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A certified plasmid reference material for the standardisation
of BCR–ABL1 mRNA quantification by real-time
quantitative PCR
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M Catherwood11, J-M Cayuela12, S Chudleigh13, T Clench14, D Colomer15, F Daraio16, S Dulucq17, J Farrugia18, L Fletcher19, L Foroni20, R Ganderton21,
G Gerrard20, E Gineikienė22, S Hayette23, H El Housni24, B Izzo25, M Jansson26, P Johnels27, T Jurcek28, V Kairisto29, A Kizilors30, D-W Kim31, T Lange32, T Lion33,
KM Polakova34, G Martinelli35, S McCarron36, PA Merle37, B Milner38, G Mitterbauer-Hohendanner39, M Nagar40, G Nickless41, J Nomdedéu42, DA Nymoen43,
EO Leibundgut44, U Ozbek45, T Pajič46, H Pfeifer47, C Preudhomme48, K Raudsepp49, G Romeo50, T Sacha51, R Talmaci52, T Touloumenidou53,
VHJ Van der Velden54, P Waits55, L Wang56, E Wilkinson57, G Wilson58, D Wren59, R Zadro60, J Ziermann61, K Zoi62, MC Müller63, A Hochhaus61,
H Schimmel3, NCP Cross1,2 and H Emons3

Serial quantification of BCR–ABL1 mRNA is an important therapeutic indicator in chronic myeloid leukaemia, but there is a
substantial variation in results reported by different laboratories. To improve comparability, an internationally accepted plasmid
certified reference material (CRM) was developed according to ISO Guide 34:2009. Fragments of BCR–ABL1 (e14a2 mRNA fusion),
BCR and GUSB transcripts were amplified and cloned into pUC18 to yield plasmid pIRMM0099. Six different linearised plasmid
solutions were produced with the following copy number concentrations, assigned by digital PCR, and expanded uncertainties:
1.08 ± 0.13 × 106, 1.08 ± 0.11 × 105, 1.03 ± 0.10 × 104, 1.02 ± 0.09 × 103, 1.04 ± 0.10 × 102 and 10.0 ± 1.5 copies/μl. The certification of
the material for the number of specific DNA fragments per plasmid, copy number concentration of the plasmid solutions and the
assessment of inter-unit heterogeneity and stability were performed according to ISO Guide 35:2006. Two suitability studies
performed by 63 BCR–ABL1 testing laboratories demonstrated that this set of 6 plasmid CRMs can help to standardise a number of
measured transcripts of e14a2 BCR–ABL1 and three control genes (ABL1, BCR and GUSB). The set of six plasmid CRMs is distributed
worldwide by the Institute for Reference Materials and Measurements (Belgium) and its authorised distributors (https://ec.europa.
eu/jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f).
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INTRODUCTION
The BCR–ABL1 fusion gene is the primary pathogenic driver of
chronic myeloid leukaemia (CML) and also characterizes a subset
of patients with acute lymphoblastic leukaemia. As well as being
of diagnostic importance, BCR–ABL1 also serves as a specific
marker of the malignant clone, and many laboratories worldwide
routinely use serial reverse-transcription quantitative PCR (RT-
qPCR) analysis to monitor the response of, individual CML or acute
lymphoblastic leukaemia, patients to treatment.1–3 Indeed, inter-
national recommendations for the management of CML include
key time-dependent therapeutic milestones based in part on such
molecular monitoring.4

For routine testing, two measurements are typically made for
each sample under investigation: an estimate of the number of
BCR–ABL1 transcripts as a measure of the burden of leukaemia and
also the number of transcripts of an internal reference or control
gene (CG) as a measure of overall quantity and quality of cDNA.
Results for specimens that test positive for BCR–ABL1 are
expressed as the ratio of BCR–ABL1/CG transcript numbers in the
same volume of cDNA, subject to previously described perfor-
mance criteria.5,6 For samples that test negative for BCR–ABL1, the
number of CG transcripts gives an indication of the sensitivity with
which residual disease can be excluded for that particular
specimen.1 However, despite the established clinical utility of
RT-qPCR for monitoring of CML patients, the comparability of
results between testing laboratories may vary widely.7 A major
contributor to this variability is the use of different CGs to
normalise results.
To help improve the comparability of results, an International

