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Abstract It was investigated whether task-related body movements yield beneficial
effects on children’s learning of two-digit numbers and whether these learning effects
are affected by mirror-based self-observation of those movements. Participants were 118
first-graders, who were randomly assigned to two movement conditions and two non-
movement control conditions. In the movement conditions, children were instructed to
build two-digit numbers by making and simultaneously verbalizing out loud different
sized steps representing the smaller units the numbers consisted of (e.g., the number
B36^ was construed by saying out loud B10,^ B20,^ B30,^ B35,^ B36,^ while making three
big steps, one medium, and one small step) on a ruler across the floor. In one of the
movement conditions, the children were additionally asked to observe their steps in a
mirror. In the first conventionally taught control condition, the children were asked to
verbally build and mark the two-digit numbers on a ruler depicted on a sheet of paper. In
the second control condition, children were seated before the ruler across the floor, and
after verbally constructing the two-digit number, they had to walk to the appropriate
position of the number on the ruler across the floor. In the subsequent test phase,
children’s knowledge of two-digit numbers was assessed by a final math test. The results
confirmed the hypothesis that the movement conditions lead to higher test performance
than the non-movement condition and revealed that test performance was not differen-
tially affected by mirror-based self-observation.
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Most of us have been exposed to nursery rhymes sung by parents and teachers when we were
young. A well-known example of such a rhyme is BHead, Shoulders, Knees, and Toes.^
Children are instructed to move while they sing the song, and to touch their head, shoulders,
knees, and toes in sequence while singing each word. In this way, they learn to name different
body parts. The layman rationale behind those rhymes is (besides the fact that children enjoy
those rhymes), that it leads to better learning than simple rehearsal, because it offers a rich
sensory experience with tunes, repetition, rhythm, and movement. This study focused on how
making body movements and observing one’s own movements can facilitate the learning
process in young children.

There is a long tradition of considering the role of human motor actions for learning in
educational and developmental theories. Piaget was one of the first who emphasized that all
actions form the basis of human learning, especially for young children, who initially
understand and act upon their environment using mainly sensorimotor actions (Piaget and
Inhelder 1969). As a result of the recent rise of theories of embodied cognition, emphasizing
the importance of motor information in learning of cognitive tasks has received renewed
attention. As discussed by Pouw et al. (2014), embodied theories propose that cognitive
processes are grounded in perception and bodily action. In contrast, more cognitivist ap-
proaches treat mind and body as separate. Cognitivist approaches assume that cognitive
processes are the result of abstract symbol manipulation, that is, the processing of abstract
units of information that are not related to, and not grounded in real-world events (Barsalou
1999; Wilson 2002). Embodied theories suggest that higher cognitive processes, like math and
language, are ultimately based on sensorimotor codes within a generalized system that was
originally developed to control an organism’s motor behavior and perceive the world around it
(Barsalou 1999). Evidence for this embodied cognition paradigm comes from many different
research domains, ranging from research on action semantics (Lindemann et al. 2006),
language and reading comprehension (De Koning and Van der Schoot 2013; Zwaan and
Taylor 2006), and cognitive neuroscience (Glenberg et al. 2008; Martin 2007). These studies
show that visual and motor processes are activated in the brain during the performance of
cognitive tasks (e.g., math, reading, problem solving), while semantic codes are active when
participants perform motor tasks, suggesting a close interrelationship between cognitive and
sensorimotor processes.

The idea that the mind and body are closely interrelated has instigated research to determine
how bodily movements can be incorporated in education to improve the effectiveness of
learning environments. Recently, Paas and Sweller (2012) have offered an evolutionary
account of how body movements can be used to assist the acquisition of knowledge. Using
Geary’s work (Geary 2002, 2007, 2008) they make a distinction between two types of
knowledge: biologically primary knowledge—information we have evolved to acquire over
many generations—and biologically secondary knowledge—knowledge that is useful in the
social and cultural environment in which a group is situated. Learning to move or face
recognition, both very complex tasks in nature, are examples of the first type of knowledge.
That sort of learning typifies itself as being unconscious with no need for explicit instruction,
effortless, rapid, and driven by intrinsic motivation. Math and reading are examples of
biologically secondary information. In contrast to biologically primary knowledge, humans
experience great difficulty in learning secondary knowledge. The acquisition of biologically
secondary knowledge requires explicit instruction, conscious effort and humans often need to
be extrinsically motivated for it. Commonly, the acquisition of this type of knowledge is taught
in educational and training contexts. Based on cognitive load theory (Paas et al. 2003a), Paas
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and Sweller (2012) argue that it may be advantageous to use primary information, such as
body movements, to assist in the acquisition of secondary information.

