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Abstract

Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-
specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which
transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved
family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and
MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3)
cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live
imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A
protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in
mammalian cilia is unclear. Interestingly, all five proteins moved at ,0.45 mm/s in anterograde and retrograde direction,
suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities
as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK
affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In
contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK
knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the
mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However,
whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that
cilium length can be modulated independent of IFT speed.
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Introduction

Primary cilia are microtubule-based protrusions that can be

found on the surface of almost all vertebrate cells, and function as

sensory organelles. Defects in cilia function, structure or length

have been associated with many genetic diseases, collectively

called ciliopathies [1]. The assembly and maintenance of primary

cilia depends on intraflagellar transport (IFT), a microtubule-based

transport system that involves kinesin motor proteins (kinesin-II

and KIF17/OSM-3) which mediate anterograde transport (to the

tip of the cilium), dynein motor complexes (cytoplasmic dynein 2),

which mediate retrograde transport (back to the cell body), and

adaptor complexes (complex A, complex B, and the BBSome) [2].

A wide variety in cilia lengths and morphologies exist, most

likely to better support cilium function in specific tissues [3,4].

Although several signaling molecules have been shown to

modulate cilium length [5–7], how this is achieved mechanistically

is not understood. The most plausible explanation is provided by

the balance point model, in which cilium length is determined by a

balance between cilium assembly and disassembly rates [8,9]. The

assembly rate is dependent on the availability of axonemal tubulin

and other structural components, supplemented by anterograde

IFT and probably the pool of these proteins at the base of the

cilium [10,11]. Indeed, changes in both anterograde and

retrograde IFT are accompanied by changes in cilium length

[8,12–15]. How cilium disassembly is regulated is unclear, since it

seems independent of retrograde IFT [8,15].

The family of ros cross-hybridizing kinases (RCKs) is charac-

terized by a MAP kinase-like Thr-Xaa-Tyr (TXY) motif in their

activation loop, and an overall structure similar to CDKs [16,17].

In Chlamydomonas (lf4), Leishmania (LmxMPK9), C. elegans (dyf-
5), and mouse (Mak and Ick) RCKs have been identified that

negatively regulate cilium length [12,18–23]. Emerging evidence

suggests that regulation of cilium length may be manifest by RCK-

induced changes in IFT. In C. elegans, dyf-5 loss-of-function

abolishes the coordination between the anterograde motors

kinesin-II and OSM-3, such that the IFT complex travels with

kinesin-II. In addition, kinesin-II can move into the distal segment

in dyf-5 mutant animals [12]. A more direct correlation between a

change in IFT and cilium length was observed in recent studies in

Chlamydomonas where lf4 loss-of-function cells displayed an

increased injection of IFT particles which correlates with increased
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flagellar assembly and length, and in mice where ICK was found

to phosphorylate the kinesin-II subunit KIF3A and deletion of Ick
affected the localization of IFT proteins in cilia [9,14,22].

In mammals, the RCK family contains three members: MAK

or RCK (male germ cell-associated kinase, ros cross-hybridizing

kinase), ICK or MRK (intestinal cell kinase, MAK-related kinase)

and RAGE, MOK or STK30 (renal tumor antigen, MAPK/

MAK/MRK overlapping kinase, serine threonine kinase 30)

[17,24–29]. MAK localizes to the connecting cilium and outer-

segment axoneme in photoreceptor cells [20]. In retina of Mak
knock-out mice cilia are elongated, IFT markers mislocalized, and

photoreceptors degenerate over time [20]. In line with these

observations, mutations in MAK have been found in patients with

Retinitis Pigmentosa [30,31]. Recently, it was shown that ICK

localizes to primary cilia, inhibits ciliogenesis and regulates cilium

length [21–23]. Ick knock-out mice show multiple developmental

defects, correlating with ciliary and Shh signaling defects [22,23].

ICK has been associated with endocrine-cerebro-osteodysplasia

(ECO), a lethal recessive disorder with ciliopathy-like symptoms

[32].