Scale (IS) for BCR–ABL1 was proposed,8 which is gradually being
implemented by testing laboratories worldwide, most commonly
by the derivation of laboratory-specific conversion factors (CFs) or
the use of IS-calibrated kits or reagents.9–11 The IS expresses
results as a percentage relative to the standardised baseline
established in the International Randomized Study of Interferon
and STI571 study; for example, major molecular response (MR),
which corresponds to a 3-log reduction from the standardised
baseline, is defined as 0.1% BCR–ABLIS.8,12 However, the IS was
conceived at a time when most patients had RT-qPCR detectable
disease and a major clinical consideration was whether a patient
had or had not achieved major MR.13 Second-generation tyrosine
kinase inhibitors result in faster and deeper responses compared
with imatinib,14,15 and have prompted the need to define levels of
deeper MR within the context of the IS. For example MR4, which
corresponds to a 4-log reduction from the International Rando-
mized Study of Interferon standardized baseline, has been defined
as either (i) detectable disease ⩽ 0.01% BCR–ABLIS or (ii)
undetectable disease in cDNA with ⩾ 10 000 ABL1 CG
transcripts.16 Importantly, many patients treated with second-
generation tyrosine kinase inhibitors (as well as an increasing
proportion of patients treated long-term with imatinib)17 have
undetectable BCR–ABL1 mRNA by RT-qPCR and thus, it has
become increasingly important for testing laboratories to estimate
comparable and reliable numbers of CG transcripts. Indeed, recent
data from the German CML-Study IV have shown that achieve-
ment of confirmed MR4,5 at 4 years predicted significantly higher
survival probabilities compared with cases who only achieved
0.1–1% BCR–ABLIS.17

Determination of the number of BCR–ABL1 and CG transcripts
are typically performed by using a plasmid calibrator, however
different calibrators (developed in house or commercially avail-
able) are in use worldwide and until now no common reference
material exists to which they could be aligned. The aim of this
study was to develop an internationally accepted plasmid certified
reference material (CRM) that includes BCR–ABL1 and the three
most commonly used CGs (ABL1, BCR and GUSB) to help calibrate

all measurements of residual disease in CML, and in particular,
levels of deep MR.

MATERIALS AND METHODS
Preparation of individual certified plasmid solutions
Six plasmid solutions (ERM-AD623a-f), each with a different concentration
level, were prepared starting from individual aliquots of the linearised
stock pIRMM0099 plasmid (Figure 1 and Supplementary Methods).
Dilutions were made in T1E0.01 buffer containing 50 ng/μl Escherichia coli
tRNA (Sigma-Aldrich, Gillingham, UK) to yield a range spanning 106–10

copies/μl. The plasmid solutions were sterilised by filtration with a 0.22-μm
pore size hydrophilic polyethersulphone membrane (Merck Millipore,
Watford, UK) and dispensed into high recovery polypropylene vials. A total
of 5000 vials containing approximately 600 μl of plasmid solution were
produced for each dilution.

Digital PCR
Digital PCR was performed by three experienced laboratories: Institute for
Reference Materials and Measurements, Geel, Belgium; LGC Limited,
Molecular and Cell Biology Team, Teddington, UK and National Measure-
ment Institute, Department of Innovation, Industry, Science and Research,
Bioanalysis Group, West Lindfield, NSW, Australia. All three laboratories
used the BioMark System (Fluidigm, South San Francisco, CA, USA) and the
12 756 digital array Integrated Fluidic Circuit, which comprises 765
individual partitions of approximately 6 nl volume each with total volume
per panel of approximately 4.6 μl. Two PCR targets (one for ABL1 and one
for BCR–ABL1 e14a2) were amplified in duplex reaction using the Europe
Against Cancer primer/probe sets.5,18 Each sample was analysed on five
panels of one digital array and the mean of these five results was
considered as one measurement.

Quantitative real-time PCR
Quantitative real-time PCR (qPCR) measurements to assess the homo-
geneity and stability were performed by the Institute for Reference
Materials and Measurements, Geel, Belgium, using the ABI 7900 HT
instrument (Applied Biosystems, Lennik, Belgium). The PCR conditions
were the same as those used for the digital PCR measurements. For each
concentration level, several vials were selected for the homogeneity and
stability studies using a random stratified-sampling approach scheme for

Figure 1. Schematic map of the multitarget plasmid pIRMM0099.
The arrows represent the inserts from the transcript fragments of
BCR, GUSB and BCR–ABL1. The rectangles show the location of the
PCR targets BCR–ABL1 and ABL1 (the ABL1 CG is within the BCR–ABL1
fragment) used quantify the copy number concentration of the
plasmid. The single restriction site for EcoRV is also shown.
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the whole batch. Each vial was measured three times in separate qPCR
runs, and every measurement result was the mean result from three PCR
wells (triplicate). A calibration curve with common plasmid solutions of
pIRMM0099, produced independently from the stock solutions of ERM-
AD623, was included in every qPCR run. This study design avoided
'between-run' effects by using a common calibrant for the calibration
curves on each plate. The qPCR results of the BCR–ABL1 PCR target showed
the best method repeatability, so these results were used to assess the
homogeneity and stability. The set-up of these experiments is described in
detail in the certification report of ERM-AD623.19