Making Movements

There are different ways to use human movements to foster the learning process. One way of
using movements in the educational practice is to instruct participants to Bgesture along^
during the learning task. Many studies showed that gesturing plays an important role during a
mathematical learning task. For example, a study of Cook et al. (2008) revealed that partic-
ipants who were instructed to make particular gestures while learning a new arithmetical
strategy, advanced their learning in comparison with children who were instructed to give
verbal explanations during practicing the mathematical problems. Likewise, a study of
Broaders et al. (2007) showed that when 9-year-old children were instructed to gesture while
they had to solve mathematical problems, they learned more from a lesson by the teacher than
when those instructions were not given. These findings suggest that children benefit from
gesturing during math instructions. Making gestures while giving verbal explanations may
create richer cognitive schemas by adding an additional cue for knowledge representation and
retrieval than giving verbal explanations without gestures. Higher-quality cognitive schemas
are associated with better learning performance (e.g., van Merriënboer and Sweller 2005). In
addition, the construction of higher-quality cognitive schemas from verbal explanations with
gestures has been shown to impose less cognitive load than the construction of less complex or
lower-quality cognitive schemas from verbal explanations only. Studies in the domain of
mathematics (Goldin-Meadow et al. 2001; Ping and Goldin-Meadow 2010) found that making
gestures during math problem solving lowers cognitive load, but only when hands are moved
in meaningful ways (Cook et al. 2012).

Besides gestures produced by hands, there are some studies that showed that other body
movements, such as arm movements, can have a beneficial effect on learning as well. In these
studies, written action verbs or phrases were better remembered, when the corresponding
actions were performed using any body part compared to when these words and sentences
were only re-read or re-heard (Dijkstra and Kaschak 2006; Engelkamp and Jahn 2003;
Engelkamp et al. 2004). Thus, when a described action is consciously enacted, its retrieval
from memory is facilitated. Another study by Thomas and Lleras (2009) found that arm
movements facilitated cognitive performance even if the body movements do not take place
during the actual learning task and participants were unaware of the relationship between the
body movements and the actual learning task. A study by Shoval (2011) provides another
example how body movement can facilitate learning in a cooperation situation with multiple
persons. In a geometry class, she investigated Bmindful movement^ (e.g., children collectively
forming a circle with their bodies in order to learn about the circle) and found that the children
in the experimental mindful group condition obtained better results than the group taught in a
conventional way.

Furthermore, there are two recent studies in which a connection was found between
numerical magnitude and motor activity in the form of full-body movements. Using a digital
dance mat, Fischer et al. (2011) trained kindergarten children in a number magnitude com-
parison task to move their whole body in response to a given number. With the task presented
on the floor in front of the dance mat, children had to take a step to the right or left to indicate
whether the given number was larger or smaller than the standard. Results revealed that the
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spatial-numerical training was more effective than the non-spatial control training in enhancing
performance on a number line estimation task. Link et al. (2013) also showed positive training
effects after the embodied training in which children were trained to estimate the position of a
given number by walking to the appropriate location of that number on a continuous number
line on the floor without indications except for the two far ends (i.e., 0 and 100).

Although the making of bodily movements seems to have a beneficial effect on learning,
practical applications are still missing, especially in the math curriculum. Given the fact that
children nowadays are spending record amounts of time sitting particularly related to school
activities (Sturm 2005), which may play an important role in the increase of child obesity (e.g.,
Butte et al. 2007), it seems crucial to explore possibilities to integrate more full-body
movements and not only small body movements (i.e., gesturing) into the learning environ-
ment. The present study, therefore, will make an effort to incorporate full-body movements
into the standard math curriculum of two-digit number building exercises. Number building
exercises are typically given to first-graders as a way to teach numerical concept understand-
ing, such as the positioning of the numbers on a number line, number magnitude, and number
structure (see Fig. 1 for an example). The learning of numerical concepts is an important phase
in getting first-graders acquainted with mathematics, as it is positively related to their
development of more advanced arithmetical skills (Jordan et al. 2007, 2010; Moeller et al.
2011). Integrating full-body movements into these two-digit number building exercises means
that children have to build two-digit numbers out of smaller units, with meaningful task-related
full-body movements on a number line. The present study will extend the line of research done
by Link et al. (2013), which is the only math study that showed that full-body movements are
related to enhanced number concept performance. However, the current study deviates from
this study by introducing a number line with discrete step size indications (i.e., linear marks of
ones, fives, and tens along the entire number line). Doing embodied two-digit number building
exercises on this number line introduces the aspect of iterating step by step toward the given
decimal number. Furthermore, it provides insight in the way two-digit numbers can be formed
from smaller numbers and gives direct visual feedback about the magnitude of these numbers
compared to the extent of the number line.

Observing Movements

Not only making movements by students but also observing movements made by others
can aid understanding and facilitate learning. Research conducted by Perry et al. (1995)
showed that children learned more about the mathematical concept of equivalence when
the teachers’ instructions were accompanied by gestures than by verbal instructions only.
Similarly, Ping and Goldin-Meadow (2008) revealed that children who had received
instruction with speech and guiding gestures (indicating object sizes) in the explanation
of a Piagetian conservation task outperformed children who had received instruction with
speech only. In the learning of psychomotor tasks, such as paper folding (Wong et al.

