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Abstract

Arteriogenesis is a complicated process induced by increased local shear-and radial wall-stress, leading to an increase in arterial diameter.
This process is enhanced by growth factors secreted by both inflammatory and endothelial cells in response to physical stress. Although
therapeutic promotion of arteriogenesis is of great interest for ischaemic diseases, little is known about the modulation of the signalling
cascades via microRNAs. We observed that miR-132/212 expression was significantly upregulated after occlusion of the femoral artery.
miR-132/212 knockout (KO) mice display a slower perfusion recovery after hind-limb ischaemia compared to wildtype (WT) mice. Immuno-
histochemical analysis demonstrates a clear trend towards smaller collateral arteries in KO mice. Although Ex vivo aortic ring assays score
similar number of branches in miR-132/212 KO mice compared to WT, it can be stimulated with exogenous miR-132, a dominant member
of the miR-132/212 family. Moreover, in in vitro pericyte-endothelial co-culture cell assays, overexpression of miR-132 and mir-212 in
endothelial cells results in enhanced vascularization, as shown by an increase in tubular structures and junctions. Our results suggested
that miR-132/212 may exert their effects by enhancing the Ras-Mitogen-activated protein kinases MAPK signalling pathway through direct
inhibition of Rasa1, and Spred1. The miR-132/212 cluster promotes arteriogenesis by modulating Ras-MAPK signalling via direct targeting
of its inhibitors Rasa1 and Spred1.
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Introduction

Under physiological circumstances, normal adult blood vessels stay
quiescent by using various inhibitors to counteract pro-angiogenic
signal fluctuation [1]. Dysregulation of this balance may cause dis-
eases such as capillary and arterio-venous malformations [2]. How-
ever, under ischaemic conditions, the compensatory growth of blood
vessels is an appreciated response, which can be achieved in two
ways: by branching from existing vessels (called angiogenesis), or by

enlargement of pre-existing collaterals (termed arteriogenesis) [3].
The increase in diameter via arteriogenesis weights much more than
the number of newly formed capillaries via angiogenesis and has
therefore the potential to become a future therapeutic approach [4] in
chronic and acute ischaemic diseases. Many attempts have been
made to modulate the pro- and anti-arteriogenic balance [5–7]. How-
ever, effective therapeutic approaches to promote arteriogenesis are
still lacking.

Initial studies have shown an important role for microRNAs
(miRNAs) in neovascularization [8–14], but a clear understanding
of all players involved is still lacking. It has previously been shown
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that miR-132 is upregulated in endothelial cells by various pro-
angiogenic stimuli such as hypoxia [15], VEGF [10, 15], and angio-
tensin II [16]. Overexpression of miR-132 in human umbilical
venous endothelial cells (HUVECs) promoted proliferation and
migration in vitro, and transplanting these cells promoted vasculari-
zation in vivo [17]. In cancer, miR-132 promoted angiogenesis by
suppressing one of the GTPase-activating proteins, called RASA1
[10]. Very low density lipoprotein receptor knockout (KO) mice, dis-
played an aberrant neovascularization in the retina, associated with
increased expression of miR-132. Moreover, inhibition of miR-132 in
the retina could reduce aberrant neovascularization [18] or corneal
neovascularization [19]. Although, the role of this microRNA family
was explored for angiogenesis, its influence on hind-limb ischaemia
induced arteriogenesis has not been explored. In this study, we com-
bine in vitro assays and in vivo animal models to explore the role of
miR-132/212 in vascular growth during arteriogenesis and to unravel
the underlying mechanism.

Materials and methods

Generation and genotyping of miR-132/212 KO
mice

The generation of miR-132/212 KO mice has been described as previ-

ously [20]. For genotyping, DNA samples were obtained by ear clip-

ping and used in a GC-Rich PCR kit (Cat. 12140306001; Roche,

Switzerland) with the MiR-132/212 primers as shown in the Table S1.
PCR products were revealed on a 1% agarose gel: wildtype (WT)

genotype shows a predicted band at 1076 bp and the KO genotype at

392 bp.

Hind-limb ischaemia

This study was approved by the Animal Ethical Experimentation Com-
mittee (Utrecht University) and was carried out in accordance with the

Guide for the care and use of Laboratory Animals.

