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Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3) through the
stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct
effects on osteoblasts and bone formation have also been established. The vitamin
D receptor (VDR) is expressed in osteoblasts and 1,25D3 modifies gene expression
of various osteoblast differentiation and mineralization-related genes, such as alkaline
phosphatase (ALPL), osteocalcin (BGLAP), and osteopontin (SPP1). 1,25D3 is known to
stimulate mineralization of human osteoblasts in vitro, and recently it was shown that
1,25D3 induces mineralization via effects in the period preceding mineralization during the
pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts
it is important to get an integrated network view of the 1,25D3-regulated genes during
osteoblast differentiation and mineralization. The current data will be presented and
discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast.
Describing and understanding the vitamin D regulatory networks and identifying the
dominant players in these networks may help develop novel (personalized) vitamin
D-based treatments. The following topics will be discussed in this overview: (1) Bone
metabolism and osteoblasts, (2) Vitamin D, bone metabolism and osteoblast function, (3)
Vitamin D induced transcriptional networks in the context of osteoblast differentiation and
bone formation.
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BONE METABOLISM AND OSTEOBLASTS
Bone is formed during fetal development by two processes:
endochondral and intramembranous ossification (for review
Bilezikian et al., 2002). Skull and flat bones are formed by
intramembranous ossification where there is direct bone forma-
tion by condensation of the mesenchyme without a preformed
cartilaginous scaffold. Long bones and most of the remaining
bones are formed by endochondral ossification (Mackie et al.,
2008, 2011; Nishimura et al., 2012). This type of bone forma-
tion is characterized by the transition of cartilage into mineralized
bone tissue.

Two major processes occur in bone: bone modeling and bone
remodeling. While bone modeling drives the growth of the skele-
ton, bone remodeling is responsible for the maintenance of
healthy bone in the adulthood (Teti, 2011). Bone remodeling
takes place throughout live and maintains the structural integrity
and strength of the bone by removing old or damaged bone and
replacing it by new, strong bone. Remodeling is a local process
that can take place anywhere on the bone surface throughout the
lifespan of a bone. Remodeling occurs in a temporary anatomic
unit of osteoclasts and osteoblasts called a bone multicellular
unit (BMU) (Martinello et al., 2012; Sims and Martin, 2014).
The BMU is a sealed compartment in which bone resorption
and subsequent formation are regulated. This coupled resorption
and formation characterizes and differentiates bone remodeling
from bone modeling, in which bone resorption and formation
do not have to occur at the same time and site. For growth
and for the maintenance of healthy bone, multiple cell types

are of importance: mesenchymal stem cells (MSC), osteoblasts,
osteocytes, and hematopoietic stem cells and osteoclasts. The
osteoblasts play a pivotal role in bone metabolism by forming
bone but also by controlling and regulating the formation and
activity of the bone resorbing cell the osteoclast.

Osteoblasts originate from MSC. MSCs are located in the
bone marrow but also in almost all other tissues undergo-
ing continuous tissue homeostasis. MSCs can differentiate into
osteoblasts, chondrocytes, fibroblasts, adipocytes or myocytes
(Friedenstein et al., 1974; Minguell et al., 2001; Yin, 2006).
During osteoblast differentiation several functional phases can
be identified: proliferation, production and maturation of extra-
cellular matrix (ECM) and ECM mineralization (Owen et al.,
1991). Osteoblast differentiation can start by a trigger of certain
growth factors (Wang, 1993) as well as hormones and other fac-
tors (Eijken et al., 2006). Mature osteoblasts produce and secrete
ECM molecules (Owen et al., 1991). Osteoblasts synthesize the
most abundant bone ECM protein collagen type I but also a
broad range of non-collagenous ECM proteins. Mineralization of
the ECM is likely induced by matrix vesicles which derive from
osteoblasts (Anderson et al., 2005). When mature osteoblasts ini-
tiate mineralization of mature ECM, its fate may vary. Osteoblasts
can further differentiate into osteocytes, become a bone lining
cell or undergo apoptosis (Jilka et al., 1998; Weinstein et al.,
1998). Osteoblasts become osteocytes by being entrapped in
self-produced ECM, in which they may survive for decades.
Osteocytes form a star-shaped network of cytoplasmic extensions.
Osteocytes are thought to function as orchestrators of bone by

www.frontiersin.org April 2014 | Volume 5 | Article 137 | 1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/43291062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/journal/10.3389/fphys.2014.00137/abstract
http://community.frontiersin.org/people/u/139010
http://community.frontiersin.org/people/u/129264
mailto:j.vanleeuwen@erasmusmc.nl
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


