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Renal cell carcinoma (RCC) is an immunogenic tumor, but
uses several immune-suppressive mechanisms to shift the
balance from tumor immune response toward tumor growth.
Although RCC has traditionally been considered to be
radiation resistant, recent evidence suggests that
hypofractionated radiotherapy contributes to systemic
antitumor immunity. Because the efficacy of antitumor
immune responses depends on the complex balance
between diverse immune cells and progressing tumor cells,
radiotherapy alone is unlikely to induce persistent antitumor
immunity. Therefore, the combination of radiotherapy with
drugs having synergistic immunomodulatory properties holds
great promise with the optimal timing and sequence of
modalities depending on the agent used. We highlight the
immunomodulatory properties of targeted therapies, such as
tyrosine kinase inhibitors, mammalian target of rapamycin
(mTOR) inhibitors and vascular endothelial growth factor
(VEGF) neutralizing antibodies, and will suggest a
combination schedule with radiotherapy based on the

available literature. We also address the combination of
radiotherapy with innovative treatments in the field of
immunotherapy.

Introduction

RCC presents with metastatic disease in about 30% of
patients, while another third of patients with localized advanced
disease will ultimately develop metastases.1,2 Molecular therapies
that block the VEGF or mTOR pathways are currently consid-
ered the mainstay treatment3 for metastatic RCC. Nevertheless, a
durable response to targeted therapy is rare and most patients
eventually develop progressive disease.4,5 We therefore have to
look at new therapeutic options to improve the outcome of these
patients. Since RCC is considered an immunogenic tumor,6-8 we
might find the answer in the field of immunotherapy. There are
some clinical cases in RCC describing responses outside the irra-
diated regions, following high-dose stereotactic body radiotherapy
(SBRT) to metastases.9,10 These responses are termed “abscopal
effects.” Both pre-clinical and clinical data11–13 suggest that these
effects are immune mediated.14,15 Despite these observations,
both the tumor and its microenvironment seem to be able to
evade the immune system in the majority of cases. Radiotherapy
alone is probably unlikely to induce persistent antitumor immu-
nity and a combination with synergistic immunomodulatory
agents might be necessary to induce long-term clinical results, as
suggested by promising preclinical and clinical data.12,16-20
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The current review offers insights in the specific immune
escape mechanisms present in RCC with a specific focus on the
potential role of radiotherapy in combination with systemic treat-
ment to improve clinical responses by enhancing antitumor
immunity.

Immune Modulation in RCC

Although the immune system tries to control the proliferation
of RCC, the tumor is able to progress. By evasion of the antitu-
mor immune response, RCC is able to shift the balance from
tumor immune response toward tumor growth (Fig. 1). In the
next paragraphs, these evasion mechanisms of RCC influencing
both the innate21 and adaptive immune system are highlighted.22

RCC is able to escape cytotoxic T lymphocyte (CTL)-medi-
ated killing through different mechanisms (Fig. 2). T cells are
initially stimulated to recognize cancer cells through cross-prim-
ing by dendritic cells (DCs). However, RCC interferes with DC
activation by secreting immunosuppressive factors. Conse-
quently, only a minority of the DCs show signs of activation23

and are able to prime na€ıve T cells. Moreover, deficiencies in

both the proteasome and transporter associated with antigen
processing, reduction of other antigen processing machinery
(APM)-components, and altered expression of major histocom-
patibility complex (MHC)-I molecules, allows RCC to escape
recognition by CTLs.24

Most RCCs are highly vascularized because of mutations of
the von Hippel–Lindau (VHL) tumor suppressor gene. pVHL is
needed for the degradation of hypoxia-inducible factor a (HIF-
1a). Deficient pVHL leads to accumulation of HIF-1a and stim-
ulation of angiogenesis through HIF-induced VEGF produc-
tion.25 In addition to stimulating tumor angiogenesis, VEGF
also arrests the differentiation of myeloid cells, resulting in accu-
mulation of immature myeloid cells. These immature myeloid
cells are myeloid-derived suppressor cells (MDSCs) and block T
cell responses by producing IL-10, transforming growth factor
(TGF)-b, prostaglandin E2,26 reactive oxygen species (ROS)27

and arginase I.26,28 Compared to healthy controls, higher levels
of MDSCs are found in the peripheral blood of RCC patients,24