Fig. 1 Example of a number building exercise. Jump to 10 with steps of 2
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2009) or knot tying (Ayres et al. 2009), the positive effects of observing movements have
been explained by the existence of a mirror-neuron system (Van Gog et al. 2009). This
system, which is assumed to form the basis for the human capability for imitation, is
activated by observing motor actions made by others (Rizzolatti and Craighero 2004).
Observing someone else perform an action activates the same cortical circuits that are
involved in executing an action oneself. Although both action observation and action
execution activate the motor system, action observation activates the motor system to a
lesser extent than action execution (Keysers and Gazzola 2009). When it is not senso-
rimotor activation per se, but the strength of the activation that is important, then making
movements would be expected to lead to better learning. Indeed, this is idea is supported
by several studies (e.g., James and Swain 2011; for studies that do no support this
conclusion, see e.g., Marley et al. 2011).

Besides, brain research showed that the same cortical regions involved in motor
control are activated when participants have to observe and judge their own video-
taped motor actions as when they have to observe and judge other people’s video-
taped actions (Grezes et al. 2004). The only difference is the onset of this activation.
Observing one’s own actions in comparison with observing those of others results in
earlier activity in action-related areas. This is possibly due to a closer match between the
simulated and perceived action (Decety and Grezes 2006).

As both observing and making gestures have been shown to positively affect learning,
it would be interesting to explore how the combination of those two elements would
contribute to the learning process. One way to combine making and observing move-
ments is to let children initiate movements themselves in front of a mirror and observe
their movements in the mirror. In this way, a combination of active moving and
observing can be established. Although some studies in the sports and movement domain
have examined the role of a mirror in the learning of certain motor skills, to the best of
our knowledge, no study has ever looked at the effects of simultaneously making and
observing movements in a mirror on learning. However, there is an indication for the
positive effect of observing oneself in a mirror for the acquisition of motor skills from a
study by Dearborn and Ross (2006). They found that initial dance movements learning in
a mirrored setting produced no better performances initially, but better performances in
the retest 1 week later. Clearly, the participants found learning the dance movements
easier without the mirror, but the information was also more easily lost over the week. In
contrast, the mirror learners did not do as well initially, but did improve their perfor-
mance. According to Dearborn and Ross (2006), these results suggest that a more
difficult learning phase induced by a more complex environment increases long-term
learning and performance.

Considering these results, it could be argued that the beneficial effects of observa-
tional motor learning can be transferred to situations in which self-observation of self-
initiated movements takes place. Furthermore, one could argue that the combination of
making and observing movements may lead to an enriched cognitive schema, which not
only contains proprioceptive, but also visual content. On the other hand, however, it
could also be argued that through the combination of both observing and moving, task
complexity is increased to such an extent that it could actually hamper the learning
process. In this study, we explored this issue by comparing the full-body movements
training with and without mirror-based self-observation on the learning of two-digit
number building.
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Present Study

This study focused on the role of making and observing one’s own movements in the learning
process of number building skills in children. It was investigated whether making full-body
movements either with or without self-observation through a mirror, contributes to two-digit
number building learning. We hypothesized that training conditions, in which task-relevant
body movements were made, would result in higher learning and test performance than
training conditions in which no movements were made (hypothesis 1). In addition, we
explored whether mirror-based self-observation of self-initiated body movements and self-
initiated body movements only would differentially affect the learning process. Furthermore,
we explored whether the hypothesized beneficial effects of making and observing movements
would be mediated by cognitive, affective, or both factors. Therefore, we asked participants to
provide a subjective rating on their interest in the training, the difficulty of the training,
understanding of the training, and mental effort invested in the training.

Method

Participants and Design

Participants were 118 first-grade children (71 females, mean age=7.10 years, SD=0.43) from two
Dutch elementary schools. Both schools and their auxiliary branches were situated within a 4-km
radius. Children were tested individually outside of the classroom in the gym during the regular
school day. This study had four conditions; twomovement conditions, i.e., move (N=28) andmove
and mirror (N=27), and two non-movement, control conditions, i.e., sit (N=32) and write (N=27).
All children were randomly assigned over the different conditions and all practiced building two-
digit numbers in the 10–50 range with the smaller number units of tens, fives, and ones. After the
training phase, all children were tested for their two-digit numbers knowledge with new similar
math problems in the 10–99 range on a final math test. For the randomization procedure, the
experimenter used the alphabetic naming list the teacher provided, to assign all children from one
class to different conditions. Each group of consecutive children on the list was assigned to one of
the four conditions. The group size depended on the total number of children the class consisted of.
For example, if a class consisted out of 20 children, every condition contained five children.

Materials

Number Building Exercises—Training In all conditions, children were given the same ten
number building exercises on a horizontal number line. The method for doing these number
building exercises differed across conditions. In the two movement conditions, first graders
were instructed to take steps of different sizes along a horizontal ruler on the floor without
numbers, but with smaller, mediate, and larger lines that indicated ones, fives, and tens in order
to get them acquainted with two-digit numbers (e.g., 47).1 Children were instructed to count
while making the steps.