Statistical analysis
The certified copy number concentration of the six ERM-AD623 plasmid
solutions was defined as the mean value of the accepted results from the
digital PCR measurements. The combined expanded uncertainties
associated with these copy number concentrations consist of uncertainties
related to characterisation (uchar), potential between-unit heterogeneity
(ubb) and potential degradation during long-term storage (ults). These
different contributions were combined to estimate the expanded, relative
uncertainty of the certified values (uCRM, rel) with coverage factor k:

uCRM; rel ¼ k ´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2char; rel þ u2bb; rel þ u2lts; rel

q

Based on the degrees of freedom of the different uncertainty contribu-
tions, a coverage factor k of 2 was applied to obtain the expanded
uncertainties.20 The calculation of the individual uncertainty contributions
(uchar, ubb and ults) are described in the certification report.19

RESULTS
Characterisation of copy number concentration
The certified values for the copy number concentration for the six
plasmid solutions (ERM-AD623a-f) were determined by digital PCR
measurements, carried out in three experienced laboratories.
Eighteen vials of each concentration level were selected using a
random stratified-sampling scheme. Each laboratory received six
vials of each concentration level and was requested to provide six
independent results, one per vial. The content of each vial was
diluted gravimetrically and measured on different days and
different arrays. For each concentration level, 18 independent
results were obtained (Supplementary Table 4). Owing to the
technical errors, two independent digital PCR results (one for ERM-
AD623a and one for ERM-AD623f) were rejected. For each
concentration level, the mean value of the accepted independent
digital PCR results was assigned as the certified value for the copy
number concentration of the plasmid (Table 1). The uncertainty
related to this characterisation exercise, uchar, was also calculated;
no statistical difference between the results reported by the three
laboratories was found (Supplementary Table 5).

Assessment of homogeneity and stability
Homogeneity and stability studies for each concentration level
were performed with qPCR measurements. Inter-unit homogene-
ity was evaluated to ensure that the certified copy number
concentration of each plasmid solution was valid, within a stated
uncertainty, for all vials produced for that concentration level. For
each concentration level, 23 vials were analysed and statistical
analysis of the results showed no outlying results or trends in the
filling sequence (Supplementary Figure 3), suggesting that for
each concentration level a homogeneous batch was produced.
The relative uncertainty related to possible (undetected)
heterogeneity, ubb, rel was calculated for each concentration level
(Table 1).
Stability testing was performed to establish conditions for long-

term and short-term storage using an isochronous design.21 For
the short-term stability study, 20 vials of each concentration level
were selected and stored at 4 °C for 0, 1, 2 or 4 weeks. All six
concentration levels were found to be stable at 4 °C for 4 weeks
(Supplementary Figure 4). In the long-term stability study, the
stability of each concentration level at − 20 °C was tested for nine
different time periods with a maximum of 24 months. Based on
these results, it can be concluded that the plasmid CRMs can be
stored at − 20 °C (Supplementary Figure 5). The relative uncertain-
ties related to the stability during long-term storage (24 months)
at − 20 °C, ults, rel were calculated for each concentration level and
are listed in Table 1. In addition, the stability of the plasmid
solutions after several freeze-thaw cycles was assessed in a small
stability study, with a study design similar to the isochronous
study design: 20 vials were exposed to 0, 5, 10 and 20 freeze-thaw
cycles. The results obtained for the highest concentration level
(ERM-AD623a) showed no significant degradation after 5 or 10
freeze-thaw cycles, however lower copy number concentrations
were detected in the vials that were exposed to 20 freeze-thaw
cycles. For the other concentration levels that were tested, no
degradation was observed after 20 freeze-thaw cycles
(Supplementary Figure 6). Although possible degradation was
only observed for one concentration level, it was concluded that
the plasmid solutions should not be exposed to more than 10
freeze-thaw cycles.

Suitability
Two suitability studies were performed to test the performance of
the plasmid solutions (as detailed in the Supplementary Methods).
In the small scale study, nine laboratories were included which
used 14 validated qPCR assays with one of the three CG: ABL1, BCR
or GUSB (Supplementary Table 6). The results obtained with each
of these 14 assays were considered as separate data sets.
Laboratories were asked to generate 16 standard curves; 8 for

Table 1. Certified copy number concentrations of double-stranded plasmid DNA and their uncertainties for the six ERM-AD623 dilutions

CRM Copy numbera concentration
of the plasmid (cp/μl)

uchar, rel
(%)

ubb, rel
(%)

ults, rel
(%)

uCRM, rel

(%)
uCRM (cp/μl)