associated with a 6–10-fold increase in arginase activity.26 Argi-
nase production by MDSCs results in a decreased expression of
the CD3z chain on tumor-infiltrating lymphocytes (TILs) of
RCC.29 The CD3z chain is part of the T cell receptor (TCR)
complex and normally plays a critical role in the proximal signal-
ing events leading to T cell activation. Its reduced expression
leads to impaired TCR signaling, causing a disturbed lytic func-
tion of the TILs.22 VEGF, along with IL-6 and IL-10, also indu-
ces signal transducer and activator of transcription 3 (STAT3)
activation.30 STAT3 activation is thought to be involved in the
accumulation of immunosuppressive cells, such as MDSCs and
regulatory T cells (Tregs),31,32 and in the absence of functional
DCs.31 In addition, STAT3 activation might be responsible for
the reduced CTL reactivity in RCC, since STAT3 is required for
the expression of HIF-1a,33 constitutively activated in the major-
ity of RCC,34 and gene silencing of HIF-1a was seen to restore
the susceptibility of tumor cells to CTL-mediated killing.30

These mechanisms might explain why both VEGF expression in
tumor tissue and serum levels of VEGF are associated with poor
prognosis in RCC patients.35,36

T cells are only activated when the balance between co-stimu-
latory and co-inhibitory signals crosses the threshold for T cell
activation.37 Therefore, the expression, by both primary and met-
astatic RCC tumor cells, of the co-inhibitory molecule pro-
grammed death ligand 1 (PD-L1) might shift the balance toward
T cell inhibition.38 The expression of the co-inhibitory molecule
PD-L1 in RCC is associated with aggressive tumor behavior and
poor outcome.39,40 RCC tumor cells also often express the nega-
tive co-stimulatory molecule B7-H4. Its expression is associated
with adverse clinical features.38,41 Recently, a new co-inhibitory
molecule, T cell immunoglobulin and mucin domain 3 (TIM-
3), was described. The molecule is expressed by Th1 cells and
CTLs and induces cell death by binding its ligand, galactin-9.
Furthermore, the upregulated expression of TIM-3 on tumor-
specific and tumor-infiltrating CD8C T cells from patients with
clear cell (cc)RCC was associated with poor prognosis.42,43

Since Th1 cells are considered to be effector cells with antitu-
mor activity, achieving a Th1-dominated immune response

Figure 1. The balance between pro-immunogenic and immunosuppres-
sive factors in the tumor microenvironment of RCC. The immune system
plays a protective role in tumor control. Dendritic cells (DCs) take up apo-
ptotic and necrotic tumor fragments and present processed tumor-
derived peptides to T-helper (Th) lymphocytes as well as cross-present
to cytotoxic T lymphocytes (CTLs). Tumor-activated NK cells kill tumor
cells by releasing their cytotoxic granules onto the surface. On the other
hand, RCC is able to evade antitumor immune responses. RCC stimulates
the secretion of immunosuppressive soluble factors such as IL-10, IL-6,
vascular endothelial growth factor (VEGF), arginase-I (ARG-1) and indole-
amine-2,3-dioxygenase (IDO). RCC also activates transforming growth
factor b (TGF-b), signal transducer and activator of transcription 3
(STAT3), promotes the accumulation of regulatory T cells (Tregs), mye-
loid-derived suppressor cells (MDSCs) and pro-tumorigenic M2 macro-
phages. RCC also impairs T cell function by the decreased expression of
the CD3z chain and the increased expression of the co-inhibitory mole-
cules PD-L1, B7-H4 and T cell immunoglobulin and mucin domain 3
(TIM-3). Finally, RCC impairs NK cell activity by shedding soluble MHC
class I-related chain A (MICA) into the circulation.

e1042198-2 Volume 4 Issue 10OncoImmunology



against RCC cancer cells would be desir-
able. However, RCC is able to counter-
act Th1 cell differentiation. Production
of IL-10 by the tumor cells causes Th1
cell loss and Th2 cell prevalence.24 Addi-
tionally, RCCs do not produce the nec-
essary cytokines, such as IL-2 and IL-12,
to foster an optimal development of
tumor-specific T cells. On the contrary,
they produce TGF-b, which is known to
stimulate the recruitment and activation
of CD4C CD25C FOXP3C Tregs.22,23

Under the influence of the chemokine
CCL22, Tregs accumulate at the tumor
site.44 They downregulate the function
of immune effector cells through secre-
tion of IL-10, TGF-b27,45 and the
immune-regulating enzyme indoleamine-
2,3-dioxygenase (IDO).37,46 Tregs are
detectable in the peripheral circulation.
Frequencies of Tregs in the peripheral
circulation of patients with RCC were