1 Although math curricula vary from school to school, there are guidelines for what a first-grader should learn in
math. By the end of first grade, children should be able to add and subtract within 20 and should be able to count
at least to 50 by ones, twos, fives, and tens.
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Practicing with two-digit numbers on a horizontal line consists of two important meaningful
movement-elements: firstly, participants had to make different steps from the left to the right;
secondly, the size of the steps are proportionate to the size of the smaller units (ten, fives, and
ones) the two-digit numbers consist of. So, tens were represented by large steps, fives by
mediate, and ones by very small steps. The math-movement exercise was in line with several
experimental studies on mathematical cognition. The first meaningful movement-element of
the exercise corresponded with studies showing that numbers are spatially represented (e.g.,
Fias and Fischer 2005; Hubbard et al. 2005). One prominent theory, the mental number line
theory, links numerical magnitudes with positions along the horizontal axis. This theory posits
that smaller magnitudes are associated with a position on the left and larger magnitudes on the
right of this horizontal line (Restle 1970). Several studies have empirically supported this
notion (Dehaene et al. 1993; Fias and Fischer 2005). The second meaningful movement-
element of the math-movement exercise was in accordance with empirical findings from
different behavioral studies showing inferences between numbers and sized-related informa-
tion from other cognitive domains like sensorimotor representations of physical size or
temporal duration (Walsh 2003). For example, a study of Lindemann et al. (2007) found
interferences between number and aperture size while objects were grasped. Precision grip
actions were initiated faster in response to relatively small numbers (i.e., 1 and 2), whereas
power grips were faster to large numbers (i.e., 8 and 9).

The two non-moving control groups practiced the number building exercises differently. In
the first conventionally taught control, children were presented with an A4 sheet on which a
ruler was depicted. After calling out loud the smaller units that make up the number, they were
instructed to mark the appropriate position of the number on the ruler with a pen. In order to
make a good comparison between the move and conventionally taught control condition, as
the size of the ruler between conditions differed, this study included a second control condition
as well. In this control condition, children had to sit on a chair in front of the ruler and after
verbally constructing two-digit numbers, they had to walk to the appropriate position of the
number on the ruler across the floor. Note that although in these non-movement control
conditions children still have to move (i.e., small hand movement to mark the position on
the ruler and walking to the position on the ruler), these movements were not task-related like
the movements in the experimental conditions.

Performance on the number building exercises was operationalized by two different scores.
The first score (i.e., position score) indicated whether participants indicated the correct/
incorrect position of the two-digit number on the ruler. Children received one point for every
correct location. The second score (i.e., instruction score) indicated whether the participants
followed the instructions. That is, whether they arrived at the correct answer in as few steps as
possible, given the three available number units (i.e., tens, fives, and ones), working from large
to small number units. Children received one point for every correctly performed exercise (see
Fig. 2 for a graphic representation of the ruler).

Number Building Exercises—Test A final math test was administered to determine the
skill level for building two-digit numbers in the 10–992 range with smaller units of tens, fives,
and ones, directly after practicing the number building exercises. The math test comprised two

2 Two-digit numbers 10–50 were practiced during the learning phase and were therefore considered as near-
transfer items on the final math test. Additionally, we examined in this test whether children could extend their
understanding to new far-transfer problems in the range 50–99.
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parts with five exercises each. In the first part, children had to use different sized monochrome
Lego bricks, symbolizing the different numbers units, to build two-digit numbers. For instance,
the number B47^ can be construed with 4 tens (big bricks), 1 five (mediate brick), and 2 ones
(small bricks). In the second part, children had to write down the correct two-digit number,
corresponding with a row of Lego bricks put down by the experimenter (see Fig. 3 for an
example).

Evaluation Questions The children were asked to indicate to what extent they liked the
exercises, to what extent they found it difficult, and whether they thought they had understood
the exercises correctly. These questions were measured on a five-point Likert scale. In
addition, mental effort during the learning and testing phase was measured after each individ-
ual item on a five-point Likert scale adapted from Paas (1992) and Paas et al. (2003b), ranging
from Bvery low effort^ to Bvery high effort.^ This measure gives an indication of the cognitive
load children experience and has been used in many educational psychology studies (see Paas
et al. 2003a, b; Van Gog and Paas 2008). The mental effort rating scale (RSME) has shown
good internal consistency. For instance, Paas et al. (1994) report high reliability coefficients
(Cronbach’s alpha) of 0.90 and 0.82 for this rating scale in two studies. In addition, the
concurrent validity of the nine-point mental effort rating scale appears to be high, as the scale is
sensitive enough to detect small variations in task complexity (Van Gerven et al. 2004). In this
study, a reliability coefficient (Cronbach’s alpha) of 0.71 was found.

Procedure

The teacher explained to the class that every child would do some math exercises in the gym
on an individual basis along with the experimenter. In the gym, the experimenter gave each
child a short introduction about constructing two-digit numbers out of smaller units and
explained how the different parts of the ruler depicted on an A4-sheet or on the plastic ruler
(3.2 m tall) positioned on the floor were representing 10, 5, and 1. Special attention was given
to the unit Bfives^ as not all children were acquainted with this concept. Furthermore, the
experimenter emphasized the essential rule; one has to build two-digit numbers by working
from bigger units to smaller units in as few steps as possible.