van de Peppel and van Leeuwen Vitamin D and human osteoblasts

sensing and communicating mechanical stress (i.e., bone dam-
age) via these extensions (Bonewald, 2011). It has become evident
by genetic approaches that osteocytes play a role in regulation
of bone turn-over (resorption and formation) (Nakashima et al.,
2011; Atkins and Findlay, 2012). Bone lining cells are less well
understood. They are covering the bone surface and prevent it
from being in direct contact with the bone marrow. It has been
reported that these cells “clean” resorption pits after osteoclasts
retreated (Everts et al., 2002). Bone lining cells are considered as
inactive osteoblasts. It has been suggested that these cells can be
activated to become osteoblasts (Dobnig and Turner, 1995; Chow
et al., 1998) but they also may represent the osteoblastic part of
the stem cell niche and interact with the hematopoietic stem cells.

The osteoblasts/osteocytes guarantee the close coupling
between bone formation and resorption in healthy bone remod-
eling. Osteoblasts and osteocytes produce the soluble osteoclast
stimulating factors RANKL and M-CSF which upon binding to
its receptors (RANK and c-Fms, respectively) induce differenti-
ation of osteoclast progenitors and fusion of mononuclear cells
into multinucleated tartrate-resistant acid phosphatase positive
osteoclasts (Boyle et al., 2003). Besides RANKL, osteoblasts also
produce a soluble decoy-receptor: osteoprotegerin (OPG). OPG
binds RANKL with high affinity leading to inhibition of osteo-
clast stimulation and thus leading to less bone resorption (Lacey
et al., 1998; Kostenuik and Shalhoub, 2001).

VITAMIN D, BONE METABOLISM, AND OSTEOBLAST
The biologically most active form of vitamin D, 1α,25-
dihydroxyvitamin D3 [calcitriol or 1,25(OH)2D3 (1,25D3)]
is formed by a stepwise process starting in the skin and
involving the liver and kidney. Upon ultraviolet B exposure,
7-dehydrocholesterol (pro-vitamin D3) is transformed into
(pre)vitamin D3 (cholecalciferol) in the skin. Subsequent hydrox-
ylation at the C25 and 1α position in liver and kidney, respectively,
produce 1,25D3 (Holick, 1995). In bone diseases, vitamin D is
used as an anti-rickets agent (Kitanaka et al., 1998; McCollum
et al., 2002; Tatsumi et al., 2007), which improves bone mineral-
ization and is often prescribed in combination with other osteo-
porosis drugs to secure a positive calcium balance. However, a
recent metaanalyes by Reid et al suggests that the supplementation
of vitamin D for the prevention of osteoporosis is inappropriate
without specific risk factors for vitamin D deficiency (Reid et al.,
2014).

Up to today it is still in debate whether 1,25D3 effects on bone
formation are indirect via intestinal and renal regulation of cal-
cium levels or also via a direct effect on osteoblasts. It has been
demonstrated that mice lacking the vitamin D receptor (VDR)
gene display retarded growth, severe bone impairment, immune
abnormalities, and premature death at only 15 weeks of age due
to hypocalcemia (Li et al., 1997; Yoshizawa et al., 1997; Mathieu
et al., 2001). A rescue diet restored all pathological effects suggest-
ing that as long as calcium homeostasis is under control, bone
itself does not seem to be affected by impaired VDR signaling.
The importance of physiological 1,25D3 levels for bone is demon-
strated by the mutation of the CYP27B1 gene. Subjects with a
mutation in that gene develop vitamin-D-dependent rickets (Li
et al., 1997). In a mouse model for rickets, greater extensibility

and lower stiffness of fibrils resulted from a decreased grade of
mineral deposition (Karunaratne et al., 2012). This further sup-
ports the importance of an optimal grade of mineralization for
healthy bones (Kitanaka et al., 1998) and points to a role for
1,25D3 herein.