ERM-AD623a 1.08 × 106 3.28 3.57 2.75 11.15 0.13 × 106

ERM-AD623b 1.08 × 105 3.58 2.88 2.21 10.19 0.11 × 105

ERM-AD623c 1.03 × 104 3.01 2.59 2.81 9.73 0.10 × 104

ERM-AD623d 1.02 × 103 2.66 2.47 2.11 8.40 0.09 × 103

ERM-AD623e 1.04 × 102 3.06 2.75 2.43 9.56 0.10 × 102

ERM-AD623f 10.0 4.28 4.37 3.83 14.42 1.5

Abbreviations: CRM, certified reference material; ubb, rel, relative uncertainity related to potential between-unit heterogeneity of the material; uchar, rel, relative
uncertainity related to the charecterisation study; uCRM, expanded uncertainity of the certified value (with k= 2); uCRM, rel, relative expanded uncertainity of the
certified value (with k= 2); ults, rel, relative uncertainity related to potential degradation during long-term storage (24 months at − 20 °C). aAs the copy number
concentrations refer to the copy numbers of double-stranded plasmid, these numbers should be doubled when calibrating quantitative real-time PCR
experiments that measure single-stranded cDNA samples.
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their CG(s) of choice and 8 for BCR–ABL1 e14a2, using two sets of
ERM-AD623. In addition, each lab measured two common cDNA
samples using the 16 calibration curves. The data were evaluated
for their technical validity and some data were rejected due to one
of the following reasons: deviations from the study protocol,
degradation of cDNA samples during transport or too much
variation6 within triplicate measurements, suggesting pipetting
errors. For one data set, all results were rejected due to technical
reasons. For the remaining 13 data sets, 174 individual calibration
curves were accepted and evaluated for their slope and co-
efficient of determination (r2). In total, 171/174 (98.3%) calibration
curves had a slope within the range of − 3.1 to − 3.6; BCR–ABL1
(n= 84), ABL1 (n= 36), BCR (n= 23) and GUSB (n= 28). Three (1.7%)
calibration curves had a gradient less than − 3.60 (−3.61 (n= 2),
− 3.62 (n= 1)). All calibration curves had an r2 above 0.993.
For the cDNA sample with the highest level of BCR–ABL1, 11

data sets provided technically acceptable results. For the other
cDNA sample, one data set had to be removed as the cDNA
sample was thawed during transportation, and thus 10 data sets
were accepted. The estimated copy number concentration of
BCR–ABL1 were equivalent among the different data sets obtained
by qPCR methods based on the Taqman technology
(Supplementary Figure 7). However, for the qPCR method based
on the LightCycler technology the measured copy number
concentration of BCR–ABL1 had the tendency to be 1.5–2.0 times
lower. When comparing the BCR–ABL1/CG copy number ratio
measured with Taqman-based or LightCycler-based methods the
difference was smaller, as the measured copy number concentra-
tions of CG were also lower with the LightCycler-based methods.
(Supplementary Figure 8). However, the number of data sets per
CG were too low to obtain conclusive results. Based on this
suitability study, it was concluded that the six CRMs performed
satisfactorily and can be used to calibrate different qPCR
measurements, by determining the copy numbers of BCR–ABL1
e14a2, ABL1, BCR and GUSB.
A larger suitability study was performed where two different

levels of BCR–ABL1 e14a2 aRNA diluted in a background of ABL1
aRNA predicted to correspond to approximately 0.1%, and 0.01%
BCR–ABL1/ABL1 plus three different HL60/K562 cell line lysates
(~5%, 0.05%, 0.005% BCR–ABL1IS) were sent to 57 European
laboratories. These laboratories used a variety of different assays

(Supplementary Table 7) for analysis. Analysis of the cell line and
aRNA samples indicated a good agreement between the BCR–
ABL1/ABL1 copy number ratios obtained with the laboratory
calibrators and with ERM-AD623. Importantly, the degree of
agreement between centres was significantly improved by the use
of ERM-AD623 (Figures 2 and 3). As shown in Tables 2 and 3, the
percentage of laboratories reporting results within twofold of the
median or expected values was better when ERM-AD623 was used
for all comparisons. Results within fivefold were equal or better
when ERM-AD623 was used. It was not possible to perform a
similar comparison for other CGs, as none of the participating
laboratories used BCR and only six used GUSB.
Estimates of BCR–ABL1 and ABL1 copy number concentrations

were very similar with laboratory calibrators and ERM-AD623 for
both the cell line and aRNA dilutions (Figures 4 and 5). However,
the aRNA samples were each predicted to contain 305 500 ABL1
copies/μl, plus variable amounts of BCR–ABL1. When laboratory
data were corrected for the amount of aRNA added to the PCR
(which varied between centres as they were asked to use their
routine protocols), the median number of ABL1 copies per μl aRNA
was 49 347 using the laboratory standard curve and 56 992 using
ERM-AD623 as a standard curve.