After this standardized introduction, all children performed 12 number building exercises,
from which the first two familiarization exercises (i.e., B18^ and B41^) were done together with
the experimenter. In the conventionally taught control group, these practice exercises consisted of
the experimenter and child verbally building two-digit numbers by saying out loud the smaller
units the number consisted of. After having done so, they marked the appropriate position of the
number on the ruler depicted on a sheet of paper. In order to avoid children to use their hands, the
children were instructed to sit on their hands while verbalizing the different units. In the second
control group, the experimenter and child were seated on a chair in front of the ruler across the
floor. After the experimenter had presented the number printed on a small card to the child, the
first-grader along with the experimenter built two-digit numbers by saying out loud the smaller
units the number consisted of. Subsequently, the child walked to the appropriate position of the

Fig. 2 Graphic representation of the ruler used in this study
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number on the ruler. The no-hands rule applied here as well. In the movement conditions, the
experimenter showed how the different sideward steps on the ruler represented 10, 5, and 1, and
demonstrated how to move to make up two-digit numbers, while verbalizing the content of the
steps. For example the number B36^ was construed by saying out loud B10,^ B20,^ B30,^ B35,^
B36,^ while making three big steps, one mediate, and one small step. In the movement condition
with mirror (eight connected mirrors of 1.2×0.4 m), the experimenter explicitly instructed the
children to observe themselves in the mirror while making sideward steps. When this was not the
case, the experimenter would stop and ask the child to start the exercise again till he/she
eventually managed to simultaneously move and observe

After these two number building practice exercises, every child individually practiced the
remaining ten building number exercises as described above. In all conditions, the experi-
menter stood in front of the gym at the right-hand side (from the perspective of the child) and
showed a two-digit number (in the 10–50 range) on a card to the child. During these exercises,
the children got no feedback about their performance. After every exercise, the child was asked
how much mental effort the exercise required on a five-point Likert scale. The exercises were
concluded with a couple of evaluation questions.

Next, the children’s knowledge of building numbers was tested on an individual basis by
means of a final math test administered in the gym. The children sat behind a table on which
three containers filled with different sized monochrome Lego bricks. The biggest Lego bricks
of the first container represented tens, the mediate bricks from the second container represented
fives, and the smallest Lego bricks out of the last container represented ones. The number units
concerned were depicted on the containers. Subsequently, the children were instructed to build
two-digit numbers with as few as possible bricks starting with the tens. The bricks had to be
placed in a row to resemble the number line exercises.

Data Analysis

The dependent variables were the math performance scores in both the practice and the test
phase. One-way analyses of variance (ANOVA) were performed to determine main effects of
the independent variable training condition (move, move and mirror, sit, write), and planned
comparisons were performed to determine the specific hypothesized differences between the
movement training conditions and the non-movement control conditions. Interest, perceived
difficulty, understanding and mental effort were four other dependent variables that were
examined with training condition as the between-subjects factor.

Results

Analyses were completed using SPSS version 21. Alpha was set to 0.05 and Eta-squared η2

was used as an estimate of effect size, with η2=0.02 corresponding to a small effect, η2=0.13

Fig. 3 Example of final math test
item “39”
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corresponding to a moderate effect, and η2=0.26 corresponding to a large effect (Cohen 1988,
2013). Before conducting analyses, four children who had a score of zero on the final math
test, were removed from the dataset. According to information provided by the teachers
afterward, these children were all referred to special education due to learning disabilities.
Descriptive indices for all variables ordered by condition are shown in Table 1. Mental effort
was positively skewed. Math performance in the practice and test phase was negatively
skewed. Furthermore, we examined correlations with age and gender. Only gender was related
to the final math test scores, β=0.23, t(113)=2.45, p=0.016, with boys (M=8.40, SD=2.39),
outperforming girls (M=7.27, SD=2.73). Across all conditions, the number of males varied
from 11 to 13.

Performance During the Different Types of Math Training

Before testing hypotheses, we compared the performance of the four different types of training
during the practice phase. As mentioned before, performance was operationalized by two
different scores: an instruction score and a position score. With regard to the instruction score,
there was a significant effect of training condition as indicated by the one-way ANOVA, F(3,
110)=4.19, p=0.01, η2=0.10. The planned contrast testing the prediction that children who
received the math training with movements (M=7.97, SD=2.30) would outperform children in
the non-moving control groups (M=6.93, SD=2.40) was significant, t(110)=2.35,
p<0.001(one-tailed), η2=0.04. A Gabriel post hoc test showed no significant difference in
performance between children who received math training with movement and mirror-based
self-observation and children who received math training with movement only, p=0.99,
η2=∼0. Given the descriptive data indicating a possible difference between the two control

Table 1 Mean (SD) descriptive indices

Measures Training conditions

Move and mirror (N=27) Move (N=28) Write (N=27) Sit (N=32)

Practice phase

Performance math training

Position score 8.93 (1.39) 9.14 (1.21) 7.11 (2.62) 7.97 (2.24)

Instruction score 8.00 (2.27) 7.93 (2.32) 6.07 (2.54) 7.78 (2.25)

Mental effort 1.60 (0.51) 1.61 (0.55) 1.74 (0.61) 1.70 (0.64)