We set out to investigate the roles of RCK kinases in

regulating cilium length in renal epithelial cells. We found that

mouse inner medullary collecting duct cells (IMCD-3) express

two of the three RCKs, ICK and MOK, which localize to cilia

and negatively regulate cilium length. To analyze the effects of

ICK and MOK on the IFT machinery, we set up live imaging

of five fluorescently tagged IFT proteins: kinesin-II subunit

KIF3B, complex A protein IFT43, complex B protein IFT20,

BBSome protein BBS8 and kinesin KIF17. All five proteins

moved at ,0.45 mm/s in anterograde and retrograde direction,

suggesting they are all transported by the same machinery. GFP

tagged ICK and MOK also moved at approximately 0.45 mm/

s, suggesting they are part of, or transported by the IFT

machinery. Interestingly, whereas loss- or gain-of-function of

ICK affected IFT speeds, MOK knockdown or overexpression

did not. Finally, we found that the effects of ICK or MOK

knockdown on cilium length and IFT depend on mTORC1

signaling.

Materials and Methods

Cell culture and transfections
IMCD-3 cells (CRL-2123, ATCC) were grown in DMEM/

F10 medium supplemented with 10% FCS, penicillin (100 U/

ml) and streptomycin (100 mg/ml). For transient transfections

IMCD-3 cells, at 60% confluency, were transfected with

FuGENE 6 (Roche), and serum starved for 48 hours to induce

ciliogenesis. To generate clonal IMCD-3 cell lines, cells were

transfected with linearized constructs. After 48 hours, G418

(500 mg/ml) was used to select transfected cells. After two

weeks, viable GFP-positive cells were selected on a FACS Aria

II cell sorter (Becton-Dickinson). Individual cells were seeded in

a 96-well plate and cultured to confirm the GFP-construct

expression levels and subcellular localization by fluorescence

microscopy.

Constructs
IFT43-YFP was a gift from Heleen Arts [33], and IFT20-GFP

was a gift from Greg Pazour [34]. GFP-ICK was generated by

PCR amplification of the ICK open reading frame (ORF) from

mouse ICK cDNA clone (IMAGE 4224269) and subcloning into

Clontech pEGFP-C1, using EcoRI and KpnI restriction sites

engineered into the PCR primers. GFP-MOK was generated by

amplification of the MOK ORF from mouse MOK cDNA clone

(a gift from Yoshihiko Miyata) and subcloning into pEGFP-C1

using SalI and SacII. Kinase-dead GFP-ICK and MOK were

generated using site-directed mutagenesis to change Lys 33 and

35, respectively, to Met. GFP-BBS8 was generated by amplifica-

tion of the BBS8 ORF from mouse BBS8 cDNA clone (IMAGE

4527657) and subcloning into pEGFP-C1 using KpnI and ApaI.

CFP-centrin-2 was generated by amplification of the centrin-2

ORF from IMCD-3 cDNA and subcloning into pECFP-N1 using

KpnI and BamHI. The coding sequence of mouse KIF3B

(IMAGE clone 8862410) was subcloned into the pmCit-C1 vector

(equivalent to pEGFP-C1 except that EGFP was replaced by

mCitrine) using XhoI and EcoRI restriction sites. All constructs

were confirmed by sequencing. The mCit-KIF3B construct

contained a single mutation (Val 34 to Ala) which does not

change the motility of KIF3B (KJV, unpublished). KIF17-mCit

has been described previously [35]. ICKsh #01 (target sequence:

Figure 1. ICK and MOK localize to the primary cilium. IMCD-3 cells expressing (A) GFP-ICK and CFP-centrin-2, or (B) GFP-MOK and CFP-centrin-
2, serum-starved for 48 hours and immunostained for acetylated tubulin (acTub). Insets show enlargements of the region containing the cilium. Scale
bars 10 mm.
doi:10.1371/journal.pone.0108470.g001
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CACAACCACGAGGCGGTGTAA), ICKsh #02 (CCAGT-

GAAATTGACACAATTT), MOKsh #01 (CTGGTTCTCT-

TGCACTAATAT), MOKsh #02 (GCCGGAGAATATCC-

TAGTAAA) and control shRNA were obtained from the TRC

lentivirus-based shRNA library (Sigma).