DISCUSSION
Over the years, several different in-house and commercial plasmid
calibrators for BCR–ABL1 and CG measurement by RT-qPCR have
been developed. Typically, these calibrators have independently
assigned copy number concentrations based on their molecular
weight and DNA concentration, but in the absence of an
internationally accepted CRM it is inevitable that variation
between calibrators has become established. Although the
magnitude of this variation is not known, it is likely to adversely
affect patient results since our study, as well as a previous study,
both found that the use of a common plasmid calibrator
substantially improves the comparability of test sample results
between centres.22 Although it is likely that this variation may
have been at least partly captured by laboratory-specific CFs, for
samples with detectable disease, there is an increasing clinical
need for laboratories to make comparable estimates of test
sensitivity when BCR–ABL1 is undetectable. Thus, there is an
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increasing need for laboratories to be able to make comparable
and reliable estimates of CG transcript numbers.
We have developed a plasmid CRM, ERM-AD623, as a tool to

help standardise the measurement of residual disease in CML.
ERM-AD623 consists of a set of six plasmid solutions that are
certified for the number of specific DNA fragments per plasmid
and the copy number concentration of the plasmid. The number
of specific DNA fragments per plasmid is defined by the sequence
identity of the plasmid, as determined by dideoxy termination
sequencing of the entire plasmid. The plasmid contains three
inserts, which are all present as a single copy: one DNA fragment
specific for the BCR–ABL1 e14a2 transcript, one DNA fragment
specific for the GUSB transcript and one DNA fragment specific for
the BCR transcript (Supplementary Table 2). The insert from the

BCR–ABL1 e14a2 transcript also contains a large fragment from the
native ABL1 transcript. As a consequence, the copy number ratios
BCR–ABL1/ABL1, BCR–ABL1/GUSB and BCR–ABL1/BCR of the plas-
mid are 1/1. The uncertainties related to these copy number ratios
are considered to be negligible. The copy number concentration
of the plasmid in the six plasmid solutions was determined by
digital PCR. The expanded uncertainties, uCRM, associated with the
certified copy number concentrations include the uncertainties
related to characterisation, uchar; potential between-unit hetero-
geneity, ubb; and potential degradation during long-term storage,
ults (Table 1). Homogeneity was demonstrated and the conditions
for storage were established by stability testing.
The suitability of ERM-AD623 as a calibrator for qPCR-methods

quantifying the level of BCR–ABL1 e14a2 transcript in cDNA
samples was also investigated in two multicentre studies. The
plasmid CRM is intended to calibrate the qPCR measurement and
not the whole RT-qPCR process, including RNA extraction and
reverse transcription. Therefore, no formal commutability studies
could be performed. Instead, the suitability studies showed that
the analytical behaviour (defined by the r2 and the slope of the
calibration curve) of the plasmid solutions in different qPCR assays
is within previously defined recommendations.6,23 In the small-
scale suitability study, ERM-AD623 was used to calibrate qPCR
measurements of two common cDNA samples. The BCR–ABL1/CG
copy number ratios thus obtained were equivalent between the
different qPCR assays used. However, when comparing the copy
number concentration of BCR–ABL1, these results seem to confirm
the previously reported variability between methods using
TaqMan platforms versus methods using LightCycler platforms.22

This variation may be partly due to the lower input of cDNA in
many LightCycler protocols and is likely captured by CFs for
detectable disease for which a BCR–ABL1/CG ratio can be
calculated. This difference might, however, may need to be taken
into consideration in attempts to standardise measurement of
undetectable disease. In the large-scale suitability study, we found
that the use of ERM-AD623 improved the degree of agreement of
results when BCR–ABL1 is detectable for both cell lines and aRNAs.
However, there were still large differences in estimates of CG copy
numbers for the aRNA samples, for which the initial number of
RNA molecules was known. Overall, the median estimates of ABL1
and BCR–ABL1 aRNA numbers were five- to sixfold lower than
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Figure 3. Comparison of measured % BCR-ABL1/ABL1 ratio between laboratory calibrators (Lab) and ERM-AD623 for the aRNA mixtures. Data from
all centres in the second suitability study that used ABL1 as a control gene and returned aRNA data are included; median values are indicated.