Figure 2. The immune evasion mechanisms
of RCC hinder the adaptive immune
response. Production of vascular endothelial
growth factor (VEGF) by renal cell carcinoma
(RCC) arrests the differentiation of myeloid
cells, resulting in the accumulation of imma-
ture myeloid cells. These immature myeloid
cells are called myeloid derived suppressor
cells (MDSCs) and block T cell responses by
producing immunosuppressive agents such
as arginase I. Arginase production by MDSCs
results in impaired T cell receptor (TCR) sig-
naling, causing a disturbed lytic function of
the CD8C T cells. VEGF, along with IL-6 and
IL-10, also induces the activation of signal
transducer and activator of transcription 3
(STAT3). STAT3 activation is thought to be
involved in the absence of functional DCs.
The expression the co-inhibitory molecule
programmed death ligand 1 (PD-L1) by RCC
might stimulate T cell inhibition. RCC cancer
cells also often express the negative co-
stimulatory molecule B7-H4. Recently, a new
co-inhibitory molecule, T cell immunoglobu-
lin and mucin domain 3 (TIM-3), was
described. The molecule induces T cell
death by binding its ligand, galactin-9. RCC
is able to counteract Th1 cell differentiation.
Production of IL-10 by the tumor cells
causes Th1 cell loss and Th2 cell prevalence.
RCCs also produce transforming growth fac-
tor (TGF)-b, which is known to stimulate the
recruitment and activation of regulatory T
cells (Tregs). They downregulate the func-
tion of immune effector cells through secre-
tion of immunosuppressive factors such as
indoleamine-2,3-dioxygenase (IDO).
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elevated 3-fold compared to healthy controls24 and increased fre-
quencies were associated with a shorter overall survival.40,47,48

RCC also influences the innate immune system (Fig. 1 Sup-
plementary data). In patients with RCC a high frequency of
natural killer (NK) cells in the lymphocytic infiltrate of the pri-
mary tumor seems to predict a better prognosis.49,50 However,
in advanced RCC, NK cell frequency and activity are often
decreased, correlating with poor survival.24 One possible mecha-
nism for the impaired NK cell activity is the shedding of MHC
class I-related chain A (MICA), a soluble NKG2D ligand, from
the tumor cell surface into the circulation.24 This causes a
down-modulation of the NK cell-activating receptor, NKG2D,
resulting in decreased cytotoxicity.51 In addition, by secreting
IL-10, cancer cells induce the polarization of tumor-associated
macrophages from a pro-inflammatory (M1) to an anti-inflam-
matory (M2) phenotype.24,52 It is STAT3 signaling that plays
an important role in this conversion.31 M1 macrophages are
hypothesized to bear antitumor activities because they produce
high levels of inflammatory cytokines, such as IL-12 and tumor
necrosis factor a (TNFa). On the contrary, M2 macrophages
produce anti-inflammatory cytokines, such as IL-10 and IL-
6.47,53 In RCC, M2 macrophages are associated with a more
advance tumor stage, while the opposite is held true for M1
macrophages.24,47,52

Immunogenic Potential of Radiotherapy in RCC

The role of radiotherapy in metastatic RCC is used to palli-
ate symptomatic metastases3 as RCC has been traditionally con-
sidered a radiation-resistant tumor. Although RCC might be
resistant to conventional fractionated radiation (daily fractions
of 1.8–3.0 Gy), a recent review suggested the opposite for hypo-
fractionated radiotherapy (HFRT), typically delivering � 5 Gy
per fraction, in a single or a few fractions. HFRT, results in a
different tumor radiobiology compared to conventional frac-
tionated radiotherapy. One of the effects involves increased
endothelial cell apoptosis, triggered by acid sphingomyelinase
(ASMase)-induced ceramide release. Others have suggested that
HFRT activates de novo synthesis of ceramide. Ceramide is
able to initiate an apoptotic cell death through the release of
mitochondrial cytochrome c.54 Therefore, HFRT, in contrast to
conventional radiotherapy, efficiently destroys tumor microvas-
culature and is expected to have better results in tumors that are
highly dependent on angiogenesis, such as RCC. This is sup-
ported by the excellent local tumor control of HFRT.55 HFRT
has already been proven to be very safe in the treatment of oli-
gometastatic disease. A systematic review of Kothari et al.
reported one year local control rates of 88% and 86% for intra-
and extracranial metastases, respectively. Grade 3–4 toxicity
ranged between 0 and 6%.56 A prospective phase II trial for
patients with brain metastases from so-called radio-resistant pri-
mary tumors, including RCC, showed median survival rates
with stereotactic radiosurgery (SRS), which were comparable to
surgical series.57 A prospective phase II trial using extracranial
HFRT in mRCC or inoperable primary RCC showed local

control in 98% of treated lesions,58 making it an excellent alter-
native to metastasectomy for treatment of extracranial metasta-
ses that are technically inoperable. Future randomized trials are
required to confirm the additional benefit of HFRT above con-
ventional radiotherapy.