Interest 1.15 (0.36) 1.54 (1.03) 1.37 (0.74) 1.38 (0.91)

Perceived difficulty 2.00 (1.24) 2.00 (1.16) 2.04 (1.26) 1.94 (1.37)

Understanding 1.37 (0.74) 1.18 (0.39) 1.04 (0.19) 1.28 (0.63)

Test phase

Performance final math test 8.07 (2.23) 8.39 (2.18) 6.63 (2.90) 7.72 (2.39)

Mental effort 1.48 (0.55) 1.64 (0.74) 1.61 (0.65) 1.51 (0.54)

Interest 1.12 (0.33) 1.21 (0.69) 1.22 (0.80) 1.16 (0.57)

Perceived difficulty 1.58 (1.03) 1.96 (1.32) 1.81 (1.30) 1.78 (1.13)

Understanding 1.19 (0.57) 1.14 (0.45) 1.22 (0.51) 1.34 (0.75)

Mental effort, interest, perceived difficulty, and understanding ratings were measured on a five-point scale. The
total maximum score for math performance in both the practice and test phase is 10
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conditions, we also compared the two control conditions with each other on instruction score
with a post hoc Gabriel test. The test indicated that the control groups differed significantly at
p=0.04, η2=0.13. A one-way ANOVA for position score revealed a significant effect of
training condition, F(3, 110)=6.25, p<0.001, η2=0.15. The planned contrast testing the
prediction that children who received the math training with movements (M=9.04, SD=
1.30) would outperform children in the non-moving control groups (M=7.54, SD=2.43)
was significant, t(110)=4.09, p<0.001 (one-tailed), η2=0.13 (see Table 1). A post hoc
Games-Howell test revealed that the difference between the two movement conditions was
not significant, p=0.93, η2=∼0. In addition, we performed post hoc comparisons using the
Games-Howell test to examine whether the two control conditions differed on position score.
The test showed no significant difference between the control conditions, p=0.34, η2=0.03. To
conclude, the movement group outperformed the non-movement control group when building
two-digit numbers in the practice phase. Performance during move and mirror training,
however, did not significantly differ from performance during the move training.

Performance on Final Math Test

In this study, we examined whether an embodied training resulted in enhanced performance on
a number building task and whether mirror-based self-observation of one’s own movements
affects performance on that task. We hypothesized that movement conditions would result in
higher test performance than the non-movement control conditions. Furthermore, we explored
whether the presence of a mirror had an effect on the learning of number building exercises
through movements. The 95 % CIs of the move and mirror, move, write, and sit group were
7.21–8.93, 7.57–9.21, 5.51–7.75, and 6.88–8.57, respectively.

To compare the effects of the four different types of math training on the final math test
performance, a one-way between subjects ANOVA was conducted. There was a statistically
significant effect of training condition on final math performance, F(3, 110)=2.70, p=0.05,
η2=0.07. When comparing the movement conditions (M=8.23, SD=2.21) with the control
conditions (M=7.18, SD=2.65), the planned contrasts revealed that having math training with
movements significantly increased performance on the final math test compared to the non-
movement control groups, t(110)=2.32, p=0.01 (one-tailed), η2=0.05. A post hoc Gabriel test
showed no significant difference between the movement conditions with and without self-
observation, p=0.96, η2=∼0. Given the descriptive data indicating a possible difference
between the two control conditions, post hoc analyses were conducted. The Gabriel test,
however, revealed no significant differences between the two control conditions, p=0.43, η2=
0.01.

Taken together, these results confirmed our hypothesis that children who received math
training with movements performed significantly better on the final math test than children
who practiced number building exercises without movements. However, it should be noted
that the inclusion of a mirror during math training did not affect performance on the final math
test.

Interest, Perceived Difficulty, Understanding, and Mental Effort

To see whether the results above could possibly be explained by affective and cognitive factors
such as interest, perceived difficulty, understanding, and mental effort, we performed several
one-way between-subject ANOVAs with training condition as the independent variable. We
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found no statistically significant effect of training condition on interest F(3, 110)=1.10, p=
0.37, perceived difficulty F(3, 110)=0.03, p=0.99, understanding F(3, 110)=1.94, p=0.13,
and mental effort in both the training F(3, 110)=0.38, p=0.77) and the testing phase, F(3,
110)=0.43, p=0.74. Hence, there was no difference among the four groups in how much effort
they spent to perform the number building task, or in interest, perceived difficulty, and
understanding ratings in the training and test phase.

Discussion

The present study examined whether task-related full-body movements would facilitate the
learning process of number building skills (hypothesis 1) and explored whether mirror-based
self-observation of self-initiated body movements and self-initiated body movements only
would differentially affect the learning process. Hypothesis 1 was confirmed by the results.
Children in the movement training conditions outperformed children in the non-movement
training conditions during the training phase, and more importantly, on the final math test.
These results are in line with previous studies using full-body movements, indicating that these
movements can play a facilitating role during mathematical education (Fischer et al. 2011;
Link et al. 2013). The study of Link et al. (2013) already revealed the beneficial effects of
literally walking the number line, as it allowed for an embodied experience of placing numbers
on a continuous number line. In addition to this finding, this study showed that making
different sized steps corresponding with the different number units on a discrete number line
could also allow for an embodied experience of the architecture of decimal numbers with
positive results on the final math test as a result. By this, it joins a vast literature showing a link
between numbers and space (Walsh 2003). Furthermore, this study adds to this existing
literature, by presenting a new way of integrating full-body movements in the conventional
mathematical curriculum of young school-aged children.