A direct positive effect an 1,25D3 analog on bone forma-
tion in ovariectomized rats with only slight changes in serum
calcium points to the existence of a direct effect on bone forma-
tion (Shevde et al., 2002). This is supported by in vitro studies
demonstrating direct effects on osteoblasts. The VDR is present
in osteoblasts and its expression can be regulated by 1,25D3
itself and by other factors such as parathyroid hormone (PTH),
glucocorticoids, transforming growth factor-β, and epidermal
growth factor (Pols et al., 1988a,b; Reinhardt and Horst, 1990;
van Leeuwen et al., 1991, 1992a,b; Godschalk et al., 1992). The
expression of VDR allows 1,25D3 to directly affect osteoblast
growth and differentiation. 1,25D3 has been shown to stimulate
bone formation and mineralization in all studies using human
osteoblasts and stimulate osteogenic differentiation from human
mesenchymal stem/stromal cells (MSC) (Ueno et al., 1992; Prince
et al., 2001; Jørgensen et al., 2004; Van Driel et al., 2006a,b;
Zhou et al., 2006, 2012). 1,25D3 enhanced mineralization by
effects on human osteoblasts prior to the onset of mineraliza-
tion (Woeckel et al., 2010). Thus, 1,25D3 is not directly involved
in the process of mineral deposition but more likely in a pro-
cess preparing the environment/ECM for mineralization. 1,25D3
regulates the osteoblast differentiation marker ALPL and vari-
ous bone ECM proteins such as COL1A1. Procollagen type I by
human osteoblasts was stimulated (Franceschi et al., 1988; Hicok
et al., 1998) as well as unaffected (Ingram et al., 1994; Hicok et al.,
1998; Siggelkow et al., 1999) by vitamin D. However, gene expres-
sion profiling studies demonstrated that the 1,25D3 effect in the
pre-mineralization phase is not likely primarily due to changes in
expression of ECM proteins and thereby composition of the ECM
(Woeckel et al., 2010). Production of alkaline phosphatase (ALPL)
positive matrix vesicles was significantly induced by 1,25D3 in this
period of osteoblast differentiation (Anderson, 1995) providing a
means to enhance mineralization (Woeckel et al., 2010). In addi-
tion, previous studies have shown the importance of other factors
like TGFβ, IGF-I, bone morphogenetic protein, interferon, PTH,
hepatocyte growth factor, epidermal growth factor, and peroxi-
some proliferator-activated receptor ligands and Wnt signaling
for the eventual effect of 1,25D3 on osteoblasts (Petkovich et al.,
1987; Pols et al., 1988b; Scharla et al., 1991; Bonewald et al.,
1992; Godschalk et al., 1992; van Leeuwen et al., 1992a,b; Ingram
et al., 1994; Staal et al., 1994, 1996, 1998; Haussler et al., 1998;
Yanagisawa et al., 1999; Sammons et al., 2004; Yarram et al., 2004;
Fretz et al., 2007; Chen et al., 2012a, 2013; Woeckel et al., 2012;
Yamaguchi and Weitzmann, 2012). These data stress the impor-
tance of studying and interpreting the effects of 1,25D3 on bone
in a systems biological approach encompassing the different layers
of regulation and interactions.

In contrast to human and rat studies, 1,25D3 inhibits differen-
tiation and mineralization in cultures of murine osteoblasts (Shi
et al., 2007; Chen et al., 2012a,b, 2013) and murine VDR deficient
osteoblasts have increased osteogenic potential (Sooy et al., 2004).
1,25D3 increases in a VDR-dependent manner the expression of
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progressive ankylosis (ANK) and ectonucleotide pyrophosphatase
phosphodiesterase (ENPP1) in murine osteoblasts. This leads to
an increase in the level of pyrophosphate (PPi) that inhibits min-
eralization (Lieben et al., 2012). 1,25D3 also increases osteopon-
tin shown to inhibit mineralization (Staal et al., 1996). However,
transgenic murine models with osteoblast-specific VDR over-
expression show increased bone formation and mineralization
(Gardiner et al., 2000; Misof et al., 2003; Xue et al., 2006). An
1,25D3 analog had a positive effect on bone nodule formation
and mineralization in murine calvarial osteoblast cultures of wild
type but not VDR null mice (Shevde et al., 2002) while one
study showed increased mineralization in MC3T3 cell cultures
(Matsumoto et al., 1991). In a recent study, Yamamoto et al.
(2013) illustrated that mice lacking VDR in osteoblasts had an
increased bone mass, due to decreased bone resorption.

Overall the present data show variation in effects of 1,25D3
on differentiation and mineralization with overall stimulatory
effects in human and rat osteoblasts while overall an inhibitory
effect in murine osteoblasts (Van Driel et al., 2006a). Following
this, 1,25D3 has been shown to increase RUNX2 expression
in human osteoblasts (Prince et al., 2001; Viereck et al., 2002;
Maehata et al., 2006) while 1,25D3 suppresses RUNX2 promoter
and reduces RUNX2 expression in murine osteoblasts (Prince
et al., 2001; Drissi et al., 2002). Osteocalcin (BGLAP) is an inter-
esting gene considering differences in 1,25D3 effects in human
and murine osteoblasts (Thomas, 2000). 1,25D3 stimulates
BGLAP expression in human and rat osteoblasts while it inhibits
BGLAP expression in murine osteoblasts (Lian et al., 1997;
Zhang et al., 1997), supporting differences between human/rat
osteoblasts and murine with respect to 1,25D3 responsiveness and
mineralization.