The encouraging results of HFRT might also be explained by
the effect radiotherapy has on the immune system.59 In the next
paragraphs, we provide evidence for the potential of radiotherapy
in shifting the balance back toward tumor control (Fig. 3). To
date, little is known about which dose/fractionation regimens
optimally enhance the antitumor immune response (25), but the
majority of preclinical studies has investigated the effect of
HFRT (22, 25) (Table 1).

Radiotherapy is able to hinder RCC in escaping CTL-medi-
ated killing on different levels (Fig. 4). Firstly, irradiated dying
cells provide a source of multiple tumor antigens60,61 for cross-
presentation by circulating DCs.62-64 Radiotherapy stimulates
DC activation by inducing immunogenic cell death (ICD), a cell
death modality that is part of a ROS-dependent endoplasmic
reticulum (ER) stress response.59,62 ICD stimulates an immune
response against dead-cell associated antigens65 and is character-
ized by exposure of damage-associated molecular patterns
(DAMPs), such as calreticulin (CRT)60 and heat shock protein
(HSP)70 and release of high-mobility group box 1 (HMGB1)66

and adenosine triphosphate (ATP).60,67 These DAMPs are able
to stimulate DC maturation,68 diversifying the TCR repertoire
of tumor-specific T cells.69 Therefore, irradiated tumor cells
might serve as an in situ autologous tumor vaccine.63 Radiation
also induces interferon (IFN)g production within the tumor
microenvironment,70,71 which has been shown to enhance the
level of APM-components and to increase the expression of
MHC-I molecules on the surface of the tumor cells.14,60,62 Acti-
vation of the ceramide pathway in response to HFRT, triggers
vascular endothelial cell apoptosis via the ASMase pathway. Such
damage also stimulates expression of MHC molecules.72-74

Secondly, the upregulation of IFNg following radiotherapy
also plays a role in the trafficking of CD8C T cells68,75,76 leading
to the accumulation of CD8C T cells in the tumor. The efficacy
of high-dose radiotherapy has been proven to depend on the
presence of these CD8C T cells, since antibody-mediated deple-
tion of CD8C T cells completely abolished the therapeutic
effect.59,71 The accumulation of CD8C T cells is the result of dif-
ferent IFNg-induced mechanisms, such as the expression of the
adhesion molecules vascular cell adhesion molecule (VCAM)-170

and intercellular adhesion molecule (ICAM)-162,74 on tumor
vasculature, facilitating T cell adhesion before transmigration
and the secretion of CXCL9 and CXCL10, important T cell
chemo-attractants with an anti-angiogenic effect.70 Besides T
cells, they also attract monocytes who replenish the amount of
DC.77 The expression of the co-stimulatory molecule CD80 on
DCs in the tumor microenvironment has also been found to be
increased by radiation78 and could therefore shift the balance
toward T cell activation.

Thirdly, radiotherapy is able to restore the limited recruit-
ment of Th1-polarized lymphocytes in the tumor microenvi-
ronment of RCC14 by shifting the balance from a tumor
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microenvironment dominated by TGF-b toward a tumor
microenvironment enriched with IFNg, which is responsible
for the differentiation of CD4C T cells into Th1 cells. This
is important, because a Th2-dominated response was consis-
tently observed as a poor prognostic factor for patients with
RCC.79 Consequently, radiotherapy is able to induce tumor-
specific Th1 cells in the non-irradiated draining lymph nodes
of the irradiated tumor and favor the trafficking of effector
cells into tumors.

However, radiotherapy also induces immunosuppressive
mechanisms by activating TGF-b,80,81 stimulating Tregs and
inducing the activation of STAT3 and VEGF.82 STAT3 and
TGF-b, might hinder the response to ICD.14

Total dose, fractionation, dose distribution and timing of
radiotherapy are key variables in determining the effects of radio-
therapy on the immune system.83 In a murine melanoma model,
a hypofractionated regimen with two fractions of 7, 5 Gy gave
the best tumor control and tumor immunity while maintaining

low Treg numbers.84 However, the optimal radiation regimen
may not necessarily be the same for all tumor types or settings.