Antibodies
Primary antibodies: mouse monoclonal anti-acetylated tubulin

(Sigma; immunofluorescence (IF), 1:1,000), rabbit polyclonal anti-

ICK (Gift from Zheng Fu; Western blot (WB), 1:500), rabbit

polyclonal anti-MOK (Cosmo Bio Co., Ltd.; WB, 1:1,000), and

anti-actin (Millipore; WB, 1:5,000). Secondary antibodies:

alexa594-conjugated anti-mouse (Invitrogen; IF, 1:1,000), HRP-

conjugated anti-rabbit (Dako; WB, 1:5,000), and HRP-conjugated

anti-mouse (Amersham; WB, 1:10,000).

Immunofluorescence and microscopy
IMCD-3 cells were fixed with 4% PFA, permeabilized with

0.15% Triton X-100 in PBS, and blocked with blocking buffer

(1% BSA and 0.05% Tween-20 in 1x PBS) for 45 minutes at room

temperature (RT). Cells were incubated with primary antibodies

(in blocking buffer) for 1 hour at RT, and washed three times with

PBS tween (0.05% Tween-20 in 1x PBS). Cells were incubated

with fluorescent-conjugated secondary antibodies (in blocking

buffer) for 45 minutes at RT, and washed three times with PBS

tween. After the washing steps the cells were washed with 70%

ethanol for 1 minute and 100% ethanol for 1 minute. The samples

were air-dried and mounted on a microscope slide with mounting

solution (20 mM Tris HCl pH 8, 0.2 M DABCO, 90% glycerol).

Subcellular localization studies and cilia length measurements

were performed using a Zeiss Imager Z1 microscope with a 63x

(NA 1.4) objective.

IFT speed measurements
Clonal IMCD-3 cells stably expressing mCit-KIF3B, IFT43-

YFP, GFP-BBS8, IFT20-GFP, KIF17-mCit, GFP-ICK or GFP-

MOK were grown on 18 mm cover slips. Prior to analysis glass

slides were inversed onto a 24 mm cover slip and placed in a

live-cell imaging chamber. Time-lapse movies were acquired on

a spinning-disc microscope (CSU-X1-A1; Yokogawa) equipped

with 10061.49 NA oil objective (Nikon) and an EMCCD

camera (QuantEM 512SC; Roper Scientific), installed on an

inverted research microscope (Eclipse Ti-E; Nikon), and

controlled with MetaMorph 7.5 software (Molecular Devices).

To determine the IFT particles’ velocities, kymographs were

generated in ImageJ with the Kymograph plugin, written by J.

Rietdorf.

Retroviral expression
Third-generation lentiviruses were packaged in HEK293T cells

by transient co-transfection, with Lipofectamine 2000 (Invitrogen),

of pMDg/RRE, pRSVREV, pMD.9, and pLKO.1-puro contain-

ing non-target control shRNA, ICKsh #01, ICKsh #02, MOKsh

#01, or MOKsh #02. IMCD-3 cells growing at 40% confluency

were transduced with lentiviruses. Forty-eight hours after trans-

duction, cells were serum-starved for 48 hours in the presence of

5 mg/ml puromycin and harvested for protein extraction or used

for microscopy.

Western Blot Analysis
IMCD-3 cells were harvested in lysis buffer (50 mM Tris

pH 6.8, 5 mM EDTA, 5% glycerol, 2% SDS, 1% b-mercapto-

ethanol, and Protease Inhibitor Cocktail (Roche)). Lysates were

centrifuged at 13.200 rpm for 1 minute at 4uC. Supernatants were

collected, and 1x Laemmli loading buffer was added. Protein

samples were separated using SDS-PAGE and transferred to a

nitrocellulose transfer membrane (Whatman). Membranes were

probed with primary antibodies, washed three times with PBST

(0.25% Tween-20 in 1x PBS), probed with HRP-conjugated

secondary antibodies, washed three times with PBST, and exposed

to chemiluminescence reagent (Amersham). Chemiluminescence

was detected with Alliance 2.7 (UVItec).