Table 2. Comparison of results for the cell line dilutions using local
calibrators (Lab) and ERM-AD623

Cell line
dilution

Standard
curve

Median value
(% BCR–ABL1/CG)

% Labs within
twofold

% Labs within
fivefold

Level 1 Lab 5.732 80.8 100
Level 2 Lab 0.043 75.0 96.1
Level 3 Lab 0.004 67.3 86.5
Level 1 ERM-AD623 4.636 92.3 100
Level 2 ERM-AD623 0.034 86.5 96.1
Level 3 ERM-AD623 0.003 80.8 94.2

Table 3. Comparison of results for the aRNA mixtures using local
calibrators (Lab) and ERM-AD623

aRNA
mixture

Standard
curve

Predicted value
(% BCR–ABL1/CG)

% Labs within
twofold

% Labs within
fivefold

Level 1 Lab 0.1 72 92
Level 2 Lab 0.01 64 94
Level 1 ERM-AD623 0.1 80 94
Level 2 ERM-AD623 0.01 72 92
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expected (Figure 5), suggesting that there is substantial room for
most laboratories to improve the efficiency of reverse transcrip-
tion and consequently the sensitivity of their assays.
ERM-AD623 is provided as a set of six plasmid solutions that

should be used to construct calibration curves for both BCR–ABL1
e14a2 and the CG of choice. As the sequences of BCR–ABL1 and
the CG are located on the same plasmid, the contribution of the
calibrator to the measurement uncertainty associated with the
measured value for the copy number ratio BCR–ABL1/CG is
negligible. Furthermore, we anticipate that having BCR–ABL1 and
the CG on the same construct will help to reduce variability
compared to assays that use different plasmid calibrators for
different targets. Nevertheless, the uncertainty associated with the
certified copy number concentrations of the ERM-AD623 solutions
must be taken into account when reporting results.

Roughly 98% of CML patients express a p210 BCR–ABL protein,
which is encoded in about half of cases by an e14a2 mRNA fusion
(BCR exon 14 spliced to ABL1 exon 2; also known as b3a2).
A similar proportion expresses the smaller e13a2 (also known as
b2a2) variant. About 10% of cases express both e14a2 and e13a2.
The remaining 2% of cases are accounted for by multiple-atypical
variants, the most common of which are e14a3, e13a3, e6a2,
e19a2 and e1a2. Most (70%) cases of BCR–ABL1-positive acute
lymphoblastic leukaemia cases express e1a2, with the remaining
30% split, expressing e14a2 and/or e13a2. As e14a2 and e13a2
only differ by 75bp, many laboratories use a common probe/
primer set to amplify cDNA derived from both transcripts.
However, it should be noted that ERM-AD623 is only certified
for the measurement of e14a2 BCR–ABL1; for e13a2 the suitability
of ERM-AD623 has to be verified at each laboratory by
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determining that e14a2 and e13a2 are amplified with equal
efficiencies, which can be determined from the standard curve
equations by looking specifically at the gradient and intercept
components. Importantly, the certified copy number concentra-
tions of ERM-AD623 refer to numbers of double-stranded plasmid
molecules and thus should be doubled for use as a qPCR calibrator
for single-stranded cDNA.
It is important to note that the use of ERM-AD623 does not by

itself produce results on the IS; instead it helps to improve the
accuracy of results prior to conversion as well as the accuracy of
CG copy-number estimates for samples where BCR–ABL1 is not
detected. Conversion to the IS requires established CFs processes9

or the use of secondary reference materials that are traceable to
the World Health Organisation International Genetic Reference
Panel for the Quantification of BCR–ABL translocation.10 The
combination of CFs and a common plasmid calibrator should help
testing laboratories to generate standardized results. However,
some lack of agreement between results from different labora-
tories using diverse methodologies and CGs will remain. Whether
this remaining disagreement is acceptable, depends on the effect
it has on clinical interpretation. When evaluating the performance
characteristics of a method, two factors should be considered:
trueness (that is the degree of closeness of mean measured-
quantity value and the true-quantity value) and the precision (that
is the degree to which repeated measurements under unchanged
conditions show the same results). The trueness of a method can
be estimated by comparing the average value obtained from
several replicate measurements on a reference material with an
established IS value. The precision of a method can be estimated
from the 95% limit of agreement of all the individual measure-
ment results obtained for the reference material.24 Existing
experience with the set-up and validation of laboratory-specific
CFs has shown that an average difference within ± 1.2-fold of the
established value and 95% limits of agreement within ± 5-fold of
the established value were achieved by the best performing
methods.9 This led to an major MR concordance rate of 91%, a
level of agreement which probably represents the maximum that
can be achieved using the current RT-qPCR technology.
Although ERM-AD623 can be used by testing laboratories on a

day-to-day basis, it may be used to align local plasmid calibrators,
if that is preferred. It can also be used for assay optimisation, for
example the cycle threshold or crossing point values for BCR–ABL1
e14a2, and each CG should be identical for each dilution as they
are present in a 1/1 ratio. It should be noted that the certified
values refer to the use of 5 μl of each dilution; users may wish to
use smaller volumes but the uncertainty of the certified value in
that case would need to be determined and would be expected to
be greater than that stated. In particular, for the lowest level
dilution (CRM code ERM-AD623f) Poisson distribution effects
would have to be taken into consideration. The plasmid dilutions
can be obtained from the Institute for Reference Materials and
Measurements or its authorised distributors (https://ec.europa.eu/
jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f)

