determined that MBD2 was associated with the CpG islands flanking the transcription start site and 

repressed HIV transcription via the recruitment of the NURD complex [148]. Consistent to this 

hypothesis, treatment of latently infected cells with the methylation inhibitor 5-aza-2'-deoxycytidine 

(aza-CdR) compromised repression at the HIV promoter [148]. Although not able to activate when used 

alone, aza-CdR significantly enhanced TNF-α-mediated induction of HIV transcription [149]. Cytosine 

methylation of the HIV promoter has been observed in both cell line models of latency and in primary 

cells, and while not necessary for establishment of latency, viruses harboring heavily methylated 

promoters showed less propensity to reactivation [150]. A significant increase in methylation was 

observed in HIV promoters isolated from aviremic than viremic patients. However DNA methylation 

was rarely detected in CD4 T cells obtained from c-ART treated patients [150,151]. Thus, the relevance 

of this modification to HIV latency remains unclear. 

5.8. ATP-Dependent Chromatin Remodelers (BAF and CHD3) 

The CHD3 and MBD2 containing ATP-dependent chromatin remodeling complex, NuRD has been 

shown to physically interact with and repress the HIV LTR [152]. We have shown that BAF, a member 

of the SWI/SNF family of ATP dependent chromatin remodelers, actively positions the repressive HIV 
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LTR Nuc-1 over energetically sub-optimal DNA sequences, leading to the establishment and 

maintenance of HIV latency [153]. In latently infected cell lines, siRNA mediated knock down of BAF 

specific subunits leads to HIV activation, identifying the complex as a possible target for reactivation 

strategies [153–155]. INI-1, a core subunit of SWI/SNF was also shown to repress basal HIV promoter 

activity [156]. Thus, the ATP-dependent chromatin remodeling complexes BAF and NuRD present 

attractive candidates for therapeutic inhibition in HIV re-activation. 

Recently, a spectrum of small molecule inhibitors of the BAF complex have been identified from a 

screen for the ability to induce expression of bmi1, a specific BAF target gene in mouse embryonic stem 

cells [157]. Due to their high target specificity, these compounds may present a promising group of 

molecules aimed at promoting HIV reactivation. 

5.9. Bromo-Domain-Containing (BET) Factors 

RNA pol II pausing is a general regulatory mechanism in eukaryotic cells, and the recruitment of  

P-TEFb to cellular genes is mediated by BET proteins, in particular Brd4 [158,159]. Interestingly, in the 

context of HIV expression, Brd4 acts as a repressor, since it directly competes with Tat for binding to 

P-TEFb, reducing the pool of SEC that would be redirected to HIV transcripts [160]. ShRNA mediated 

inhibition of BET proteins results in potent activation of HIV transcription [161]. Interestingly, BET 

inhibition also triggers activation of latent clones that do not express Tat, suggesting that BET proteins 

are also involved in HIV repression and contribute to maintenance of latency via Tat-independent 

mechanisms [162]. To explain the Tat-independent BET-mediated modulation of HIV latency, Bohem 

et al. proposed the involvement of a second BET protein in the regulation of HIV latency, Brd2. Similar 

to Brd4, knock down of Brd2 strongly enhances HIV transcription [162]. Brd2 may directly associate 

with chromatin remodeling complexes and guide the docking of other inhibitory complexes to the latent 

HIV promoter. Consistent with the HIV inhibitory role of BETs, the small molecule BET inhibitors JQ1 

and IBET-151, has been shown to effectively reactivate HIV from latency in cultured cells and primary 

T-cell models of latency [163–165]. 

5.10. HEXIM 

Low levels of active P-TEFb are one of the major barriers that prevent HIV replication in resting CD4 

T cells. Inactivation of P-TEFb is dependent on the binding of CyclinT1 and CDK9 to HEXIM1, an 

inhibitory molecule which is part of the 7SK snRNP [53]. Inhibition of HEXIM using hexamethylene 

bisacetammide (HMBA) was found to increase the activity of P-TEFb in latently infected cell  

lines [166]. However due to its poor bioavailability and limited activity in primary ex vivo models of 

latency, this compound has not yet been tested in clinical trials.  

6. Combinatorial Approaches to Activate Latent HIV 

Because of the complex nature of latency, purging therapies simultaneously targeting multiple 

mechanisms of latency establishment and maintenance, i.e., combining the inhibition of one or more 

HIV repressors with one or more inducer of HIV transcription, will likely be the most effective in HIV 

reactivation (Figure 1). Each silencing event is the unique result of the combination of multiple 



Viruses 2014, 6 4593 

 

pathways, and specific characteristics of the integrated provirus, including site of integration, viral 

subtype and the cell type in which latency is established can hinder HIV reactivation if a single LRA  

is used. 

 

Figure 1. Multiple pathways can be targeted for reverting HIV latency. Silencing of viral 

transcription results from the concerted activities of LTR-repressive and activating factors 

and co-factors. The use of combinatorial therapy, targeting multiple pathways involved in 

the modulation of HIV transcription, will increase the likelihood of reversing the balance 

from latency to activation. 