A full explanation for this apparent discrepancy between
human and murine osteoblasts is absent. Both the extracellular
milieu (i.e., presence/absence of growth factors, cytokines and
other signaling molecules) and the intracellular milieu (e.g., the
insulin-like growth factor binding protein-6 that can bind to the
VDR and inhibit 1,25D3 induction of ALPL activity) of the cell is
important for the eventual effect of 1,25D3 (Cui et al., 2011). Also
the extracellular phosphate concentration may affect the 1,25D3
action (Ito et al., 2013). These characteristics may contribute to
the differences in 1,25D3 effects observed in human and murine
osteoblasts.

Besides stimulation of bone formation /mineralization by
osteoblasts 1,25D3 has certain protective control mechanisms
in place to avoid pathological over-mineralization. For example,
1,25D3 induces BGLAP and SPP1, established inhibitors of min-
eralization (Noda et al., 1990; MacDonald et al., 1993) and a
stimulator of mineralization, bone sialoprotein (IBSP), is inhib-
ited by 1,25D3 (Li and Sodek, 1993). As mentioned above also
the presence or absence of other growth factors, cytokines or sig-
naling molecules may limit the 1,25D3 effect. Examples of this
in relation to mineralization are Activin A and follistatin. Activin
A inhibits osteoblast differentiation and mineralization (Eijken
et al., 2007). Activin A expression in human osteoblasts is stim-
ulated by 1,25D3 (Woeckel et al., 2013), implicating that 1,25D3
as stimulator of human osteoblast differentiation and mineraliza-
tion also stimulates the production of a mineralization inhibitor.

A function in the prevention of over-mineralization is supported
by the data that the activin A blocker follistatin enhances 1,25D3
stimulated mineralization (Woeckel et al., 2013). The above men-
tioned induction of carboxylated osteocalcin by 1,25D3 may fit
this hypothesis on preventing over-mineralization. Accumulation
of osteocalcin in the ECM of human osteoblast cultures stimu-
lated by 1,25D3 is inhibited by warfarin (antagonist of vitamin K)
while vitamin K2 (cofactor of γ-carboxylase) enhanced the 1,25
D3 effect (Koshihara and Hoshi, 1997). 1,25D3 stimulated miner-
alization was significantly augmented by warfarin (Woeckel et al.,
2013). These data on activin A, follistatin, warfarin, and vitamin
K put forward a 1,25D3 induced regulatory mechanism to guar-
antee optimal mineralization (Woeckel et al., 2013). Differences
in these regulatory loops may also be part of the differences in
1,25D3 effects in human and murine osteoblast studies.

The most well-known mechanism to limit the biological activ-
ity of 1,25D3 is its degradation via 24-hydroxylation. 1,25D3
potently induces CYP24A1, which encodes for the enzyme 24-
hydroxylase, in osteoblasts. 24-Hydroxylation is the first step in
the degradation cascade of active 1,25D3 (Ohyama et al., 1994).
However, hydroxylation at the C-24 position doesn’t directly lead
to an inactive vitamin D molecule. Henry and Norman demon-
strated the significance of 24,25-dihydroxyvitamin D3 (24,25D3)
for normal chicken egg hatchability and calcium and phospho-
rus homeostasis (Henry and Norman, 1978; Norman et al., 1980).
Already in 1980 it was shown that 24,25D3 directly stimulates cal-
cification of bone in interaction with PTH and that the number
and size of resorption sites in bone is decreased by 24,25D3 (Endo
et al., 1980; Galus et al., 1980). Several other studies supported
a positive effect of 24,25D3 on bone metabolism (Matsumoto
et al., 1985; Tam et al., 1986; Kato et al., 1998) while one study
showed no effect of 24,25D3 on histomorphometric parameters
in ovariectomized rats (Erben et al., 1992). Administration of
24,25D3 in combination with 1,25D3 improved fracture healing
in chickens (Seo et al., 1997) and interestingly, 24,25D3 serum
levels correlated to fracture healing (Seo and Norman, 1997).
Studies with the CYP24A knockout mouse supported a role for
24,25D3 in fracture repair (St-Arnaud, 2010). Albeit in a human
study no positive association with femoral fracture was observed
(Weisman et al., 1978). However, a study in pre-dialysis renal
insufficiency patients supported a direct, i.e., PTH-independent,
functional role of 24,25D3 in bone (Birkenhäger-Frenkel et al.,
1995). These data suggest a direct effect on osteoblasts. In vitro
studies with human osteoblasts have shown that indeed 24,25D3
has direct effects similar to that of 1,25D3 (Van Driel et al.,
2006b). A recent comparative gene expression profiling study of
1,25D3, 24,25D3, and 25D3 in primary human and mouse fibrob-
lasts suggested induction of metabolite specific sets of genes and
pathways (Tuohimaa et al., 2013). It is important to note that
the fact whether biological active levels of 24,25D3 or 1,24,25-
trihydroxyvitamin D3 (1,24,25D3) can be reached fully depends
on the velocity of the subsequent steps in the degradation pathway
after the initial 24-hydroxylation step.