Hind-limb ischaemia was applied on 10–12 week old mice [10 WT
(C57B6) and 13 miR-132/212 KO] as described previously [21]. In brief,

mice were anaesthetized with fentanyl (0.05 mg/kg), midazolam (5 mg/

kg) and medetomidine (0.5 mg/kg) by intraperitoneal injection and sur-

gical procedures were performed under sterile conditions. A vertical lon-
gitudinal incision was made in the right hind-limb and the femoral

artery was dissected. To achieve slower recovery, ligation was per-

formed using an electricoagulator at the most proximal position and

thereby separating them into two parts. After closure, mice received
atipamezole (2.5 mg/kg) and flumazenil (0.5 mg/kg) to recover. Temge-

sic (0.1 mg/kg) was given every 8 hrs after surgery for 6 times. Mea-

surement of blood flow was performed by scanning both rear paws

with an LDI analyzer (Moor Infrared Laser Doppler Imager Instrument,
Wilmington, DE, USA), before and after the surgical procedure (days 0,

4, 7, and 14). During the procedure, the animal was kept under 2% iso-

flurane anaesthesia and its body temperature was strictly maintained
between 36.5 and 37.5°C. The images obtained were quantitatively

converted into histograms with Moor LDI processing software as

described before [22]. Data were reported as the ratio of blood flow in
the right over left (R/L) hindlimb.

MicroRNA in situ hybridization

The procedure for microRNA in situ hybridization has been described pre-

viously with slight modification [23]. Cryosections were fixed by 4% para-

formaldehyde for 10 min., acetylated for 10 min. followed with 10 min.
proteinase K treatment (10 lg/ml). Hybridization was performed following

manufacturer’s suggestions with DIG labelled miRCURY LNA miRNA

detection probes (Exiqon, Vedbaek, Denmark) for miR-132 (38031-15),

negative control miR-159 (99003-15) and positive control U6 (99002-15).
Sections were subsequently blocked for 1 hr before overnight incubation

with anti-DIG alkaline phosphatase antibody (1:1500; Roche, Switzerland).

To block endogenous alkaline phosphatase activity, sections were incu-

bated with levamisole solution (DAKO, USA), followed by Liquid Perma-
nent Red (DAKO, USA) incubation for visualization. Blood vessels were

stained with lectin BS-1 (1:100; Sigma-Aldrich, USA). Nuclei were stained

with Hoechst 33342 (Life Technologies, USA). Images were taken by Zeiss
LSM710 and analysed using Zen2012 (Zeiss, Germany).

RNA isolation and RT-PCR

DNA-free RNA was extracted with Tripure (Roche Applied Science,

Switzerland). To perform quantitative PCR (qPCR) for gene expression

RNA is transcribed to cDNA using the iScript cDNA Synthesis Kit

(Bio-Rad, USA) according to manufacturer’s instructions, and quantita-
tive real-time polymerase chain reaction was performed on a MyIQ

single-color qRT-PCR system (Bio-Rad) as described previously [24].

All the primers used for qPCR analysis are listed in the Table S1.
Mature miR-132 and miR-212 expression levels were measurement by

TaqMan� MicroRNA Assay following manufactory’s instruction, using

U6 as control.

Immunofluorescent staining

The following primary antibodies were used: Rasa1 (1:100, clone B4F8,
ab2922; Abcam, USA), Spred1 (1:500, ABS186; Millipore, USA), Spry1

(1:500, 13013; Cell Signaling), alpha-smooth muscle actin (aSMA)-FITC

Fluorescein isothiocyanate (1:400, F3777; Sigma-Aldrich), followed by

secondary antibodies goat anti-mouse and goat anti-rabbit Alexa 555
(1:500; Life Technologies) for detection. In brief, tissues were imbedded

in Tissue-Tek� O.C.TTM (SAKURA, Alphen aan den Rijn, The Netherlands)

and sectioned to 7 lm thick slices. For the Spred1 and spry1 staining,

sections were fixed with cold methanol and subsequently blocked with
10% normal goat serum plus 2% bovine serum albumin (BSA) in TBST

Tris-Buffered Saline with 0.1% of Tween 20, containing 0.1% tween 20.

Then sections were incubated with primary antibodies diluted in 0.5%

BSA in TBST overnight at 4°C. Before incubation with a secondary anti-
body, slides were washed three times for 10 min. each. For RASA1,

sections were first cleared with 1% tween for 30 min., then blocked

with affini-pure Fab fragment goat anti-mouse IgG (115-007-003; Jack-
son Immunoresearch Laboratory, USA) with 10% normal goat serum.

