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ABSTRACT

Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans
and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT),
have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation
of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after
infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still
lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are
expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body
weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2�/� Tmprss4�/� double-knockout mice
showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our
results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influ-
enza virus in vivo.

IMPORTANCE

Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high vari-
ability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influ-
enza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because
the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected
against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that de-
letion of two host protease genes, Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in
increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage
activation of H3N2 influenza viruses in vivo.

Influenza viruses pose major threats to public health, as they are
responsible for epidemics and pandemics resulting in high mor-

bidity and mortality worldwide. Several pandemics, such as the
Spanish flu (1918), Asian flu (1957), and Hong Kong flu (1968),
caused millions of deaths in the last century (1). Currently, only
two therapies, targeting the viral proteins neuraminidase and M2,
are approved to treat influenza. Therefore, novel viral or host tar-
gets for antiviral strategies to block viral replication or inhibit
cellular proteins necessary for the virus life cycle are urgently
needed (2). In this context, host proteases are a group of very
promising antiviral targets, because proteolytic cleavage of the
precursor hemagglutinin (HA0) into HA1 and HA2 subunits by
host proteases is essential for fusion of HA with the endosomal
membrane and thus represents an essential step for infectivity of
the virus (3, 4). Due to the potential risk of side effects after appli-
cation of broadband protease inhibitors, the specific inhibition of
a single enzyme would convey a huge therapeutic benefit.

The majority of influenza viruses, including low pathogenic
avian and human influenza viruses, carry a single arginine (R)
residue at the cleavage site. These HAs are cleaved by host trypsin-
like proteases (5–8). In vitro studies with cultured human respira-

tory epithelial cells demonstrated the involvement of several
membrane-associated proteases (9). Cell culture studies further
identified, among others, the transmembrane serine proteases
TMPRSS2, TMPRSS4, and TMPRSS11D as enzymes able to cleave
the HAs of influenza virus subtypes H1 and H3 (10–12). We pre-
viously showed that deletion of Tmprss2 in knockout mice
strongly limits viral spread and lung pathology after H1N1 influ-
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enza A virus infection (13). An essential role for TMPRSS2 in
cleavage activation and viral spread was also reported for H7N9
influenza A virus (14, 15). We also demonstrated that deletion of
Tmprss2 slightly reduced body weight loss and mortality in mice
after H3N2 virus infection compared to those for wild-type mice
but did not protect mice from lethal infections (13, 15). Therefore,
it is likely that in addition to TMPRSS2, other trypsin-like pro-
teases of the respiratory tract are able to cleave the hemagglutinin
of H3 influenza viruses.

In this study, we investigated the role of Tmprss4 in the context
of influenza A virus replication and pathogenesis in experimen-
tally infected mice. We showed that knockout of Tmprss4 alone
did not protect mice from lethal H3N2 influenza A virus infec-
tions. In contrast, Tmprss2�/� Tmprss4�/� double-knockout
mice showed massively reduced viral spread and lung pathology
and also had reduced body weight loss and mortality.

(Part of this work was performed as Ph.D. thesis work by Nora
Kühn at the University of Veterinary Medicine, Hannover, Ger-
many.)

MATERIALS AND METHODS
Ethics statement. All experiments with mice were approved by an exter-
nal committee according to the national guidelines of the animal welfare
law in Germany (BGBl. I S. 1206, 1313 and BGBl. I S. 1934). The protocol
used in these experiments has been reviewed by an ethics committee and
approved by the Niedersächsisches Landesamt für Verbraucherschutz
und Lebensmittelsicherheit, Oldenburg, Germany (permit number 3392
42502-04-13/1234). Mice were maintained under specific-pathogen-free
conditions at the animal facilities of the Helmholtz Centre for Infection
Research (HZI). Embryonated chicken eggs were purchased from Charles
River Laboratories, Germany.