In addition, the present study explored whether there was a difference in learning and test
performance between the movement conditions with and without mirror-based self-observa-
tion. This was not the case. In contrast with the full-body movements, the mirror did not affect
performance during the training phase or on the final math test. So, why did this unique
combination of observing and self-initiating movements not yield an effect? In this study, we
only included an immediate posttest and not a delayed posttest. It is possible that the positive
effects of mirror-based learning only become visible on a delayed posttest, as indicated by a
study of Dearborn and Ross (2006) in which non-mirror learners outperformed mirror learners
initially, while mirror learners surpassed non-mirror learners in performance over time. Future
research could use a delayed test to determine the long-term effects of learning math by mirror-
based observation of one’s own movements. Another recent study by Post et al. (2013), similar
to this study in the aspect of using a combination of observation and making movements (i.e.,
gesturing) in grammar learning, is consistent with the null results. In this study, children were
instructed to simultaneously gesture along with the instruction gestures (i.e., imitation) in the
animation. Contrary to their hypothesis, the results showed that children in the gesturing
condition performed worse on the posttest than children in the non-gesturing, control condi-
tion. A potential explanation for this result was that all children experienced extraneous
(ineffective) cognitive load due to the instructions to simultaneously observe and make
gestures. A similar explanation could also account for the null findings in this study.
Because children had to make and observe their body movements, a so-called dual-task, there
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might have been insufficient working memory capacity left for learning. Numerous dual-task
paradigm studies investigating the simultaneous performance of two tasks have showed that
our capability to perform tasks in parallel is limited (Kahneman 1973; Wickens 1991). When
the demands of the two tasks (e.g., perceptual and motor operations) exceed the individual’s
processing resources, performance decrements are to be expected, which are often referred to
as dual-task costs. Another way in which the mirror condition might have caused extraneous
load, is that it is very difficult to mentally transform the mirror-image of the ruler in order to get
the correct internal representation and therefore to profit from the combination of making and
observing movements.

Active Ingredients of Full-Body Movements

Although the beneficial role of bodily movements is in line with previous research, we did not
find differences among the training conditions in cognitive and affective factors that could
explain the observed difference in performance. So, what caused the differences between the
moving and non-moving conditions? Zooming in on the full-body movements, one could
discern two important active ingredients. Firstly, the conceptually congruent relation between
the different sized steps and the different number units could have facilitated number-building
learning, which resulted in higher performance on the final math test. This result would be in
line with a recent study of Segal et al. (2014) who found that actions that are conceptually
congruent with thinking facilitated thinking, and the earlier-mentioned studies showing that
moving the body task-specific ways strengthens a systematic association of numbers and space
(e.g., Link et al. 2013). Secondly, then, despite functional resemblance, the steps could simply
have aided during the number building exercises across the ruler by functioning as a sort of
keep-track-of-counting-device. For the reason that in the non-movement conditions children
were prohibited to use their fingers as a way to keep track of counting on the ruler, we do not
know whether the advantages of making different sized steps in the movement conditions are
due to their auxiliary role in counting with the ruler and/or are due to their functional
correspondence with different sized number units.

An unexpected finding was the difference in performance between the two control conditions
in the training phase. Children in the sit condition performed significantly better during the
training phase than children in the write condition. Although this finding might point out a
beneficial impact of very minimal movements (walking to the appropriate place in comparison
withmoving the hand), alternative hypotheses (e.g., children performed better in the sit condition
as the different parts on the ruler could be more easily discerned than the smaller parts on the
ruler in the write condition) cannot be ruled out. More research is needed to examine this.

Cognitive and Affective Factors

Another question is why there were no differences among the training conditions in cognitive
and affective factors. One possibility is that the rating scales used were not apt for younger
children. Rating scale techniques are based on the assumption that people are able to introspect
on their affective and cognitive processes and to report the amount of mental effort invested to
accommodate the demands imposed by the task. While quite some studies have demonstrated
that young and older adults are capable of doing this (e.g., Paas and van Merriënboer 1994), it
is possible that younger children might experience difficulties using these introspective self-
report scales. Several studies have observed that younger children tend to respond in an
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extreme manner (i.e., endorsing the options at either end of the response continuum) when
asked to use Likert-type rating scales. For example, a study of Chambers and Johnston (2002),
which involved children from 5 to 12 years old, showed that younger children when rating
subjective states (but not physical states) are more likely to respond that they are either Ba lot^
or Bnot at all^ happy, whereas older children were more capable of providing graded ratings in
the middle of the scale (e.g., Ba little^ happy).