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
Initial development of the plasmid was supported by the UK Department of Health.
The second suitability study was funded by the European LeukemiaNet (Heidelberg,
Germany) and Novartis Pharmaceuticals, Basel, Switzerland, via the ‘European
Treatment and Outcome Study’, EUTOS. We thank LGC Limited, Molecular and Cell
Biology Team, Teddington, UK, the National Measurement Institute (NMI), Depart-
ment of Innovation, Industry, Science and Research, Bioanalysis Group, West
Lindfield, Australia and Asuragen Inc., 2150 Woodward St, Austin, TX 78744, USA,
for their contributions to this work and Paul Strike (NHS Research Design Service
South West) for statistical advice.

REFERENCES
1 Cross NC. Standardisation of molecular monitoring for chronic myeloid leukaemia.

Best Pract Res Clin Haematol 2009; 22: 355–365.
2 Press RD, Kamel-Reid S, Ang D. BCR–ABL1 RT-qPCR for monitoring the molecular

response to tyrosine kinase inhibitors in chronic myeloid leukemia. J Mol Diagn
2013; 15: 565–576.

3 Branford S, Prime J. Chronic myelogenous leukemia: monitoring response to
therapy. Curr Hematol Malig Rep 2011; 6: 75–81.

4 Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF et al.
European LeukemiaNet recommendations for the management of chronic
myeloid leukemia. Blood 2013; 122: 872–884.

5 Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al.
Standardization and quality control studies of 'real-time' quantitative reverse
transcriptase polymerase chain reaction of fusion gene transcripts for residual
disease detection in leukemia—a Europe Against Cancer program. Leukemia
2003; 17: 2318–2357.

6 Foroni L, Wilson G, Gerrard G, Mason J, Grimwade D, White HE et al. Guidelines
for the measurement of BCR–ABL1 transcripts in chronic myeloid leukaemia.
Br J Haematol 2011; 153: 179–190.

7 Zhang T, Grenier S, Nwachukwu B, Wei C, Lipton JH, Kamel-Reid S et al.
Inter-laboratory comparison of chronic myeloid leukemia minimal residual dis-
ease monitoring: summary and recommendations. J Mol Diagn 2007; 9: 421–430.

8 Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J et al.
Monitoring CML patients responding to treatment with tyrosine kinase inhibitors:
review and recommendations for harmonizing current methodology for detect-
ing BCR–ABL transcripts and kinase domain mutations and for expressing results.
Blood 2006; 108: 28–37.

9 Branford S, Fletcher L, Cross NC, Muller MC, Hochhaus A, Kim DW et al. Desirable
performance characteristics for BCR–ABL measurement on an international
reporting scale to allow consistent interpretation of individual patient response
and comparison of response rates between clinical trials. Blood 2008; 112:
3330–3338.

10 White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Lynn Wang Y et al.
Establishment of the first World Health Organization International Genetic
Reference Panel for quantitation of BCR–ABL mRNA. Blood 2010; 116: e111–e117.

11 White HE, Hedges J, Bendit I, Branford S, Colomer D, Hochhaus A et al.
Establishment and validation of analytical reference panels for the standardiza-
tion of quantitative BCR–ABL1 measurements on the international scale. Clin
Chem 2013; 59: 938–948.

12 Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al.
Frequency of major molecular responses to imatinib or interferon alfa plus
cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349:
1423–1432.

13 Muller MC, Cross NC, Erben P, Schenk T, Hanfstein B, Ernst T et al. Harmonization
of molecular monitoring of CML therapy in Europe. Leukemia 2009; 23:
1957–1963.

14 Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C et al. Nilotinib
versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med
2010; 362: 2251–2259.

15 Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M et al. Dasatinib
versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
N Engl J Med 2010; 362: 2260–2270.

16 Cross NC, White HE, Muller MC, Saglio G, Hochhaus A. Standardized definitions
of molecular response in chronic myeloid leukemia. Leukemia 2012; 26:
2172–2175.

17 Hehlmann R, Muller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A et al.
Deep molecular response is reached by the majority of patients treated with
imatinib, predicts survival, and is achieved more quickly by optimized high-dose
imatinib: results from the randomized CML-study IV. J Clin Oncol 2014; 32:
415–423.