Radiotherapy influences components of the innate immune
response as well (Fig. 1 Supplementary data). Radiation increases
the surface expression of NKG2D ligand,85 which binds the NK
cell-activating receptor NKG2D, increasing the susceptibility of
NK cells. On the other hand, radiation might also decrease the
expression of the NK cell-activating NKG2D receptor,86 through
the release of TGF-b.80 In addition, radiotherapy induces the
expression of MHC-I molecules. Since NK cells destroy cells that
have downregulated expression of MHC class I molecules, induc-
tion of MHC-I expression might decrease recognition by NK
cells.87 Therefore, it is difficult to predict the net effect of radia-
tion therapy on NK cells. In addition, after radiotherapy a mis-
directed tissue repair response can promote tumor recurrence and
progression. This wound healing response is orchestrated by M2
macrophages who stimulate angiogenesis and contribute to the
suppression of antitumor immunity by secreting cytokines such
as IL-10.73,88 In contrast, other studies show that HFRT results
in the priming of MHC-I molecules and augments cytolytic
activity.89,90 Radiotherapy is also able to prime macrophages for
pro-inflammatory signaling in a dose-dependent manner, as
shown by enhanced IFNg-mediated NO production and
increased TLR-mediated TNF-a secretion.91,92 Furthermore,
conventional fractionated radiotherapy was observed to skew mac-
rophage function to an antitumor mode in different murine carci-
noma models93 and both conventional and HFRT caused a
significant increase of tumor-infiltrating M1 macrophages.94

Importantly, radiotherapy was able to enhance M2 activity in
C57BL/6 mice, while increasing M1 activity in CBA/CaJ mice.95

Thus, not only depending on the modulation of cytokine produc-
tion, but also on the experimental model, radiotherapy has been
reported to have different effect on tumor-infiltrating macro-
phages, therefore the net results in clinical practice is still unclear.

Repurposing of Molecular Targeted Therapies

Because the efficacy of antitumor immune responses
depends on the complex balance between diverse immune cells
and progressing tumor cells, radiotherapy alone is unlikely to
induce persistent antitumor immunity in all treated patients.
Therefore, a new role for radiotherapy in combination with
synergistic immunomodulatory agents is emerging.62 Signifi-
cant progress in the understanding of RCC biology has led to
the development of targeted therapies such as tyrosine kinase
inhibitors (TKIs), mTOR inhibitors and VEGF neutralizing
antibodies. Since the pro-oncogenic pathways targeted by these
therapies also drive many of the immune-evasion mechanisms
of RCC, target therapies have the capacity to optimize antitu-
mor immune responses.96 In the next paragraphs, we highlight
the immunomodulatory properties of these agents and will
suggest a combination schedule with radiotherapy based on
the available literature. The agents and their effects are sum-
marized in Table 2.

Figure 3. The balance between pro-immunogenic and immunosup-
pressive effects of radiotherapy and tumor rejection. Radiation pro-
motes the antitumor immune response. Key molecular signals that
promote priming of antitumor cytotoxic T cells (CTLs) by dendritic
cells (DCs) loaded with tumor antigens include exposure of calreticu-
lin (CRT) and heat shock protein (HSP) 70 and release of ATP and
high-mobility group box 1 (HMGB1). These signals are released by
the tumor cells undergoing a radiation-induced immunogenic cell
death. Tumor infiltration by T cells that produce interferon g (IFNg)
and tumor necrosis factor a (TNF-a) is facilitated by upregulation of
vascular cellular adhesion molecule 1 (VCAM-1) and intercellular
adhesion molecule-1 (ICAM-1) on tumor endothelium. Radiation-
induced upregulation of major histocompatibility complex class 1
(MHC-1), NKG2D ligands (NKG2DL) and the co-stimulatory molecule
CD80 on surviving tumor cells improves their recognition and killing
by T cells. On the other hand, radiation activates immunosuppressive
transforming growth factor b (TGF-b) and Signal transducer and acti-
vator of transcription 3 (STAT3), stimulates the secretion of vascular
endothelial growth factor (VEGF), and promotes accumulation of reg-
ulatory T cells (Tregs) and pro-tumorigenic M2 macrophages.

www.tandfonline.com e1042198-5OncoImmunology



In RCC, TKIs not only inhibit angiogenesis and tumor
growth, but also have the potential to interact with the
immune system.97 TKIs approved for treatment of advanced
RCC currently include sunitinib, sorafenib, pazopanib and
axitinib. They all target VEGFR, PDGFR and c-kit tyrosine
kinases, be it with a different affinity. The most-studied TKI
in the treatment of RCC, sunitinib, has important immu-
nostimulatory capacities. It causes downregulation of immu-
nosuppressive Tregs and MDSCs.97,98 It reduces the level of
MDSCs through three different mechanisms: the inhibition
of STAT3,99 the inhibition of c-kit100 and the inhibition of
VEGF receptors.96 Additionally, sunitinib stimulates T cell
priming by DCs. It also reduces the expression of co-inhibi-
tory molecules, such as PD-1 and CTL-associated protein 4
(CTLA-4).97 Importantly, sunitinib has already been
observed to safely potentiate the radiation-induced antitumor
response.17 To optimize the therapeutic effects of this com-
bination, we suggest that the administration of sunitinib
should be started prior to radiotherapy, since it affects T cell
priming and increases radiation sensitivity by normalizing
tumor vasculature.101,102 Because sunitinib also antagonizes
the immunosuppressive tumor microenvironment by reduc-
ing the levels of MDSCs, Tregs and co-inhibitory molecules,
it should be continued after radiotherapy as treatment con-
solidation.96 Unlike sunitinib, sorafenib has some immune
suppressive effects on DC and CD8C T cell function.103