Viruses, mice, and plasmids. Original stocks of viruses were obtained
from Stefan Ludwig, University of Münster (A/PuertoRico/8/34 H1N1,
Münster variant [PR8M], and A/WSN/33 H1N1), from Peter Stäheli,
University of Freiburg (A/PuertoRico/8/34 H1N1, Freiburg variant
[PR8F], and A/Seal/Massachusetts/1/80 H7N7 [SC35M]) (16), and from
Otto Haller, University of Freiburg (A/Hong Kong/01/68 H3N2) (17).
The low-virulence mouse-adapted H1N1 virus PR8M and the high-viru-
lence mouse-adapted H1N1 virus PR8F have been described previously
(18). Virus stocks for all infections were prepared by infection of 10-day-
old embryonated chicken eggs. Tmprss4 mutant mice were generated by
using a replacement vector targeting the Tmprss4 gene in 129SvEv embry-
onic stem (ES) cells (19). Homozygous knockout mice were backcrossed
to C57BL/6J mice for 10 generations to generate the B6.129-
Tmprss4tm1.1Hum (Tmprss4�/�) congenic mice used in our studies. Ho-
mozygous mutant mice were genotyped by PCR analysis, using a three-
primer strategy (P1, 5=GGT CAG ATG TAA AAG GTA GAC3=; P2, 5=GCT
AGG TTC CTT GTT CCT G3=; and P3, 5=CAT GGA TGT GAC CAT TGT
GC3=) that allowed us to distinguish between wild-type (250-bp product)
and knockout (500-bp product) alleles. Double-knockout B6.129S1-
Tmprss2tm1Tsyk Tmprss4tm1.1Hum mice were generated by interbreeding of
B6.129S1-Tmprss2tm1Tsyk (13, 20) and B6.129-Tmprss4tm1.1Hum homozy-
gous mice. C57BL/6J mice obtained from Janvier, France, were used as
controls.

RNA isolation and purification and reverse transcription-PCR (RT-
PCR) analysis. Total RNA was prepared from lungs by use of an RNeasy
Midi kit (Qiagen, Hilden, Germany) following the manufacturer’s proto-
col. cDNA was synthesized using the Bioscript system (Bioline GmbH,
Germany). Subsequently, Taq polymerase (REDTaq; Sigma-Aldrich) and
gene-specific primers (for exon 4, primer P1 [5=CAG TTG TGT GAC
GGC CAC3=]; and for exon 11, primer P2 [5=CAC AGC ATC TCA GCG
GTC A3=]) were used for PCR amplification of the Tmprss4-specific gene
fragment.

Infection of mice and measurement of body weight and survival. For
infection experiments, female mice at the age of 8 to 11 weeks were anes-
thetized by intraperitoneal injection of a ketamine-xylazine solution (85%
NaCl [0.9%], 10% ketamine, 5% xylazine; 200 �l per 20 g body weight).
Infection was performed by intranasal application of virus solution in 20
�l of sterile phosphate-buffered saline (PBS). Subsequently, survival and
body weight loss were monitored until day 14 postinfection (p.i.). In ad-
dition to mice that were found dead, mice with a weight loss of �30% of
the starting body weight were euthanized and recorded as dead.

Detection of infectious particles. Viral loads in infected lungs were
determined by use of MDCK II (Madin-Darby canine kidney II) cells for
assay of the number of focus-forming units (FFU), as described earlier
(21). Briefly, a 10-fold dilution series of homogenized lung tissue was
incubated with preseeded MDCK II cells for 1 h at 37°C in Dulbecco’s
modified Eagle’s medium (DMEM) containing 5 �g/ml N-acetylated
trypsin (NAT) and 0.1% bovine serum albumin (BSA). After incubation,
a 1% Avicell overlay prepared in DMEM containing NAT and BSA was
added and incubated for an additional 24 h. Subsequently, the cells were
fixed with 4% formalin, and viral particles were detected with an anti-
influenza virus antibody (Virostat). For detection of nonprocessed viral
particles, lung homogenates were diluted in DMEM plus 0.1% BSA with-
out NAT. After washing of MDCK II cells, homogenates were added and
incubated for 1 h at 37°C. Afterwards, the inoculants were removed and
the cells were washed twice with PBS. A 1% Avicell overlay containing BSA
and NAT was added, and the assay was processed according to the above
protocol.

Hematology. For monitoring of hematological parameters, hearts
were punctured and blood was collected in EDTA tubes. Numbers of
lymphocytes (Lym), granulocytes (Gr), and monocytes (Mon) in the
blood were determined immediately by using a VetScan HM5 hemato-
logic system (Abaxis).

Quantification of cytokines and chemokines in BAL fluid. Female
C57BL/6J and Tmprss2�/� Tmprss4�/� mice were infected with 2 � 103

FFU of H3N2 influenza A virus or with PBS (for mock controls). At 3 days
p.i., bronchoalveolar lavage (BAL) fluid was collected, and levels of
granulocyte colony-stimulating factor (G-CSF), granulocyte-macro-
phage colony-stimulating factor (GM-CSF), gamma interferon (IFN-
�), interleukin-1� (IL-1�), IL-1�, IL-6, IL-10, IL-15, IL-17, IP10, KC,
monocyte chemoattractant protein 1 (MCP1), macrophage inflamma-
tory protein 1� (MIP1�), RANTES, vascular endothelial growth factor
(VEGF), and tumor necrosis factor alpha (TNF-�) were measured
with the MCYTOMAG-70K mouse cytokine/chemokine magnetic
bead panel (Merck Millipore) following the manufacturer’s instruc-
tions. Plates were read in a Luminex 100 apparatus.