18 Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al.
Evaluation of candidate control genes for diagnosis and residual disease detec-
tion in leukemic patients using 'real-time' quantitative reverse-transcriptase
polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia
2003; 17: 2474–2486.

19 Deprez L, Mazoua S, Corbisier P, Trapmann S, Schimmel H, White H et al.
The certification of the copy number concentration of solutions of plasmid DNA
containing a BCR–ABL b3a2 transcript fragment. Certified reference material:
ERM-AD623a, ERM-AD623b, ERM-AD623c, ERM-AD623d, ERM-AD623e ERM-AD623f.
Luxembourg: Publications Office of the European Union, 2012; Report number
EUR 25248; ISBN 978-92-79-23343-2. 2012.

20 Joint Committee for Guides in Metrology. Evaluation of measurement data: Guide
to expression of uncertainty in measurement (GUM) http://www.bipm.org/utils/
common/documents/jcgm/JCGM_100_2008_E.pdf. 2008.

Certified plasmid reference material of BCR–ABL1 mRNA
H White et al

375

© 2015 Macmillan Publishers Limited Leukemia (2015) 369 – 376

https://ec.europa.eu/jrc/en/reference-materials/catalogue/
https://ec.europa.eu/jrc/en/reference-materials/catalogue/
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf


21 Linsinger TP, Pauwels J, Lamberty A, Schimmel HG, van der Veen AM, Siekmann L
et al. Estimating the uncertainty of stability for matrix CRMs. Fresenius J Anal Chem
2001; 370: 183–188.

22 Muller MC, Erben P, Saglio G, Gottardi E, Nyvold CG, Schenk T et al. Harmonization
of BCR–ABL mRNA quantification using a uniform multifunctional control plasmid
in 37 international laboratories. Leukemia 2008; 22: 96–102.

23 van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J,
van Dongen JJ et al. Detection of minimal residual disease in hematologic
malignancies by real-time quantitative PCR: principles, approaches, and laboratory
aspects. Leukemia 2003; 17: 1013–1034.

24 Jennings LJ, Smith FA, Halling KC, Persons DL, Kamel-Reid S. Molecular
Oncology Resource Committee of the College of American P. Design and analytic

validation of BCR–ABL1 quantitative reverse transcription polymerase chain
reaction assay for monitoring minimal residual disease. Arch Pathol Lab Med 2012;
136: 33–40.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article's Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder to
reproduce the material. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

Supplementary Information accompanies this paper on the Leukaemia website (http://www.nature.com/leu)

Certified plasmid reference material of BCR–ABL1 mRNA
H White et al

376

Leukemia (2015) 369 – 376 © 2015 Macmillan Publishers Limited

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A certified plasmid reference material for the standardisation of BCR�&#x02013;�ABL1 mRNA quantification by real-time quantitative�PCR
	Introduction
	Materials and methods
	Preparation of individual certified plasmid solutions
	Digital PCR
	Quantitative real-time PCR

	Figure 1 Schematic map of the multitarget plasmid pIRMM0099.
	Statistical analysis

	Results
	Characterisation of copy number concentration
	Assessment of homogeneity and stability
	Suitability

	Table 1 Certified copy number concentrations of double-stranded plasmid DNA and their uncertainties for the six ERM-AD623 dilutions
	Discussion
	Figure 2 Comparison of measured % BCR-ABL1/ABL1 ratio between laboratory calibrators (Lab) and ERM-AD623 for the cell line dilutions.
	Figure 3 Comparison of measured % BCR-ABL1/ABL1 ratio between laboratory calibrators (Lab) and ERM-AD623 for the aRNA mixtures.
	Table 2 Comparison of results for the cell line dilutions using local calibrators (Lab) and ERM-AD623
	Table 3 Comparison of results for the aRNA mixtures using local calibrators (Lab) and ERM-AD623
	Figure 4 Reported numbers of BCR�&#x02013;�ABL1 and ABL1 transcripts using laboratory-specific methods (which vary with regard to the amount of material analysed), laboratory calibrators (Lab) and ERM-AD623 for cell line dilutions.
	Figure 5 Estimates of copy numbers of BCR�&#x02013;�ABL1 and ABL1 transcripts using laboratory calibrators and ERM-AD623 for the aRNA dilutions in the second suitability study.
	Initial development of the plasmid was supported by the UK Department of Health. The second suitability study was funded by the European LeukemiaNet (Heidelberg, Germany) and Novartis Pharmaceuticals, Basel, Switzerland, via the &#x02018;European Treatmen
	Initial development of the plasmid was supported by the UK Department of Health. The second suitability study was funded by the European LeukemiaNet (Heidelberg, Germany) and Novartis Pharmaceuticals, Basel, Switzerland, via the &#x02018;European Treatmen
	ACKNOWLEDGEMENTS
	REFERENCES