Sorafenib lowers cytokine secretion by DCs, prevents upre-
gulation of co-stimulatory molecules and reduces the

capacity of APCs to stimulate T cell proliferation.104

Even though sorafenib also has some pro-immunogenic
activity,105–107 we believe it might not be an ideal candidate
to use before radiotherapy, since it might hinder tumor-spe-
cific T cell priming.96

Pazopanib and axitinib are more novel TKIs that also inhibit
VEGFR and c-kit kinases.108,109 Not much is known about their
immunomodulatory capacities. They might have similar effect as
sunitinib on the level of MDSCs. Treatment with axitinib in
combination with DC-based vaccination was observed to stimu-
late antitumor immune responses, by reducing the number of
intratumoral MDSCs and Tregs and activating tumor-specific
CD8C T cells.110 We suggest that pazopanib and axitinib treat-
ment should be combined with radiotherapy with the same
sequence as proposed for sunitinib.96 The safety of the combina-
tion of pazopanib with conventional radiotherapy has already
been investigated.111

mTOR inhibitors, temsirolimus and everolimus, are
known to promote Tregs.112 Combining radiotherapy with a
mTOR inhibitor might further boost the stimulation of
immunosuppressive Tregs. Even though mTOR inhibition
could also increase the quantity of memory T cells,113 it is
difficult to predict to which side the balance would be shifted
when radiotherapy is added to treatment with mTOR
inhibitors.

Bevacizumab is a monoclonal antibody neutralizing VEGFA.
Treatment with bevacizumab in combination with IFN-a is also
a first-line treatment in metastatic RCC. VEGFA blockade blocks

Table 1. Immunogenic potential of radiotherapy

A. Pro-immunogenic effects

Effect on the TME Conventional RT HFRT References

Increases the surface expression of NKG2D ligand Unknown Yes 81

Provide tumor antigens Unknown Yes 57,58

DC activation Yes Yes 56,61

CRT exposure Unknown Yes 57

ATP secretion Unknown Yes 57

Release of HMGB1 Unknown Yes 57

Increase of MHC-I expression Yes Yes 57,70

Increase of ICAM-1 expression Unknown Yes 57,70

Induction of IFNg production Unknown Yes 66

Induction of type 1 IFN Unknown Yes 72

Stimulation of CD8C effector T cells Unknown Yes 72

B. Immunosuppressive effects
Effect on the TME Conventional RT HFRT References
Induction of TGF-b Yes Yes 77

Secretion of VEGF Yes Yes 78

Induction of M2 macrophages Unknown Yes 69,84

Activation of STAT3 Unknown Yes 14,84

(A) Pro-immunogenic effects: Hypofractionated radiotherapy (HFRT) (fraction sizes more than 5 Gy) is known to promote the antitumor immune response by
upregulation of NKG2D ligands (NKG2DL), major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule 1 (ICAM-1). HFRT activates
dendritic cells (DCs) through exposure of calreticulin (CRT) and release of ATP and high-mobility group protein B1 (HMGB1). Activated DCs migrate to local
lymphoid organs and stimulate CD8C effector T cells. CD8C effector T cells will infiltrate the tumor and produce interferon g (IFNg).
Conventional radiotherapy (daily fractions of 1.8–3.0 Gy) is known to promote the antitumor immune response by upregulation of MHC-I and activation of
DCs.
(B) Immunosuppressive effects: HFRT is also known to activate signal transducer and activator of transcription 3 (STAT3), promote the secretion of vascular
endothelial growth factor (VEGF) and the accumulation of pro-tumorigenic M2 macrophages. Conventional radiotherapy has been observed to activate the
immunosuppressive transforming growth factor b (TGF-b) and VEGF.

e1042198-6 Volume 4 Issue 10OncoImmunology



STAT3 signaling and stimulates the
antigen presenting capacity of DCs
which results in increased T cell prolifer-
ation.114 Therefore, combination of
radiotherapy with bevacizumab might
promote the formation of a radiation-
induced antitumor immune response in
patients with RCC. Since bevacizumab
stimulates DC maturation and T cell
priming and increases radiation sensitiv-
ity, we suggest that bevacizumab should
be administrated prior to radiotherapy.96