Figure 2. ICK and MOK control cilium length. (A) Immunoblot of
cell lysates of IMCD-3 cells transduced with shRNA constructs targeting
ICK and MOK. Actin was used as loading control. (B) Average length of
primary cilia of IMCD-3 cells depleted of ICK. (C) Average length of
primary cilia of IMCD-3 cells depleted of MOK. (D) Average length of
primary cilia of IMCD-3 cells depleted of ICK and MOK, combining ICKsh
#01 and MOKsh #01 or ICKsh #02 and MOKsh #02. (E) Immunoflu-
orescence images of IMCD-3 cells expressing control shRNA, ICKsh #01,
or MOKsh #01 stained with anti-acetylated tubulin. Scale bar 10 mm. (F)
Average length of primary cilia of IMCD-3 cells overexpressing GFP-C1,
wild type (wt) or kinase-dead (kd) GFP-ICK, or GFP-MOK. (G)
Immunofluorescence images of IMCD-3 cells expressing GFP-C1, wt or
kd GFP-ICK, or GFP-MOK stained with anti-acetylated tubulin. Scale bar
1 mm. Numbers in the red bars indicate number of cilia measured. Data
were obtained in at least 2 independent experiments. Statistically
significant differences (p,0.001) compared to control cells are
indicated with a black asterisk. Error bars indicate SD.
doi:10.1371/journal.pone.0108470.g002
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Statistical analysis
P values were derived from one-way ANOVA analysis, followed

by a Bonferroni post-hoc test, using SPSS.

Results

ICK and MOK localize to cilia
RT-PCR analysis of dividing or serum-starved IMCD-3 cells

showed expression of ICK and MOK, but not of MAK in these

cells (Figure S1). To investigate whether ICK and MOK localize

to the cilium, we expressed N- and C-terminal GFP-fusion

constructs of ICK and MOK in IMCD-3 cells. GFP-ICK, GFP-

MOK and C-terminally tagged ICK and MOK localized to the

primary cilium in serum-starved IMCD-3 cells (Figure 1A and B

and data not shown). In addition, we observed two spots at the

ciliary base, which co-localized with the centrosomal marker

centrin-2 (Figure 1A and B). ICK and MOK also localized to the

nucleus, in line with previous observations [36,37].

ICK and MOK regulate cilium length
To determine whether ICK and/or MOK regulate cilium

length, we reduced ICK and MOK levels in IMCD-3 cells.

Knockdown of ICK using two non-overlapping lentiviral

shRNA’s, ICKsh #01 and ICKsh #02, effectively reduced ICK

expression (Figure 2A). Measurement of cilium length showed that

cilia of IMCD-3 cells depleted of ICK were ,60% longer than

those of control cells (Figure 2B and E). Two independent

lentiviral shRNA’s, MOKsh #01 and MOKsh #02, that reduced

MOK expression resulted in a ,40% elongation of cilium length

(Figure 2A, C and E). Knockdown of both ICK and MOK did not

result in an additional increase of cilium length, but yielded cilia

with a length comparable to that after knockdown of only ICK

(Figure 2D). Neither knockdown of ICK nor MOK affected the

percentage of IMCD-3 cells that formed cilia after 48 hours of

serum starvation (Figure S2).

In addition, we analyzed the effect of overexpression of N-

terminal GFP-fusions of wild type and kinase-dead (kd) ICK and

MOK, on cilium length. To generate kinase-dead mutant

constructs, we replaced an essential lysine in the ATP-binding

pocket at position 33 in ICK and position 35 in MOK by

methionine [25]. IMCD-3 cells transfected with GFP-ICK had

,40% shorter cilia compared to cells transfected with GFP

(Figure 2F and 2G), whereas overexpression of kinase-dead GFP-

ICK did not affect cilium length (Figure 2F and G), indicating that

kinase activity of ICK is necessary for its negative regulation of

cilium length. Overexpression of wild type or kinase-dead GFP-

MOK did not affect cilium length (Figure 2F and G).

Taken together, our data indicate that ICK and MOK

negatively regulate cilium length in IMCD-3 cells and that this

regulation by ICK requires its kinase function.

Live imaging of five IFT proteins including KIF3B and
KIF17 suggests they are transported by the same
machinery

To determine whether elongation of cilium length caused by

depletion of ICK and MOK is also accompanied by changes in

IFT we set up live imaging of several IFT proteins. Thus far, only

IFT20 and IFT88 have been shown to undergo IFT in

mammalian cells [13,34,38]. To visualize at least one component

of each IFT subcomplex, we generated clonal lines stably

expressing fluorescent protein fusions of the kinesin-II subunit

mCit-KIF3B, the complex A protein IFT43-YFP, the complex B

protein IFT20-GFP and the BBSome subunit GFP-BBS8. In C.
elegans, IFT is mediated by an additional kinesin, OSM-3 [39].