We have shown that osteoblasts besides degradation of active
1,25D3, are able to convert 25-hydroxyvitamin D3 (25D3) into
the biologically most active form 1,25D3, suggesting a direct rela-
tionship between 1,25D3 synthesis and bone (Van Driel et al.,
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2006a). This study showed functionality of 1α-hydroxylation in
human osteoblast differentiation. 25D3 induced expression of
CYP24, osteocalcin and stimulated ALPL activity and mineral-
ization, which was blocked by inhibition of 1α-hydroxylase by
ketoconazole. Downregulation of CYP27B1 in human osteoblasts
or perturbation of CYP27B1 supported the requirement of 1α-
hydroxylase for the effect on human MSC proliferation and
osteogenic differentiation (Atkins et al., 2007; Geng et al., 2011a).
CYP27B1 expression is reduced in MSC of older subjects and
resistance to 25D3 induced osteoblast formation points to an
aging effect (Geng et al., 2011b). The 1α-hydroxylase-dependent
25D3 stimulation of ALPL activity in human MSC was blocked
by histone deacytylase inhibition (Zhou et al., 2013). Of inter-
est, 25D3 has been shown to regulate gene expression in a
gene expression profiling study with CYP27B1 deficient fibrob-
lasts (Tuohimaa et al., 2013). This suggests that 25D3 may act
independent of 1α-hydroxylation.

Up to now the data on 1,25D3 production by osteoblasts are
derived from in vitro studies. In vivo significance of CYP27B1
and 1,25D3 formation in osteoblasts needs yet to be proven, for
example by knocking out CYP27B1 specifically in osteoblasts.
However, the observed discrepancies in effects on human-murine
osteoblasts may hamper this approach. Although yet in vivo proof
is lacking, the principal of local synthesis of 1,25D3 in bone may
explain the observed associations of 25D3 and not of 1,25D3
with bone as well as other parameters (Hewison et al., 2004;
Anderson et al., 2013). Besides CYP27B1, osteoblasts also express
the receptors megalin and cubulin that are involved in cellular
uptake of 25D3 via endocytosis of the vitamin D binding pro-
tein (DBP) (Van Driel et al., 2006a; Atkins et al., 2007). Linking
back to the above discussed interaction between locally pro-
duced growth factors and 1,25D3 is the regulation of CYP27B1
in osteoblasts. Albeit 1,25D3 itself inhibits CYP27B1 expression
in MSC as well as in the kidney (Zhou et al., 2010), the regula-
tion appears to be different and more complex than in the kidney
involving local regulators. Several locally in bone produced fac-
tors affects CYP27B1 expression: TGFβ suppresses 5′-flanking
region of CYP27B1 (Turner et al., 2007) and interferon-β reduces
while interleukin-1 and IGF-I increase CYP27B1 expression in
mature human osteoblasts (Van Driel et al., 2006a; Zhou et al.,
2010; Woeckel et al., 2012). The effect of interleukin-1 points to
the involvement of NF-κB in stimulation of CYP27B1 expression
in human osteoblasts. This is supported by the interferon-β inhi-
bition of NF-κB in synoviocytes (Van Holten et al., 2004) and
CYP27B1 regulation in human dendritic cells (Hewison et al.,
2003).

1,25D3 plays an important role in maintaining bone health
either via controlling calcium and phosphate homeostasis or via
direct effects on osteoblasts. This latter is supported by the direct
effects of 1,25D3 on osteoblast differentiation, expression and
activity of bone formation related proteins and enzymes, and
mineralization. The complete vitamin D endocrine system, from
receptor to enzymes involved in 1,25D3 synthesis and breakdown,
is present in the osteoblast, pointing to an autocrine/paracrine
1,25D3 function in bone. This is the more so interesting as
over the past decade it has become clear that osteoblasts are
not only involved in bone metabolism but that they also form

the hematopoietic stem cell (HSC) niche controlling renewal of
HSCs and differentiation of the immune cells (Calvi et al., 2003).
Moreover, these HSC niches are also the sites of bone metasta-
sis (Shiozawa et al., 2011). Considering the 1,25D3 effect on the
immune system and tumor cell growth it is tempting to spec-
ulate that autocrine/paracrine action of 1,25D3 is also beyond
bone metabolism and important for other regulatory functions
of osteoblasts. It is therefore of critical importance to under-
stand the full picture of 1,25D3 effects on osteoblasts. One of
the approaches to obtain information on the effects of 1,25D3 on
osteoblasts and MSC in an unbiased way is by omics approaches
in combination with bioinformatics. In the next paragraph the
current available 1,25D3 gene expression profiling studies of
osteoblasts will be discussed.