Immunohistochemical and immunofluorescence analyses and ISH.
Lungs were prepared and immersion fixed for 24 h in 4% buffered form-
aldehyde solution (pH 7.4), dehydrated in a graded ethanol series, and
embedded in paraffin. Sections (0.5 �m) were cut from three evenly dis-
tributed levels of paraffin blocks and stained with hematoxylin and eosin.
For immunohistochemical studies, sections were stained overnight at 4°C
with a primary antibody against influenza A virus nucleoprotein (clone
hb65; ATCC, Wessel, Germany). Subsequently, tissue sections were incu-
bated for 30 min with horseradish peroxidase (HRP)-labeled goat anti-
mouse IgG2a (Biozol) and counterstained with hematoxylin (22). Semi-
quantitative assessment of influenza virus antigen expression in the lungs
was performed as reported earlier (23), with the following minor modifi-
cations. For the alveoli, 25 arbitrarily chosen 20� objective fields of lung
parenchyma per lung slide were examined by light microscopy for the
presence of influenza virus nucleoprotein, without the knowledge of the
identities of the animals. The score for each animal was presented as
the percentage of positive fields. For the bronchi and bronchioles, the
percentage of positively staining epithelium was estimated for every slide
to provide the score per animal, as follows: 0, 0% staining; 1, 1 to 25%
staining; 2, 25 to 50% staining; and 3, �50% staining. For immunofluo-
rescence analyses, 12-�m-thick cryo-sections were air dried, fixed in ace-
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tone at �20°C, and rehydrated in PBS. Slides were blocked with anti-FCR
(1:500; purified rat anti-mouse CD16/CD32). Primary antibodies used
were AF350-conjugated rabbit anti-TMPRSS4 polyclonal antibody
(Bioss) and Cy5-conjugated rabbit anti-TMPRSS2 antibody (Antikoer-
per-Online). Both antibodies were checked on appropriate knockout
slides to exclude potential cross-reactivity. After staining, the slides were
washed with PBS, dried, and mounted with Neo-Mount (Merck, Darm-
stadt, Germany). Analyses were performed using a Zeiss LSM510 laser
scanning microscope with a 40� oil immersion objective. For in situ
hybridization (ISH) studies of type I alveolar epithelial cells (AECI) and
type II alveolar epithelial cells (AECII), 5-�m-thick formalin-fixed, par-
affin-embedded lung tissue sections were used with a QuantiGene Vie-
wRNA ISH tissue assay kit (Affymetrix, Cleveland, OH) following the
manufacturer’s instructions. Type 6 (Sftpc; for AECII) and type 1 (Aqp5;
for AECI) QuantiGene ViewRNA probes were generated based on Af-
fymetrix probe sets. The GenBank accession numbers for the probe se-
quences are as follows: for type 6 probes (Sftpc), NM_011359 (region
2–784); and for type 1 probes (Aqp5), NM_009701 (region 239 –1533).
Pretreatment was performed for 10 min at 90 to 95°C, and protease diges-
tion was performed for 20 min at 40°C. Slides were stained with Fast red
for type 1 probes. Type 6 probes were detected with Fast blue. Slides were
then counterstained with Gill’s hematoxylin. Negative controls (anti-
sense) were run in parallel and showed no hybridization signals (not
shown) (type 6 [Sftpc-neg] negative control [region 23– 803], covered by
probe set NM_011359-N; and type 1 [Aqp5-neg] negative control [region
172–1122], covered by probe set NM_009701-N). Bright-field images
were recorded using Aperio Scanscope and analyzed with Aperio Images-
cope software. For detection of fluorescence images, a Zeiss LSM710 laser
scanning microscope with a 20� objective was used.

Histopathology. Semiquantitative histopathological assessment of in-
fluenza virus-associated inflammation in the lung was performed as re-
ported earlier (23), with the following modifications. For the extent of
alveolitis, we scored the total number of alveoli affected in the lung slide as
follows: 0, 0%; 1, 1 to 25%; 2, 25 to 50%; and 3, �50%. For the severity of
alveolitis, bronchiolitis, and bronchitis, we scored the slides as follows: 0,
no inflammatory cells; 1, few inflammatory cells; 2, moderate numbers of
inflammatory cells; and 3, many inflammatory cells in all alveoli, bron-
chioles, and bronchi of the lung slide. For the presence of alveolar edema
and the presence of alveolar epithelial necrosis, we reported scores as
follows: 0, not present; and 1, present in the lung slide. For the overall
score for pathological changes in the alveoli, the total score (scores for
extent of alveolitis plus severity of alveolitis plus presence of alveolar
edema plus presence of alveolar epithelial necrosis) was used. Slides were
examined without knowledge of the identities of animals.