KIF17, the vertebrate homologue of OSM-3, localizes to cilia, but

its function in IFT is not entirely understood [40,41]. Using

immunofluorescence, we confirmed that KIF17 is expressed in

IMCD-3 cells and localizes to primary cilia (Figure S3). Therefore,

we also generated a clonal line stably expressing KIF17-mCit.

All five IFT markers localized to primary cilia (Figure 3A), and

moved in both anterograde and retrograde directions along the

axoneme (Figure 3B and Movies S1 to S5). In IMCD-3 cells

expressing a control shRNA, all five IFT markers moved at the

same speeds; 0.40–0.45 mm/s in the anterograde direction and

0.39–0.46 mm/s in the retrograde direction, suggesting that all five

proteins are transported by the same machinery (Figure 3B and

Figure 3. Live imaging of fluorescently tagged components of the IFT machinery. (A) Fluorescence images of the cilia of IMCD-3 cells
expressing mCit-KIF3B, IFT43-YFP, GFP-BBS8, IFT20-GFP, and KIF17-mCit. The basal body is indicated with an arrowhead. Scale bar 1 mm. (B)
Representative kymograph of IFT43-YFP in cilia of control cells. The basal body (b.b.) and the distal tip (d.t.) of the cilium are indicated. In the
corresponding drawing, anterograde trajectories are shown in red and retrograde trajectories are shown in blue. (C) Average anterograde and
retrograde velocities of IFT components in control cells. Error bars indicate SD. Numbers in the bars indicate number of particles analyzed.
doi:10.1371/journal.pone.0108470.g003
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C). These speeds are in agreement with previously reported speeds

of mammalian IFT proteins which vary between 0.3–0.7 mm/s in

anterograde and retrograde directions [13,34,38].

ICK regulates IFT speeds
To analyze whether ICK or MOK regulate IFT, we reduced

the expression of ICK in the clonal lines expressing each of the five

IFT markers. The average anterograde velocities of all tested IFT

markers were significantly increased by approximately ,35% in

cells depleted of ICK (Figure 4A and C). In contrast, retrograde

velocities were not affected (Figure 4B and C). Depletion of MOK

did not affect anterograde or retrograde IFT velocities (Figure 4A

and B).

In addition, we analyzed the effect of overexpression of ICK or

MOK on IFT. Since we observed GFP-tagged ICK and MOK in

cilia, we surmised that these proteins are transported by the IFT

machinery. We generated stable IMCD-3 cell lines expressing

GFP tagged ICK, MOK or kinase dead versions of these proteins

and indeed found that these GFP-tagged proteins move inside the

cilium in anterograde and retrograde directions (Figure 5A and B,

Movie S6 and S7). In the anterograde direction, GFP-ICK and

GFP-MOK and kinase-dead versions of these proteins moved

Figure 4. Depletion of ICK results in increased anterograde IFT velocity. (A) Average anterograde velocities of IFT components in control
cells, and cells depleted of ICK or MOK using two independent shRNA constructs for each. Statistically significant differences (p,0.001) compared to
the velocity of the same IFT component in control cells are indicated with a black asterisk. (B) Average retrograde velocities of IFT components in
control cells, and cells depleted of ICK and MOK. (C) Representative kymograph of IFT43-YFP in cells depleted of ICK. The basal body (b.b.) and the
distal tip (d.t.) of the cilium are indicated. In the corresponding, drawing anterograde trajectories are shown in red and retrograde trajectories are
shown in blue. Error bars indicate SD. Numbers in the bars indicate number of particles analyzed.
doi:10.1371/journal.pone.0108470.g004
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on average at 0.45–0.47 mm/s, similar to fluorescently tagged

components of the IFT machinery (Figure 5C). In the retrograde

direction, three of the four constructs moved at a speed similar to

the IFT machinery, on average between 0.45 and 0.49 mm/s

(Figure 5D). Interestingly, wild type GFP-ICK moved significantly

slower in the retrograde direction, at 0.3660.05 mm/s (mean 6

sd, p,0.001 compared to GFP-ICKkd, GFP-MOK or GFP-

MOKkd). These results suggest that both ICK and MOK are part

of, or transported by the IFT machinery. In addition, overexpres-

sion of ICK reduces retrograde IFT speed.