VITAMIN D AND GENE TRANSCRIPTION IN THE CONTEXT OF
OSTEOBLAST DIFFERENTIATION AND BONE FORMATION
1,25D3 has been shown to regulate the expression of various
genes related to osteoblast proliferation and differentiation. BMP-
2 induced bone formation has been suggested to be enhanced by
1,25D3 induced c-MYC expression (Piek et al., 2010). Induction
of Insulin-like growth factor-binding proteins (IGFBP)-2, -3, and
-4 expression by 1,25D3 in human MSC may play a role in
stimulation of osteogenic differentiation (Kveiborg et al., 2001).
Recently, Li and coworkers (Li et al., 2013) demonstrated that
IGFBP-3 interacts with the VDR and negatively regulates CYP24
and BGLAP expression. Overexpression of IGFBP-3 inhibited the
1,25D3 activation of ALP in MG-63 human osteosarcoma cells.

1,25D3 also regulated Forkhead Box O (FoxO) transcrip-
tion factors in murine MC3T3 osteoblasts with FoxO3a being
up-regulated while FoxO1 was down-regulated, and FoxO4 not
affected. Knockdown of the FoxO’s didn’t change 1,25D3 inhi-
bition of cell growth but led to increased accumulation of reac-
tive oxygen species after 1,25D3 treatment (Eelen et al., 2013).
This may be linked to cellular metabolism and the high energy
demanding process of bone formation (Komarova et al., 2000;
Chen et al., 2008; Bruedigam et al., 2010). Unfortunately, the
effect of FoxO’s knockdown on mineralization in these murine
MC3T3 osteoblast cultures was not reported. 1,25D3 increased
vascular endothelial growth factor (VEGF) expression in human
and rat osteoblasts is interesting considering the relationship
between bone formation and angiogenesis (Wang et al., 1996;
Schlaeppi et al., 1997; Corrado et al., 2013). VEGF has been shown
to be involved in the 1,25D3 bone anabolic effect (Wang et al.,
1997).

Recent studies placed miRNAs in the 1,25D3 mechanism of
action spectrum in osteoblasts. Five miRNAs were found to be
differentially expressed in primary human osteoblast after 6 h
of treatment with 1,25D3 (Lisse et al., 2013a,b). Interestingly,
miR-637 and miR-1228 are two miRNAs located intergenic in
DAPK3 and LRP1, respectively. miR-1228 was upregulated and
coexpressed with its host gene LRP1 suggesting a conventional
VDRE- mediated transactivation upon 1,25D3 treatment. Since
LRP1 is known to mediate the canonical Wnt pathway in fibrob-
lasts (Terrand et al., 2009), this suggests an indirect regulation
of Wnt signaling by 1,25D3 adding to other data on 1,25D3 and
Wnt signaling interaction (Fretz et al., 2007; Haussler et al., 2010).
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The target of miR-1228, BMP2K, was previously identified to
be increased in mouse osteoblasts upon treatment with BMP2
(Kearns et al., 2001). Stable expression of BMP2K in mouse osteo-
progenitor cells decreased ALPL activity and osteocalcin mRNA
levels. This suggests that 1,25D3 induced expression of miR-
1228 may affect osteoblast differentiation via down-regulation of
BMP2K.

On the contrary, 1,25D3 upregulated miR-637 while its host
gene was downregulated suggesting a different way of regulation
of the two transcripts. miR-637 stimulated the degradation of
COL4A mRNA levels that is expressed in the basement mem-
brane and is downregulated during early differentiation of mouse
MC3T3-E1 osteoblasts (Hong et al., 2010). It is becoming evident
that miRNAs play an important role in osteoblast differentiation
and bone formation (Lian et al., 2012) and in the near future
more data on their role in 1,25D3 action in osteoblasts will come
forward (Lisse et al., 2013a).