RESULTS
Tmprss2 and Tmprss4 are coexpressed in alveolar and bronchial
regions. It was described previously that Tmprss2 is expressed in
type 2 pneumocytes and bronchial epithelial cells (24), the main
target cells for influenza A viruses (25, 26). TMPRSS4 is an addi-
tional protease with in vitro HA cleavage potential (10, 27). There-
fore, we examined the expression profile of Tmprss4 in mouse lung
tissues. We performed in situ hybridization (ISH) analyses to dif-
ferentiate between type I and type II alveolar epithelial cells (AECI
and AECII, respectively) in noninfected mouse lungs. As shown in
Fig. 1A, round and mostly cuboidal AECII were detected by ex-
pression of the cell type-specific marker surfactant-associated
protein C (Sftpc; stained blue). Thin and flat AECI could be iden-
tified by expression of the cell type-specific marker aquaporin 5
(Aqp5; stained red). In addition, we used immunohistochemical
staining to detect expression of both TMPRSS2 and TMPRSS4.
Staining could be observed in cuboidal and granular cells of alve-
olar tissue, representing AECII (Fig. 1B), as well as in the bron-
chiolar epithelium (Fig. 1C).

Deletion of Tmprss4 does not affect body weight loss and vi-
ral replication in H1N1 and H3N2 virus-infected mice. We used
mice carrying a deletion in the Tmprss4 gene to study the role of
TMPRSS4 during influenza virus infection in vivo. RT-PCR anal-
ysis of knockout lung tissue confirmed the absence of the full-
length Tmprss4 transcript (data not shown). No protein was de-
tected in knockout mice by immunohistochemical staining (data
not shown). Tmprss4-deficient mice showed normal reproduction
rates and development and growth patterns and had no obvious
abnormal phenotype (19).

Wild-type as well as Tmprss4�/� mice were infected with
mouse-adapted PR8M virus (A/PuertoRico/8/34; H1N1). Both
wild-type and Tmprss4�/� mice lost weight after infection, with
comparable kinetics, and showed similar survival rates (Fig. 2A).
Analogous results were obtained after infection with two addi-
tional H1N1 virus variants (PR8F and A/WSN/33) (data not
shown) and after infection with a multibasic, mouse-adapted
H7N7 virus (A/Seal/Massachusetts/1/80) (data not shown). After
infection with 2 � 103 FFU of mouse-adapted H3N2 virus (A/
HongKong/01/68) (17), body weight loss and survival were not
different between the two mouse strains (Fig. 2B). Also, no statis-
tically significant difference was observed after infection with a
lower dose (10 FFU) of H3N2 virus (Fig. 2C). Measurement of
viral loads in lungs of infected mice revealed equal viral loads in
wild-type and Tmprss4 knockout mice at days 2, 3, and 4 p.i. (Fig.
3). These results indicated that loss of Tmprss4 in knockout mice
does not protect mice from virus replication, spreading, or patho-

FIG 1 Tmprss2 and Tmprss4 are expressed in bronchial and alveolar regions.
(A) In situ hybridization of lung slides from noninfected C57BL/6J lungs with
probes specific for AECI (Aqp5) and AECII (Sftpc) (left, bright-field image;
right, fluorescence image). Magnification, �20. In both images, AECI (Aqp5)
are stained red and AECII (Sftpc) are stained blue. (B and C) Cryo-sections of
lungs from noninfected C57BL/6J mice were immunostained for TMPRSS2
(red) and TMPRSS4 (blue). Magnification, �40. TMPRSS2 and TMPRSS4
were coexpressed in round, granular, and roughly cuboidal cells in the alveolar
region (B) and in bronchial epithelial cells (C). No cross-reactivity of the
antibodies was observed in appropriate knockout controls (data not shown).
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genesis after infection with H3N2 or H1N1 influenza virus in
comparison to wild-type mice.

Tmprss2�/� Tmprss4�/� double-knockout mice show reduced
virus replication and are protected from severe pathogenesis after
H3N2 virus infection. Both TMPRSS2 and TMPRSS4 are able to
cleave H3 hemagglutinin in vitro and are expressed in influenza
virus target cells. Therefore, we generated Tmprss2�/�

Tmprss4�/� double-knockout mice and infected them with 2 �
103 FFU H3N2 virus. Indeed, infected double-mutant mice
showed a delayed and significantly reduced loss of body weight
compared to wild-type mice or Tmprss2�/� or Tmprss4�/� single-
knockout mice (Fig. 4A). Furthermore, viral loads were signifi-
cantly lower in double-knockout mice than in wild-type mice after
infection with 2 � 103 FFU H3N2 virus at days 2 to 6 p.i. (Fig. 4B).
In addition, the relative weight of wild-type lungs increased con-
siderably more from days 2 to 6 postinfection than that of knock-
out lungs (Fig. 4C), indicating less infiltration of immune cells and
accumulation of fluid. In agreement with these observations, the