ICK and MOK interact with cAMP signaling in the
regulation of cilium length and IFT

Previous studies have shown that cilium length and IFT can be

regulated by several signaling molecules, including cAMP levels

and the mTOR pathway [13,42,43]. To analyze how cAMP

signaling relates to the ciliary functions of ICK and MOK, we

treated control cells and cells depleted of ICK or MOK with

forskolin, resulting in increased cAMP, and measured cilium

length and IFT velocities. Increased cAMP resulted in increased

cilium length and anterograde velocity of IFT particles (Figure 6A

and B), consistent with previous work [13]. Interestingly, forskolin

treatment resulted in additive changes in cilium length when

combined with ICK depletion but not MOK depletion (Figure 6A

and B). These data suggest that ICK and the cAMP pathway

independently regulate cilium length, whereas MOK and forskolin

affect the same pathway. We thus tested if ICK depletion and

forskolin treatment have additive effects on IFT speeds. Surpris-

ingly, depletion of ICK and treatment with forskolin at the same

time did not result in additive effects on the anterograde IFT

velocity of IFT20-GFP (Figure 6C). This suggests that although

ICK and cAMP act in the same pathway to regulate IFT, they

have separable functions in regulating cilium length.

The effects of ICK and MOK on cilium length and IFT
require mTORC1 signaling

Cilium length and function are also regulated by the mTOR

pathway. mTOR exists in at least two molecular complexes,

mTORC1 and mTORC2, which are defined by the presence of

either Raptor (mTORC1) or Rictor (mTORC2) [44]. Treatment

of C. reinhardtii cells and zebrafish embryos with the mTORC1

inhibitor rapamycin resulted in shorter cilia [43]. Interestingly,

ICK has been shown to phosphorylate Raptor at Thr-908, and

thus likely modulates mTORC1 activity [45]. Since both mutation

of this Thr to a non-phosphorylatable Ala or to a phosphomimic

Glu impaired mTORC1 activity, it is not clear whether ICK

activates or inactivates mTORC1 [45].

To investigate whether ICK and/or MOK interact with the

mTORC1 pathway in the regulation of cilium length, we treated

control cells, and cells expressing ICKsh #01 or MOKsh #01

with rapamycin. In contrast to the previously reported shortening

of cilia [43], rapamycin treatment of control cells had no effect on

cilium length (Figure 6D and E). However, rapamycin treatment

completely suppressed the effect of ICK or MOK depletion on

cilium length (Figure 6D and E). Rapamycin treatment also

suppressed the effect of ICK depletion on the anterograde IFT

velocity of IFT20-GFP (Figure 6F). Our data suggest that the

effects of depletion of ICK and MOK on cilium length and of ICK

on IFT require mTORC1 activity, which is in line with ICK

acting as a mTORC1 inhibitor.

Discussion

Here we show that mouse renal epithelial (IMCD-3) cells

express two members of the small family of RCK kinases, ICK

and MOK. In agreement with previous reports [12,18–23,36,37],

we found that ICK and MOK localize to the cilium, the ciliary

base and the nucleus, and that they negatively regulate cilium

length. The strongest effects on cilium length were obtained by

ICK knock down, which increased cilium length, or overexpres-

sion, which decreased cilium length.