IDENTIFICATION OF 1,25D3 TARGET GENES IN
OSTEOBLASTS
In the past various studies have investigated the effects of 1,25D3
on target gene expression and VDR binding to DNA response
elements. Only a few of these genome-wide studies have investi-
gated the effects of 1,25D3 in the context of osteoblasts (Table 1).
The studies that carried out are very heterogenic with regard to
the differentiation stage of the cells (MSC vs. primary osteoblasts
vs. Cell line), time points of treatment (2–6 h after treatment)
and the 1,25D3 concentration that is used (1–100 nM). Together
this makes it difficult to compare the different studies. Systematic
analyses of both mRNA gene expression profiling and VDR bind-
ing experiments at early time points after induction with 1,25D3
will uncover direct target genes. Below we will address a few of
these studies and the results obtained.

ChIP ANALYSES IN OSTEOBLASTS
Upon binding of 1,25D3 to the VDR, the VDR binds with its
heterodimeric partner retinoid X receptor (RXR) on the vita-
min D receptor response elements (VDRE). The VDRE consists
of the hexameric sequence AGGTCAxxxAGGTCA (Ozono et al.,

1990) but variants to the conserved sequence have been identified
(Meyer, 2005). Due to the diversity of VDRE, bioinformatics
approaches are limited in identifying whole genome VDR bind-
ing sites. To identify direct target genes of VDR, genome-wide
approaches such as ChIP-chip or ChIP-seq approaches have to be
performed. Systematic analyses of VDR binding upon activation
by 1,25D3 combined with bioinformatics approaches identifies
VDRE (VDR response elements) and subsequently direct targets
of Vitamin D signaling. A few studies have started to identify
1,25D3 target genes is various cell types such as a human derived
lymphoblastoid cell line (Ramagopalan et al., 2010) and mono-
cytes (Heikkinen et al., 2011). Recently, the first VDR binding
experiments in osteoblasts were published (Meyer et al., 2010).
Meyer et al. analyzed the genomic locations that bind VDR, RXR,
RNA polymerase II and acetylated H4 after 3 h treatment with
1,25D3 in mouse MCT3T-E1 osteoblasts. Interestingly, only 13%
of the identified sites was located in classical promoter regions
upstream vitamin D target genes. The majority of sites that were
found to bind VDR, RXR and acetylated H4 were located dis-
tal (43%) and within intronic and exonic regions (44%). This
demonstrates that distal transcriptional control contributes to
the majority of vitamin D3-mediated transcription. Genome
wide ChIP-seq analyses with human osteoblasts should illustrate
whether binding of VDR at distal locations is conserved.

Pilot analysis of our gene expression profiles of osteogenic and
adipogenic MSCs illustrated that many known 1,25D3 responsive
genes (on basis of Ingenuity database; www.ingenuity.com) are
dynamically expressed during adipogenic as well as osteogenic
differentiation (data not published). This data does not directly
show that these genes are regulated by 1,25D3 but it suggests
that 1,25D3-responsive genes can have a role during the dif-
ferentiation of mesenchymal precursors. Many of the two-fold
regulated genes during osteogenic differentiation and those that
were identified previously to be regulated by 1,25D3 are involved
in Cell Cycle (41/162; GO:0007049), response to steroid hor-
mone (21/162; GO:0048545), regulation of phosphate metabolic
process (26/162, GO:0019220), regulation of apoptosis (31/162,
GO:0042981), extracellular region part (36/162; GO:0044421).
ChIP analyses using VDR and expression profiling of 1,25D3

Table 1 | Genome-wide studies of vitamin D and osteoblasts.

Publication Experiment Species Cell type Treatment

Lisse et al., 2013a,b Expression profiling miRNA Homo sapiens Primary osteoblasts 1,25D3 10−8 M 6 h

Woeckel et al., 2012 Expression profiling mRNA Homo sapiens Pre-osteoblasts svHFO 1,25D3 10−8 M 2 and 24 h

Tarroni et al., 2012 Expression profiling mRNA Homo sapiens Primary osteoblasts 1,25D3 10−7 M 24 h

Grundberg et al., 2011 Expression profiling mRNA Homo sapiens Trabecular bone 1,25D3 10−7 M 2 and 24 h

Piek et al., 2010 Expression profiling mRNA Homo sapiens MSCs 1,25D3 10−8 M 0, 1, 3, 6, 12, 24,
48, 72, 120, 192, and 288 h

Meyer et al., 2010 VDR localization ChIP-chip Mus musculus Pre-osteoblasts MC3T3-E1 1,25D3 10−7 M 3 h

Woeckel et al., 2010 Expression profiling mRNA Homo sapiens Pre-osteoblasts svHFO 1,25D3 10−8 M 3, 7, 12, and 19 days

Eelen et al., 2004 Expression profiling mRNA Mus musculus Pre-osteoblasts MC3T3-E1 1,25D3 10−8 M 6 and 12 h

Farach-Carson and Xu, 2002 Expression profiling mRNA Rattus norvegicus Osteosarcoma ROS 17/2.8 1,25D3 10−9 M 0, 6 and 24 h

Database searches were performed using Bone[Title/Abstract] OR osteoblast[Title/Abstract] AND vitamin D AND microarray in Pubmed

(http://www.ncbi.nlm.nih.gov/pubmed) and GEO (http://www.ncbi.nlm.nih.gov/geo/).
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transcriptional activity against the backdrop of osteogenic MSC
will be needed to demonstrate the importance of VDR—1,25D3
binding in osteoblast function either in bone formation, regu-
lation of osteoclast formation and activity or in the stem cell
niche.