FIG 3 Tmprss4 knockout mice show lung viral loads similar to those of wild-
type mice after H3N2 influenza A virus infection. Eight- to 11-week-old female
mice were infected with 2 � 103 FFU of mouse-adapted H3N2 influenza virus
by intranasal application, and numbers of infectious particles in lung homog-
enates were determined. Individual values, means, and SEM are presented.
Viral loads were not significantly different in infected wild-type and infected
homozygous mutant mice at days 2 to 4 p.i.

FIG 2 Tmprss4�/� mice are not resistant to H1N1 and H3N2 virus infection. Eight- to 11-week-old female mice were infected with 2 � 105 FFU of mouse-
adapted PR8M virus (A/PuertoRico/8/34) (A), 2 � 103 FFU of mouse-adapted H3N2 virus (A/HongKong/01/68) (B), or 10 FFU of H3N2 influenza virus (C) by
intranasal application. Body weight loss was monitored until day 14 p.i. Mice with a weight loss of �30% of the starting body weight were euthanized and
recorded as dead. Weight loss data represent mean values 	 standard errors of the means (SEM). No significant differences in body weight loss and survival were
observed between knockout and wild-type mice. Significances were calculated using the Mann-Whitney U test (body weight loss) and the log rank test (survival).
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relative number of granulocytes in peripheral blood increased to
higher levels in wild-type mice than in double-knockout mice
after infection with H3N2 virus (Fig. 4D), which represents an
indicator of severe influenza virus infection (28). However, both
wild-type and knockout mice showed similar degrees of lym-
phopenia during the first 2 days p.i., followed by an increase of
lymphocytes in both knockout and wild-type mice (Fig. 4D). Sim-
ilar granulocytosis was observed in both strains on days 2 to 6 p.i.

Furthermore, we measured the protein levels of inflammatory
chemokines and cytokines in BAL fluid. Three days after infection,
increases of the levels of 13 chemokines were observed in C57BL/6
mice compared to mock-infected mice. Most importantly, we ob-
served significantly less expression of IP10, KC, MCP1, MIP1�,
RANTES, VEGF, and TNF-� in knockout mice than in wild-type
mice (Fig. 5). No detectable levels of IL-1� were observed in
knockout samples at this time point.

FIG 4 Tmprss2�/� Tmprss4�/� double-knockout mice show reduced body weight loss and mortality after infection with H3N2 influenza A virus. (A) Eight- to
11-week-old female mice were infected with 2 � 103 FFU of mouse-adapted H3N2 influenza virus by intranasal application, and body weight and survival were
monitored until day 14 p.i. In addition to mice that were found dead, mice with a weight loss of �30% of the starting body weight were euthanized and recorded
as dead. (B) Numbers of infectious particles in lung homogenates were determined. Individual values, means and SEM are presented. (C) Relative lung weights
were determined by weighing freshly prepared lungs and determining the percent ratio of lung weight to body weight. Individual values, means, and SEM are
shown. (D) Hematological parameters were measured with a VetScan HM5 system, and the kinetics of relative numbers of lymphocytes (Lym), monocytes
(Mon), and granulocytes (Gr) were determined. Homozygous Tmprss2�/� Tmprss4�/� knockout mice lost significantly less body weight than wild-type mice
(e.g., P 
 0.0001 at day 2 and P 
 0.0001 at day 4; Mann-Whitney U test). Tmprss2�/� Tmprss4�/� mice showed significantly reduced mortality compared to that
of wild-type mice (P 
 0.0001; log rank test) as well as single-knockout mice. Viral loads were significantly higher in infected wild-type mice than in infected
homozygous mutant mice at days 2, 4, and 6 p.i. (P 
 0.01; Mann-Whitney U test). Furthermore, lung weights were significantly higher in infected wild-type mice
than in infected Tmprss2�/� Tmprss4�/� knockout mice (P 
 0.01). In the hemograms, lymphocyte numbers decreased until day 2 p.i., and granulocytes
increased in wild-type mice on day 2 p.i. and, to a lesser degree, in Tmprss2�/� Tmprss4�/� knockout mice.
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FIG 5 Levels of inflammatory cytokines and chemokines in BAL fluid samples from C57BL/6 and Tmprss2�/� Tmprss4�/� mice. Female C57BL/6J (black
symbols) and Tmprss2�/� Tmprss4�/� (red symbols) mice were infected with 2 � 103 FFU of H3N2 influenza virus, and BAL fluid was collected on day 3 p.i.
PBS-treated mice were used as mock controls (open symbols). Five biological replicates were analyzed at each time point. Individual values, means, and SEM are
presented. Detection limits of the individual proteins are indicated by blue lines. Samples below the detection threshold were set to the respective detection limit.
Significances were calculated using the Mann-Whitney U test. *, P 
 0.05; **, P 
 0.01; ***, P 
 0.001.
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By histopathology, both wild-type and knockout mice devel-
oped a multifocal mild to severe necrotizing and suppurative
broncho-interstitial pneumonia (Table 1). For the wild-type mice
at day 2 p.i., the alveolar septa were multifocally mildly thickened,
with infiltration of few neutrophils. The alveolar, bronchiolar, and
bronchial lumina contained scant to moderate amounts of in-
flammatory exudate, consisting of viable and degenerate neutro-
phils, increased numbers of alveolar macrophages, and mild ac-
cumulation of proteinaceous fluid (edema) and hemorrhage.
Multifocally, there was moderate necrosis of the bronchiolar and
bronchial epithelia. Around bronchioles, bronchi, and pulmonary
blood vessels, there was an infiltration of moderate numbers of
viable and degenerate neutrophils, lymphocytes, plasma cells, and
macrophages. At 4 days p.i., the lesions were more severe and
extended over a larger area of the lungs than at 2 days p.i., and they
consisted of more severe infiltration by inflammatory cells, mild
alveolar and moderate bronchiolar epithelial necrosis, and more
intra-alveolar edema (Table 1). At 6 days p.i., the lesions were
more severe and extended over a larger area than at 4 days p.i.
Also, there was mild type II alveolar epithelial cell hyperplasia. For
the knockout mice, the overall pathological scores in the alveoli
were comparable to those for the wild-type mice at 2, 4, and 6 days
p.i. However, the bronchiolar damage was less severe than that in
the wild-type mice on all days.