Immunotherapy

The combination of radiotherapy
with immunotherapies that possess

Figure 4. Radiotherapy stimulates the adap-
tive immune response in RCC. Radiotherapy
is able to hinder renal cell carcinoma (RCC)
in escaping cytotoxic T lymphocytes (CTL)-
mediated killing on different levels. Irradi-
ated dying cells provide a source of multiple
tumor antigens for cross-presentation by cir-
culating dendritic cells (DCs) and increases
the expression of major histocompatibility
complex class I (MHC-I) molecules on the
surface of the tumor cells. Furthermore,
radiotherapy stimulates DC activation by
inducing immunogenic cell death (ICD), a
cell death modality that is characterized by
exposure of damage-associated molecular
patterns (DAMPs), such as calreticulin (CRT)
and heat shock protein (HSP)70 and release
of high-mobility group box 1 (HMGB1) and
adenosine triphosphate (ATP). These DAMPs
are able to stimulate DC maturation. Radia-
tion induces interferon (IFN)g production
which plays a role in the accumulation of
CD8C T cells and restores the limited recruit-
ment of Th1-polarized lymphocytes. IFNg
also induces the expression of the adhesion
molecules vascular cell adhesion molecule
(VCAM)-1 and intercellular adhesion mole-
cule (ICAM)-1 on tumor vasculature, facilitat-
ing T cell adhesion before transmigration.
Radiotherapy stimulates the secretion of
CXCL9 and CXCL10, which are known to be
important T cell chemo-attractants with an
antiangiogenic effect. Furthermore, activa-
tion of the ceramide pathway in response to
hypofractionated radiotherapy triggers vas-
cular endothelial cell apoptosis. Finally, the
expression of the co-stimulatory molecule
CD80 on DCs has also been found to be
increased by radiation and could therefore
shift the balance toward T cell activation.
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synergistic immunomodulatory properties might also be
promising.

Since IL-2 is known to stimulate Th1 responses and treat-
ment with high-dose IL-2 occasionally has been observed to
induce complete responses in patients with RCC,6 combining
it with radiotherapy may improve clinical effects. A phase 1
study evaluating the combination of SBRT and IL-2, could
not detect any dose-limiting adverse effects related to SBRT.
Furthermore, response to the combination therapy was corre-
lated to an increased frequency of proliferating early effector
CD4C memory T cells in the peripheral blood.13

Preclinical and clinical evidence suggest that inhibition of
CTLA-4, a known inhibitory competitor for the co-stimula-
tory molecules CD80 and CD86,115 might increase the stimu-
lation of antitumor T effector cells. Ipilimumab, an anti-
CTLA-4 antibody, was able to induce tumor regression in
10% of patients with metastatic RCC in a phase II study.116

Since anti-CTLA-4 antibodies decrease co-inhibitory signaling,
they might also be able to increase the strength of radiother-
apy-induced T cell stimulation. In a murine carcinoma model,
the combination of anti-CTLA-4 treatment and radiotherapy
was observed to inhibit tumor growth through the formation
of a stable interaction between TILs and tumor cells. This

stable interaction was largely due to the improved formation
of a NKG2D-mediated immunological synapse, complement-
ing weak stimulatory signals from the tumor cells.117 There
are already clinical cases and a phase I/II clinical trial69

describing an immune-mediated abscopal effect in melanoma
patients receiving a combination of high-dose radiotherapy
and ipilimumab.11,12 We suggest that anti-CTLA-4 antibodies
should be administered before radiotherapy since they stimu-
late the removal of Tregs and continued following radiother-
apy to prolong the proliferation of antitumor T effector
cells.96

Since resistance to the combination of HFRT and ipilimu-
mab in metastatic melanoma patients was correlated to an
upregulation of PD-L1, addition of PD-L1 blockade might
reverse T cell exhaustion and prevent resistance to the combina-
tion therapy. Importantly, preclinical evidence suggests that the
combination with radiotherapy is mandatory as dual checkpoint
blockade alone proved to be inferior.69 As previously described,
the co-inhibitory molecule PD-L1 suppresses T cell responses
in RCC, by binding PD-1, and could shift the balance toward
tumor progression.29 Furthermore, the expression of PD-L1 in
RCC is associated with aggressive tumor behavior and poor
outcome.39,40 Blocking PD-1 pathways, therefore, has the

Table 2. General working mechanism of approved targeted therapies and their effect on immune cells

Drug General working mechanism Effect on the immune system Refs.