While this explanation can account for exaggerated extremity preferences for both sides of
the response continuum, it does not explain why most children endorsed options at one side.
An alternative explanation for the current pattern of results is the social desirability bias; the
pervasive tendency to answer questions in a manner that will be viewed favorably by others
(Nederhof 1985). Even though no feedback about performance was given during the whole
study, it is possible that children wanted to have approval of the experimenter by choosing in
their view the most favorable option. Favorable options in this case would be complete
understanding, no invested effort, and no perceived difficulty (i.e., the options that make the
children look smart). In future research, this social desirability bias should be prevented, for
example, by clearly instructing children that high scores on the effort scale are just as Bgood^
as low scores.

Apart from general comments about response styles and introspective abilities of young
children, there are other, more specific elements that might have contributed to the current
results. First of all, the unexpected high interest ratings among all training conditions and not
only among movement conditions can be explained by the fact that the whole study was an
interruption of the daily routine. Children were taken out of class individually by an unfamiliar
but friendly experimenter and brought to the gym, a place that triggers positive feelings, such
as playfulness, in most of the children. In the gym, children were given a novel and interesting
task. Given that curiosity often is associated with positive affectivity (e.g., Litman 2005), it
could be argued that these extraordinary elements have contributed to the high interest ratings.

Second, despite the lack of research specifically examining concepts such as effort or
working load among younger children, we have noted in our research, anecdotally, that first-
graders tend to diffuse the concept mental effort with perceived difficulty. For example, several
first-graders mindlessly anticipated the forthcoming mental effort question raised by the
experimenter directly after finishing a number building exercise, by saying Bvery easy^ instead
of Bvery low effort^ (i.e., B1^ on a five-point Likert scale). One could, therefore, assume that
the distinction between both concepts is not that obvious for younger children. Future studies
would benefit from including a more performance-based measure of mental effort. In
performance-based techniques, mental effort is implicitly assessed by presenting children a
concurrent secondary task in addition to the primary task. In this procedure, performance on a
secondary task is supposed to reflect the level of cognitive load imposed by a primary task.
Commonly, the secondary task involves simple activities such as remembering a list of letters
or words or activities requiring sustained attention, such as detecting a visual or auditory signal
(e.g., Brünken et al. 2003; Goldin-Meadow et al. 2001). Typical performance variables for
sustained attention tasks are reaction time, accuracy, and error rate and in the case of a memory
task the number of words remembered.

Limitations and Future Studies

This study has some limitations worthwhile mentioning. First of all, this study did not include
a pretest. Therefore, we could not directly assess the level of number building skills first-

470 Educ Psychol Rev (2015) 27:457–474



graders had before the training phase and could, as a result, not determine the specific training
gains of the different types of training. However, because the participants were randomly
assigned to the conditions, we could expect the prior level of number building skills to be
equally distributed across conditions. In addition, a well-known important drawback of a
pretest, however, is that it possibly confounds the math training, since participants get primed
regarding the test items. In order to avoid this priming effect, we opted for a posttest only
design.

Furthermore, on basis of the experimental design, we cannot conclude which specific
element(s) of the full-body movement exercises facilitated number building skills in the
training and test phase. Do full-body movements work through their auxiliary role in counting
with the ruler and/or through their functional correspondence with different sized number
units? Besides, by forcing children in the control conditions not to use their hands during the
number building exercises, they might have been more obstructed in their performance than
the experimental groups, as they could not use their hands as a memory and location device. In
future studies, it would be interesting to disentangle these separate elements and to use a
control group in which children are allowed to use their hands.

Another interesting, related topic for future research would be to examine possible differ-
ences between small movements and full-body movements in their effect on number building
exercises. For example, does it matter whether the different sized steps are done by feet on a
ruler across the floor or are done by a Bwalking hand^ on a printed ruler? Also, within the
context of improving health and fitness of young children, it would be interesting to make the
mathematical exercise more physically demanding (e.g., increasing the length of the ruler). As
numerous studies have found positive effects of (class-room based) physical activity on
learning and academic performance (e.g., Donnely and Lambourne 2011), one could argue
that task-related movements with an increased intensity would improve mathematical learning
even more.

Conclusions and Implications

This study sought a way to build physical activity into classroom math lessons, not only to
increase the amount of physical activity but mainly to make a positive contribution to
comprehension of numerical concepts. To conclude, this study showed that the movement
training resulted in better number building skills among first-graders. Observing one’s
own movements in a mirror, however, did not affect performance. Differences in interest,
perceived difficulty, understanding, and mental effort cannot account for this effect,
because there were no differences between conditions on those variables. Although one
must be careful in drawing conclusions with respect to educational practice from a single
study, the present findings have important implications for the educational domain. With
simply adding full-body movements to conventional math exercises, math performance
can be improved in comparison with the predominant Bsit and write method.^ From a
practical point of view, these results are also very promising, as full-body movements can
be easily integrated into the conventional number building exercises without the need for
purchasing costly new teaching methods and materials. Because of this easily applicable
and low cost teaching method, teachers might be more likely to integrate the movements
into their classrooms. Also, this form of classroom-based physical activity fits the trend
towards getting children more physically active in primary schools.
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