Our work extends the previous findings by examining the

mechanisms of RCK function in ciliary length control. We show

that both GFP-tagged ICK and MOK move inside cilia at speeds

comparable to those of the IFT machinery, suggesting they are

transported by, or part of the IFT machinery. Transport of RCKs

by the IFT complex would enable tight control of IFT during

ciliary length control. Indeed, we found that ICK regulates IFT

speed: ICK knock down increased anterograde speed, whereas

ICK overexpression reduced retrograde IFT speed. These findings

are consistent with the balance point model as an increase in IFT

speed should result in increased delivery of IFT particles to the

cilium tip. Unfortunately, it proved to be impossible to accurately

and reproducibly measure the number of IFT particles arriving at

the tip or their size in our current imaging setup. Our results also

suggest that retrograde transport can play a role in regulation of

Figure 5. Overexpression of ICK results in decreased retro-
grade IFT velocity. (A) Representative example of kymograph of GFP-
ICK in IMCD-3 cells. The basal body (b.b.) and the distal tip (d.t.) of the
cilium are indicated. In the corresponding drawing anterograde
trajectories are shown in red, and retrograde trajectories are shown in
blue. (B) Representative example of kymograph of GFP-MOK in IMCD-3
cells. The basal body (b.b.) and the distal tip (d.t.) of the cilium are
indicated. In the corresponding drawing anterograde trajectories are
shown in red, and retrograde trajectories are shown in blue. (C) Average
anterograde velocities of wt or kd GFP-ICK or GFP-MOK. (D) Average
retrograde velocities of wt or kd GFP-ICK or GFP-MOK. The velocity of
GFP-ICK is statistically significantly different (p,0.001) from those of
GFP-ICKkd and wt or kd GFP-MOK (indicated with a black asterisk). Error
bars indicate SD. Numbers in the bars indicate number of particles
analyzed.
doi:10.1371/journal.pone.0108470.g005
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cilium length, consistent with effects of inactivation of the dynein

heavy chain in Chlamydomonas [15].

Although a change in IFT can be associated with a change in

cilium length, several lines of evidence indicate that regulation of

cilium length does not necessarily involve changes in IFT speed

and can be achieved by other mechanisms. First, knockdown of

MOK affects cilium length, but does not affect IFT speeds.

Second, knockdown of ICK and addition of forskolin work

together to regulate IFT but each has its own additional functions

in regulating cilium length.

We show that the regulation of cilium length by ICK requires its

kinase function, as overexpression of a kinase dead mutant version

of ICK did not affect cilium length. The kinase function of ICK

likely impacts mTORC1 as the effect of knockdown of ICK on

cilium length or IFT required mTORC1 signaling. This is

consistent with an earlier report showing that ICK modulates

mTORC1 activity [45]. Since the mTORC1 complex directly

regulates protein synthesis in mammals and the level of soluble

tubulin positively regulates cilia length, ICK and MOK could

act as negative regulators of cilium length by suppressing the

synthesis of ciliary tubulin via inhibition of mTORC1 [10,46].

Another possibility of how ICK might control IFT is by direct

phosphorylation of the kinesin-II subunit KIF3A, which seems to

affect cilium formation and function in cultured mammalian cells

and in zebrafish [22].

Our live imaging of IFT components provides the first direct

demonstration that the kinesin-2 motors move with speeds

compatible with IFT in mammalian cells. Indeed, we found that

all five components of the IFT machinery tested, the kinesin-II

subunit KIF3B, homodimeric kinesin KIF17, complex A protein

IFT43, complex B protein IFT20 and BBSome protein BBS8,

move at the same speeds in anterograde and retrograde directions,

and that the anterograde speeds of all proteins are affected to a

similar extent upon knockdown of ICK. These findings strongly

suggest that in IMCD-3 cells, all five components of the IFT

machinery tested are transported by the same machinery,

including the two kinesins, kinesin-II and KIF17. The exact

functions of the two kinesins in the cilia of IMCD-3 cells, for

example whether they coordinate their motility as shown in C.
elegans [39], remain to be determined. Further analysis of the

mammalian IFT machinery is required to decipher the compo-

sition of the IFT complexes.