By immunohistochemistry, influenza virus antigen was pres-
ent in respiratory epithelial cells, with stronger expression in the
nucleus than in the cytoplasm. For the wild-type mice at 2 days
p.i., multifocally, few type II alveolar epithelial cells and many
bronchiolar and bronchial epithelial cells were expressing virus
antigen (Fig. 6A and C). At 4 days p.i., more alveolar cells were
positive and fewer bronchiolar and bronchial epithelial cells were
positive than at 2 days p.i. At 6 days p.i., there were more positive
alveolar epithelial cells and comparable numbers of positive bron-
chiolar and bronchial epithelial cells compared to those at 4 days
p.i. (Fig. 6E). For the knockout mice, there were fewer positive
cells overall than the case for wild-type mice (Fig. 6B, D, and F).
The number of positive alveolar epithelial cells increased from 2 to
6 days p.i., while the number of bronchiolar and bronchial epithe-
lial cells decreased from 2 to 4 and 6 days p.i.

Finally, to examine whether the reduced viral replication in the
lungs of mutant mice is also reflected in reduced HA activation, we
performed a modified FFU assay of lung homogenates. To prevent
artificial HA cleavage and following viral entry into MDCK II cells

by addition of exogenous trypsin, the homogenates were incu-
bated on the cells without additional proteinase in the medium.
Under these conditions, only completely matured virus particles
will enter cells and form foci. We were able to detect a significant
smaller amount of matured virus than the total amount of virus in
samples from double-knockout mice (Fig. 7). In contrast, no dif-
ference was observed in wild-type samples with and without tryp-
sin treatment. Taken together, these data show that TMPRSS2 and
TMPRSS4 mediate activation of H3N2 influenza A viruses by
cleavage maturation of viral hemagglutinin progeny and that de-
letion of these host factors results in reduced viral replication,
spreading, and pathogenesis.

FIG 6 Tmprss2�/� Tmprss4�/� double-knockout mice exhibit milder lung
pathology and reduced viral spread into alveolar regions after infection with
H3N2 virus. Eight- to 11-week-old female mice were infected with 2 � 103

FFU of mouse-adapted H3N2 influenza virus by intranasal application. Serial
lung sections were stained on days 2, 4, and 6 p.i. with anti-influenza virus
antibody and hematoxylin (A to F) or with hematoxylin and eosin (G and H).
Magnification, �10 for panels A, B, and E to H and �40 for panels C and D. (A
to D) On day 2 p.i., virus-infected cells were observed mainly in bronchiolar
regions of knockout mice and in bronchiolar as well as alveolar regions of wild
type mice. (E to H) Both wild-type and mutant mice showed viral spreading
into alveolar regions on day 6 p.i. However, in wild-type lungs, the tissue was
more densely consolidated, with larger numbers of infiltrating immune cells,
than the case for Tmprss2�/� Tmprss4�/� knockout mice. Furthermore, hem-
orrhages as well as edema (G and H) were observed in infected C57BL/6J
mouse lungs, indicating a more severe pathology.