GENE EXPRESSION PROFILING IN OSTEOBLASTS
Besides binding of the VDR to gene regulatory elements, impor-
tant information on the effect of 1,25D3 on osteoblasts comes
from expression profiling studies upon 1,25D3 treatment. Several
gene expression profiling studies have been performed to exam-
ine the effect of 1,25D3 on RNA expression in osteoblasts.
Gene expression profiling in murine MC3T3 cells showed down-
regulation of DNA replication genes (Eelen et al., 2004) which
fits the earlier observed inhibition of proliferation in these cells.
Gene profiling of 1,25D3 treated human osteoblasts at mul-
tiple days during the differentiation phase before mineraliza-
tion did not show regulation a specific set of DNA replication
genes (Woeckel et al., 2010). Cell death, RNA splicing trans-
lation, and cell cycle genes were identified by Gene Ontology
analyses as being most significantly overrepresented (Woeckel
et al., 2010). Only 0.6 % (3 genes) of the genes changed in
expression during the mineralizing period were also changed
prior to mineralization (Woeckel et al., 2010). This study
demonstrated that 1,25D3 has different effects on gene expres-
sion dependent on the differentiation stage of the cells and
should be carefully addressed when investigating the effects of
1,25D3 on mesenchymal stem/stromal cells and differentiated
osteoblasts.

Tarroni et al. found that upon 24 h treatment of human
osteoblasts with 1,25D3 most genes were upregulated (136 up
vs. 20 down) indicating the transcriptional activation of 1,25D3
(Tarroni et al., 2012). Pathway analyses identified various bio-
logical functions and/or diseases related to bone metabolism and
cellular processes/molecular functions related to skeletal develop-
ment. The link with skeletal development is supported by another
study showing 1,25D3 induced expression in human and mouse
osteoblasts of the odd-skipped related genes Osr1 and Osr2,
known from expression in the developing limb (Verlinden et al.,
2013).

Tarroni et al. also showed strong change in expression of genes
linked to inflammation or immune and lymphatic system devel-
opment (Tarroni et al., 2012). In line with this, is the observation
of a gene profiling study showing interferon-related genes being
overrepresented after 1,25D3 treatment of human osteoblasts.
The interferon signaling related genes were down-regulated by
1,25D3 (Woeckel et al., 2012). The observations on processes
related to the immune system are interesting from at least two
points of view. Firstly, because of the link between the immune
system and bone and the effect of immune cells-derived cytokines
on bone metabolism, e.g., in conditions like rheumatoid arthritis.
Secondly, considering the above mentioned role of the osteoblasts
in the stem cell niche and control of hematopoietic stem cell
renewal and differentiation. The expression profiling data and the
identification of functions and processes related to the immune
system may support a role of vitamin D in osteoblasts control the
stem cell niche (Kawamori et al., 2010).

CONCLUSION
Vitamin D can regulate bone metabolism in an indirect way via
controlling calcium and phosphate homeostasis but also via direct
effects on osteoblasts. In fact, the complete vitamin D endocrine
system is present in osteoblasts. This enables osteoblasts to
respond not only to vitamin D via the VDR but also to synthesize
the biological most active vitamin D metabolite 1,25D3 and to act
in an autocrine/paracrine manner. Vitamin D directly regulates
gene expression and stimulates mineralization in ex vivo cultures
of human and rat osteoblasts. The effect on mineralization may
depend on species and/or environmental context that can alter
the eventual vitamin D effect. Besides effects on bone metabolism,
vitamin D effects on osteoblasts may be related to additional func-
tions of osteoblasts such as the hematopoietic stem cell niche.
Interesting in this respect is that gene expression profiling stud-
ies on vitamin D-treated osteoblasts revealed genes and processes
related to the immune system. Further studies are needed to
delineate these non-bone metabolism related effects of vitamin
D in osteoblasts in greater detail at cellular and molecular level.
A future challenge will be to construct networks representing the
effects of vitamin D, either in bone metabolism- or in non-bone
metabolism-related processes, against the backdrop of osteoblast
differentiation by systems biological approaches.
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