In conclusion, both ICK and MOK modulate cilium length and

add to the complexity required to achieve the variety in lengths

Figure 6. Cilium length regulation by ICK and MOK interacts with cAMP and mTORC1 signaling. (A) Average lengths of primary cilia of
IMCD-3 cells expressing a control shRNA, ICKsh #01, or MOKsh #01, untreated or treated with 100 mM forskolin (Fsk) for 24 hours. (B)
Immunofluorescence images of IMCD-3 cells expressing a control shRNA, ICKsh #01, or MOKsh #01, untreated or forskolin-treated, stained with anti-
acetylated tubulin. (C) Average anterograde velocity of IFT20-GFP in IMCD-3 control cells, and cells depleted of ICK, untreated and forskolin-treated.
(D) Average lengths of primary cilia of IMCD-3 cells expressing a control shRNA, ICKsh #01, or MOKsh #01, untreated or treated with 0.5 mM
rapamycin (rapa) for 24 hours. (E) Immunofluorescence images of IMCD-3 cells expressing a control shRNA, ICKsh #01, or MOKsh #01, untreated or
rapamycin-treated, stained with anti-acetylated tubulin. (F) Average anterograde velocity of IFT20-GFP in IMCD-3 control cells, and cells depleted of
ICK, untreated and rapamycin-treated. Statistically significant differences (p,0.001) compared to untreated cells are indicated with a black asterisk,
and compared to the control shRNA are indicated with a red asterisk. Error bars indicate SD. Numbers in the bars indicate number of cilia (A and D) or
particles (C and F) analyzed. Scale bar, 10 mm.
doi:10.1371/journal.pone.0108470.g006
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and morphologies of cilia that are probably necessary for different

cell-specific functions. Inappropriate elongation of cilia hinders the

biological processes in which cilia function [43,47]. Not surpris-

ingly, several ciliopathies are associated with defects in cilia length

control. For example, MAK, negative regulator of cilia length and

close relative of ICK and MOK, has been linked to the retina-

specific ciliopathy retinitis pigmentosa [30,31]. In addition,

recently generated Ick knock-out mice show developmental defects

that resemble those observed in the human syndrome endocrine-

cerebro-osteodysplasia [22,23]. Also Juvenile Cystic Kidney

Disease and Meckel–Gruber Syndrome have been linked to the

long cilia phenotype [48,49]. Further research is necessary to gain

more insight in the signal transduction pathways that regulate

cilium length as well as the role of IFT in achieving these

differences in cilium length.

Supporting Information

Figure S1 ICK and MOK are expressed in IMCD-3 cells.
MAK, ICK, and MOK expression in dividing (S) or serum-starved

(G0) IMCD-3 cells visualized by RT-PCR.

(TIF)

Figure S2 Knock down of ICK or MOK does not affect
cilia formation. Percentage of ciliated cells in IMCD-3 cells

depleted of ICK or MOK. Numbers indicate numbers of cells

analyzed, error bars represent SD. These results are based on 15

pictures of transfected cells, from one experiment.

(TIF)

Figure S3 Endogenous KIF17 localizes to cilia of IMCD-
3 cells. IMCD-3 cells, serum-starved for 48 hours, were

immunostained for KIF17 and acetylated tubulin. Insets show

enlargements of the region containing the cilium. Scale bars 10 mm.

(TIF)

Movie S1 mCit-KIF3B motility in a cilium. Time-lapse

video of an IMCD-3 cell expressing mCit-KIF3B. The video

displays 20 frames per second for ,6 seconds (original video ,36

seconds). Scale bar 1 mm.

(AVI)

Movie S2 IFT43-YFP motility in a cilium. Time-lapse

video of an IMCD-3 cell expressing IFT43-YFP. The video

displays 20 frames per second for ,6 seconds (original video ,40

seconds). Scale bar 1 mm.

(AVI)

Movie S3 GFP-BBS8 motility in a cilium. Time-lapse video

of an IMCD-3 cell expressing GFP-BBS8. The video displays 20

frames per second for ,6 seconds (original video ,49 seconds).

Scale bar 1 mm.

(AVI)

Movie S4 IFT20-GFP motility in a cilium. Time-lapse

video of an IMCD-3 cell expressing IFT20-GFP. The video

displays 20 frames per second for ,6 seconds (original video ,37

seconds). Scale bar 1 mm.

(AVI)

Movie S5 KIF17-mCit motility in a cilium. Time-lapse

video of an IMCD-3 cell expressing KIF17-mCit. The video

displays 20 frames per second for ,6 seconds (original video ,39

seconds). Scale bar 1 mm.

(AVI)

Movie S6 GFP-ICK motility in a cilium. Time-lapse video

of an IMCD-3 cell expressing GFP-ICK. The video displays 20

frames per second for ,6 seconds (original video ,41 seconds).

Scale bar 1 mm.

(AVI)

Movie S7 GFP-MOK motility in a cilium. Time-lapse video

of an IMCD-3 cell expressing GFP-MOK. The video displays 20

frames per second for ,6 seconds (original video ,38 seconds).

Scale bar 1 mm.

(AVI)
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