TABLE 1 Scores for antigen presence by immunohistochemistry and for
pathological changes for wild-type (WT) and knockout (KO) mice
infected with H3N2 viruses at days 2, 4, and 6 p.i.

Group dpi

Score

Alveoli Bronchioles and bronchi

Antigen
presence

Pathological
change

Antigen
presence

Pathological
change

WT 2 15.3 4.3 2.7 2.3
4 22.7 9.7 2.0 3.0
6 23.7 14.0 1.0 2.7

KO 2 9.7 5.3 2.0 2.0
4 15.0 9.0 1.0 1.7
6 20.3 13.3 1.0 1.7
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DISCUSSION

Seasonal influenza viruses as well as newly emerging subtypes
pose a major threat to human health. Influenza viruses are
dependent on host cell factors for cell entry and replication.
The identification of such host factors and an understanding of
their role during the influenza virus life cycle are of great im-
portance for the development of novel therapeutic targets. In
particular, host proteases that exhibit trypsin-like activity, such
as TMPRSS2, TMPRSS4, TMPRSS11D (HAT), ST14 (matrip-
tase), KLK5, KLK12, TMPRSS11E (DESC1), and TMPRSS13
(MSPL), have been shown to cleave influenza virus HAs with a
monobasic cleavage site and to support multicycle virus replica-
tion in cell culture (11, 27, 29–31). Notably, altered TMPRSS2
expression was identified as a susceptibility marker for severe
A(H1N1)pdm09 and A(H7N9) influenza virus infections in hu-
mans (32). On the other hand, the trypsin-like proteases prosta-
sin, hepsin, TMPRSS3, TMPRSS6, TMPRSS9, TMPRSS10,
TMPRSS11B, and TMPRSS11F did not activate HA upon coex-
pression in mammalian cells (10, 31, 33).

We showed previously that TMPRSS2 is required for H1 cleav-
age activation in vivo (13). Tmprss2�/� mutant mice are com-
pletely protected from mortality after infection with several H1N1
and H7N9 viruses (13, 14, 32). In addition, infection with 10 FFU
of A/HK/01/68 (H3N2) virus, which also carries a monobasic
cleavage site in HA, resulted in less body weight loss and lower
mortality for Tmprss2�/� mice than for wild-type mice. However,
this difference was less pronounced after infection with an in-
creased virus dose. Therefore, we investigated whether a further
protease may be involved in cleavage activation of H3N2 viruses.

Here we showed for the first time that H3 hemagglutinin can
recruit different host proteases for cleavage activation in vivo. De-
letion of Tmprss4 alone in single-knockout mice did not have a
measurable effect with respect to body weight loss, survival, or
pathology. However, deletion of both Tmprss2 and Tmprss4 in
double-knockout mice significantly improved morbidity and sur-
vival after H3N2 virus infection. Nevertheless, the mice still

showed limited body weight loss, indicating residual activity and
spreading of viral particles.

Wild-type mice exhibited a higher mortality than that of the
double-knockout mice and showed increased viral loads at days 2
and 4 p.i. In addition, wild-type mice exhibited higher levels of
chemokines and higher lung weights at days 2, 4, and 6 p.i., which
are indicative of higher rates of cellular infiltration and lung
edema. Furthermore, bronchiolar damage was more severe in
wild-type mice than in double-knockout mice on all days. Thus,
the increased mortality rate for wild-type mice is most likely
caused by a higher degree of tissue destruction by the virus at early
time points. In addition, more immunopathology as a result of
increased infiltration of immune cells and elevated levels of in-
flammatory chemokines may further contribute to increased pa-
thology in and reduced survival of wild-type mice.

Several studies have addressed the physiological role of
TMPRSS4, and three specific substrates have been identified: HA
of influenza virus (10), urokinase-type plasminogen activator
(PLAU) (34), and the epithelial sodium channel (SCNN1A) (35).
An increased expression of TMPRSS4 was associated with in-
creased progression and metastatic potential of several cancers
(36). TMPRSS4 transcripts have been detected in the gastrointes-
tinal tract (esophagus, stomach, small intestine, and colon), the
urogenital tract (kidney and bladder), mouse bronchiolar-alveo-
lar epithelial cells, and human lung tissue (27, 37, 38). Neverthe-
less, the in vivo function of this protein is still unclear. A recent
study showed that the regulation of the epithelial sodium channel
is not affected by deletion of Tmprss4 (19). For lung tissue,
TMPRSS2 expression has been described for human bronchial
epithelium, AECII, and alveolar macrophages (10, 24). We con-
firmed the expression of Tmprss2 and Tmprss4 in the alveolar re-
gion and the bronchial epithelial cells of murine lungs and showed
that both proteases were coexpressed in granular and roughly
cuboidal cells, representing AECII. In other studies, influenza A
virus antigens were detected almost exclusively in AECII and, to a
lesser degree, in alveolar macrophages (25, 26). This colocaliza-
tion of host proteases and virus strongly suggests that both pro-
teases can be recruited for HA maturation.