Sunitinib Blocks multiple tumor-associated tyrosine kinases,
including VEGFR and PDGFR and c-kit tyrosine
kinases

Immunostimulatory: Blocks STAT3 Decreases numbers
and effectiveness of MDSCs and Treg cells
Stimulates T cell priming by DCs Blocks VEGF
signaling Reduces the expression of co-inhibitory
molecules PD-1 and CTLA-4

85–89,92

Sorafenib Blocks multiple tumor-associated tyrosine kinases,
including VEGFR and PDGFR and c-kit tyrosine
kinases

Immunostimulatory: reduces Tregs, decreases NK cell
inhibition, stimulates pro-inflammatory activity of
macrophages Immunosuppressive: prevents
upregulation of co-stimulatory molecules, reduces
T cell proliferation, lowers cytokine secretion by
DCs

92,94–96

Pazopanib Blocks multiple tumor-associated tyrosine kinases,
including VEGFR and PDGFR and c-kit tyrosine
kinases

Unknown 97

Axitinib Blocks multiple tumor-associated tyrosine kinases,
including VEGFR and PDGFR and c-kit tyrosine
kinases

Immunostimulatory: Reduces Tregs Reduces MDSCs 98,99

Temsirolimus and
EverolimusDmTOR inhibitors

Blocks mTOR pathway Immunostimulatory: enhances CD8C T cell activation,
enhance IFNg production, enhance CD8C T cell
differentiation into memory T cells and decreases
IDO expression Immunosuppressive: augments the
responsiveness of Tregs to antigen

85,102

Bevacizumab Blocks angiogenesis Immunostimulatory: Blocks STAT3 Increases DC
maturation Shifts DC differentiation toward mature
DCs instead of MDSCs Increases DC priming of T
cells

85

Summary of the most important immunomodulatory properties of approved targeted agents in the treatment of renal cell carcinoma. The immunomodula-
tory properties of not all the targeted agents have been thoroughly studied already.
Abbreviations: VEGFR: vascular endothelial growth factor receptor, PDGFR platelet derived growth factor receptor, STAT3: signal transducer and activator of
transcription 3, MDSCs: myeloid-derived suppressor cells, Tregs: regulatory T cells, DC: dendritic cell, VEGF: vascular endothelial growth factor, PD-1: pro-
grammed cell death protein-1, CTLA-4: cytotoxic T lymphocyte associated protein 4, NK cell: natural killer cell, mTOR: mammalian target of rapamycin, IFNg:
interferon g, IDO: indoleamine-2,3-dioxygenase.
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potential to increase antitumor immunity in RCC patients.
Blockade of PD-1 induced responses in 27% of patients with
RCC in a phase 1b study118 and response rates were higher in
patients with greater percentages of TILs and PD-L1 expres-
sion. Preclinical data confirm that HFRT in combination with
anti-PD-1 and anti-PD-L1 treatment synergistically promote
antitumor immunity.19,20 In RCC tumors with low inflamma-
tion, HFRT might create a more permissive tumor microenvi-
ronment, thereby increasing response rates to anti-PD-1/PD-L1
treatment in otherwise non-responding patients. As blockade of
PD-1 pathways prevents T cell exhaustion, we suggest it should
be administrated directly following radiotherapy. Finally, com-
binations of radiotherapy with inhibitors of B7-H4 and TIM-3
have not yet been investigated, but are interesting options con-
sidering their importance in the antitumor immune response as
described above.

Conclusion

RCC is considered an immunogenic tumor, but uses several
immune suppressive mechanisms to shift the balance from
tumor immune response toward tumor growth. Radiotherapy
tries to shift the balance back. However, radiotherapy alone is
unlikely to induce persistent antitumor immunity. Therefore,
the combination of radiotherapy with drugs having synergistic
immunomodulatory properties holds great promise in

preventing the immune escape in RCC and might result in
superior therapeutic responses. Consequently, prospective trials
examining these combinations hold great potential. It should be
considered that HFRT might increase the risk of inflammatory
reactions. Therefore, phase I trials, assessing the safety of these
novel combinations, are essential. In addition, preclinical evi-
dence suggests that high-dose radiation, such as typically deliv-
ered by HFRT, results in increased antitumor immunity.
Preclinical data also indicate that fractionated radiotherapy
might be preferable to single dose radiation. However, these
findings need to be confirmed in clinical studies. Besides the
optimal HFRT pattern, it is just as important to determine the
optimal timing of each treatment combination. Since the opti-
mal treatment sequence, leading to maximum immunologic
and clinical benefit while maintaining tolerable toxicities, may
vary depending on the specific type of agent used.
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