The majority of latent proviruses from suppressed patients on c-ART is integrated in host genes that 

are actively transcribed [31,167]. It is widely accepted that latency can derive from integration in actively 

transcribing genes, through a mechanism called transcriptional interference. Transcriptional interference 

refers to the inhibition of mRNA synthesis resulting from displacement of transcription factors from the 

HIV promoter by the host RNA II polymerase [168,169]. However, an extensive analysis of the 

characteristics of integration sites in ex vivo primary models of HIV latency, failed to identify shared 

integration tracts distinguishing latent from active proviruses [170]. 

The LTR regions of different HIV subtypes are characterized by specific configurations, mainly 

resulting from variations of the number and the sequence of transcription binding factors. [106]. As a 

result, different HIV strains show significant variation in terms of propensity to latency and response to 

activating stimuli [171,172]. 

In addition, the specific biological features of each cellular reservoir may play a role in the efficacy 

of LRAs. Viral reservoirs include different compartments such as the central nervous system, the  

gut-associated lymphoid tissue and the reproductive tract [12,173]. At the cellular level, latent proviruses 

can be retrieved in different cell populations: the predominant localization of latent provirus during 

therapy has been identified in central and transitional memory CD4 T cells [11], although a minimal 

contribution to HIV reservoir from naive CD 4 T cells has also been reported [16]. The response of HIV 

promoter to LRAs may differ depending on the specific transcriptional environment within each cell 

subtype in which latency is established [72]. 

Finally, it has been recently reported that treating CD4 T cells from completely suppressed patients 

with strong T cell activators does not induce all replication competent viruses from latently infected 

cells. Interestingly, some of the clones that are not induced by a single round of stimulation, can be 
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activated subsequently, whereas some remain silent after multiple stimulations [75]. These findings 

indicate that latency is not only the result of insufficient levels of activation in the latently infected cell, 

but also depends on stochastic events such as the occupancy of the promoter by cellular activators and 

the fluctuation of Tat levels [28,174,175]. This stochastic mechanism of transcription activation at the 

LTR can therefore be exploited by the use of noise enhancers or de-repressors in combination with bona 

fide activators of the LTR. Recently, in a screening of nearly 1600 FDA approved molecules,  

Dar et al. identified several compounds that modulate basal HIV transcription and synergistically 

enhance the activity of TNF-α and prostratin [176]. 

Overall, maintenance of latency depends on a balance between activation and repression of the HIV 

promoter and targeting multiple pathways at the same time will increase the probability of reaching the 

threshold that determines HIV activation. Importantly, because of the presence of synergistic effects 

between individual latency reversal molecules, lower concentrations of each activating compound will 

be necessary to induce HIV activation. This is an important therapeutic consideration, since at lower 

concentrations, the toxic side effects and pleiotropic consequence of each molecule on gene expression 

will be limited. At the same time, because of their synergistic effects on the HIV LTR, combinatorial 

use of latency reversal molecules can provide a level of specificity for activation of the HIV LTR. 

Synergistic activation of HIV transcription following combinatorial treatment with multiple LRAs 

has been repeatedly reported. Combination of prostratin with Vorinostat [172] as well as with the newly 

identified HDACi M344 [177] resulted in a synergistic activation of the HIV promoter. Synergistic 

activation of HIV transcription was reported also after treatment with a different PKC activator, Ing-B, 

together with the HDACi Vorinostat [178]. Similarly, treatment with Wnt/b-catenin pathway activators 

or with farnesyl transferase inhibitors synergistically enhanced the effect of Vorinostat [179], and  

AV6 [103], an NFAT activator, increased the efficacy of valproic acid in activating HIV transcription. 

These synergistic effects are likely the result of the targeting of different mechanisms: the removal of 

the repressive chromatin environment by compounds such as HDACi’s, together with the triggering of 

a transcription activation pathway as would be achieved by AV6. Moreover, HDACi’s can further 

influence HIV transcription by regulating the acetylation of the viral transactivator Tat and of the cellular 

transcription factor NF-κB [52,180,181]. Availability of P-TEFB and efficiency of transcriptional 

elongation represent additional targets for combinatorial therapy. Zhu et al. showed that combined 

treatment with the BET inhibitor JQ1 and prostratin enhanced the reactivation of HIV from latently 

infected cell lines and, albeit showing more heterogeneous responses, in primary cells [162]. 

7. Conclusions 

The knowledge of the multiple mechanisms regulating HIV latency has significantly increased in the 

last decade, raising hopes for the development of a curative therapy for HIV through shock and kill 

strategies. Nevertheless, several obstacles remain, which hamper the development of an effective 

functional cure. Among them, the most immediate obstacle is the development of a therapy, which 

successfully targets a significant portion of the re-activatable latent reservoir for activation. So far, single 

molecules tested in preclinical and clinical studies for activation of latent HIV have yielded 

disappointing results. This supports the notion that a combinatorial cocktail of molecules, which displays 

synergistic activity and a level of specificity for the HIV promoter will have to be identified and 
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developed. Moreover, a careful evaluation of the second phase of development of a shock-and kill 

strategy will be necessary. HIV reactivation needs to take place in presence of a fully effective and 

possibly intensified c-ART able to completely block new rounds of infection and, most importantly, in 

presence of a functional immune system able to eliminate latently infected cells following reactivation. 
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