The protease cleavage site (PEKQTR) of the mouse-adapted
H3N2 variant (17) which was used in our studies is identical to the
cleavage site in the original human isolate (A/Hong Kong/01/68
H3N2). In general, seasonal influenza viruses of the H3 subtype
cause more severe symptoms in humans than H1 viruses. One
may thus hypothesize that the increased accessibility of the H3 HA
to more than two proteases allows for more efficient replication of
H3N2 viruses, which may be associated with more severe pathol-
ogy. The more proteases are able to cleave the hemagglutinin, the
faster the virus can replicate and cause illness. It has been shown
that increased expression of TMPRSS2 leads to more severe out-
comes of human disease caused by the pandemic H1N1 (2009)
virus or the novel avian H7N9 virus (32). Comparison of the
amino acid sequences of the H1 (PSIQSR) and H3 (PEKQTR)
cleavage sites shows three differences (also see Fig. 9 in reference
13). However, it is likely that specificity and efficiency for protease
cleavage are determined not only by the amino acid sequence of
the cleavage site but also by the overall tertiary or quaternary
structure. The HA cleavage site of the H7N9 virus, which is also
cleaved by TMPRSS2 (14, 15), supports this view, as it consists of
the amino acids EIPKGR, which are quite different from both the
H1 and H3 cleavage sites. Therefore, it will be important to inves-

FIG 7 Virus isolated from Tmprss2�/� Tmprss4�/� lungs exhibits reduced
infectivity in the absence of trypsin. Eight- to 11-week-old female mice were
infected with 2 � 103 FFU of mouse-adapted H3N2 influenza virus by intra-
nasal application. On day 2 p.i., the ratio of processed to nonprocessed virus
(HA cleavage or not) in lung homogenates was determined using a modified
FFU assay without exogenous trypsin. The total number of virus particles
(mature or not) was determined in the presence of trypsin. Samples from
mutant mice showed significantly lower levels of matured viruses than the total
number of virus particles (P 
 0.05). No difference was detectable in samples
from infected wild-type mice. Data shown are means 	 SEM for 7 replicates
from two independent experiments.
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tigate the structures of both proteases and hemagglutinins to de-
termine the molecular mechanisms of HA cleavage susceptibility
and efficiency.

It should be noted that deletion of Tmprss2 did not change the
tropism of H3N2 virus infection in mice (13). This is consistent
with the observation that both proteases are expressed in the same
cell types. Thus, after removal of Tmprss2 alone, Tmprss4 is still
able to activate the HAs of H3N2 viruses, and vice versa. Survival
rate was increased only after deletion of both proteases due to
reduced viral loads in the lungs. Although virus replication was
decreased, we still detected processed HA protein, viral spreading,
and pathology. From these data, we conclude that in addition to
TMPRSS2 and TMPRSS4, further proteases are able to cleave and
activate the hemagglutinin of H3N2 viruses. Different proteases
have been shown to activate H3 viruses in vitro (11, 29–31).
TMPRSS11D (HAT) is expressed mainly in the murine trachea
and bronchi and is thought to cleave HA mainly in the upper
regions of the lower respiratory tract (14, 39, 40). Furthermore,
kallikrein-related peptidase 5 (KLK5) was described to cleave H1
and H3 HAs (30), tryptase Clara (TPSB2) was reported to cleave
H3 HA (5), and matriptase (ST14) cleaves H3 HA to a certain
degree (29). A recent study also reported that the host proteases
TMPRSS11E (DESC1) and TMPRSS13 (MSPL) are capable of
cleaving H1, H2, and H3 HAs in vitro (31).

In summary, our in vivo analyses provide further important
insights into the involvement of host proteases for influenza virus
HA processing. Our studies suggest that an inhibitor targeting
TMPRSS2 and TMPRSS4 would be well suitable to block replica-
tion of H1N1 and, to a major degree, H3N2 influenza virus infec-
tions, which represent the current seasonal subtypes in humans. It
should be noted, however, that our results were obtained with a
mouse model and that the development or use of any potential
inhibitor will require validation studies in humans.
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