Anti-RASA1 antibody was diluted in 0.5% BSA in TBST, applied on the

sections overnight at 4°C, followed by biotin-sp-conjugated affini-pure

Fab fragment goat anti-mouse IgG(H+L) (1:500, 115-067-003; Jackson
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Immunoresearch Laboratory) and streptavidin-conjugated Alexa 555.
Images were taken by Zeiss LSM700 and analysed using ZEN 2012

software (Zeiss).

Western blotting

The following primary antibodies were used for western blotting: Rasa1

(1:200, clone B4F8, ab2922; Abcam), Spred1 (1:1000, ABS186; Milli-
pore), Spry1 (1:1000, #13013; Cell Signaling), b-actin (1:15,000;

Sigma-Aldrich), p44/42 MAPK(ERK1/2) (1:1000, #9102; Cell Signaling),

phosopho-p44/42 MAPK(ERK1/2) (1:1000, #9101; Cell Signaling).

Adductor muscles were lysed with EDTA-free lysis buffer (Cat.
04719964001; Roche Applied Science) with 19 protease/phosphatase

inhibitor cocktail (#5872; Cell Signaling). Protein concentrations were

measured with BCA protein assay kit (23227; Thermo Scientific, USA),

separated with NuPAGE bis-tris Precast gels (Life Technologies), and
transferred to Polyvinylidene fluoride PVDF membrane with an iblot

Western blotting system (Life Technologies), according the manufac-

turer’s instructions. Membranes were first blocked with 5% blotting
grade blocker (#170-6404; Bio-Rad) with exception of the detection of

phosoph-ERK1/2 in which 5% BSA was used. After washing, Horserad-

ish Peroxidase HRP-conjugated secondary antibody was used for

enhanced chemiluminescence ECL detection (Sigma-Aldrich, USA).

Aortic ring assay

Aortas from both WT and miR-132/212 KO mice were surgically isolated,
cleaned, dissected into 0.5 mm segments and embedded into fibrin as

described before [25]. For rescue, aortic ring segments were transfected

overnight either with 50 nmol/l microRNA mimics as indicated by siPORT
NeoFX prior to embedding. 25 ng/ml recombinant mouse vascular endo-

thelial cell growth factor (VEGF164; 493-MV-005; R&D, USA) was added

and replaced on day 4. Pictures were taken on day 7 and the number of

branches were counted under an inverted microscope.

Cell culture and transfection

Human umbilical venous endothelial cells (Lonza, Breda, the Netherland)

were cultured in EGM2 according to manufacturer’s instructions, and all

experiments were performed before passage 7. HUVECS were transfect-

ed with either 20 nmol/l Spred1 (s46287), Spry1 (s20026), Rasa1
(120290), Silencer select negative control#1 (4390843), or with mirVana

miRNA mimic negative control (4464085), hsa-miR-132-3p mimics

(MC10166), hsa-miR-212-3p mimics (MC10340), mirVana miRNA inhib-

itor negative control1 (4464077), hsa-miR-132-3p inhibitor (AM10166),
hsa-miR-212-3p inhibitor (AM10340; all from Life Technologies) using

Lipofectamine 2000 (Life Technologies).

30-untranslated region reporter generation and
luciferase assay

A 1 kb fragment, which flanks conserved miR-132-binding sequences of

the spred1 untranslated region (UTR), and the full-length Spry1 30UTR
were cloned into the pMIR-REPORT Luciferase vector (Ambion, USA), as

described previously [23]. Mutations in the seed-region were generated
by Q5 Site-Directed Mutagenesis kit (New England Biolabs, USA). All the

primers used for cloning and mutagenesis are listed in the Table S1. To

determine suppression efficiency of miR-132 and 212 on these targets,

HEK293 cells were co-transfected with 200 ng of pMIR-REPORT- 30UTR
Luciferase vectors, or one of the mutated vectors, and a pMIR-REPORTb-
gal control plasmid to normalize for transfection efficiency. In addition,

25 nmol/l miR mimic controls, miR-132 mimics or miR-212 mimics were
introduced by using Lipofectamine 2000 (Life Technologies). Luciferase

and b-galactosidase activity was assessed after 48 hrs with the Luciferase

Assay System and b-galactosidase Enzyme Assay System (both from Pro-

mega, USA), respectively, as previously described [24].

In vitro angiogenesis assay

Human umbilical vein endothelial cells (Lonza) and human brain vascular
pericytes (#1200; Sciencell, San Diego, USA) were cultured on gelatin-

coated plates in EGM2 medium (EBM2 medium supplemented with EGM2

bullet kit and 2% FCS; Lonza) and DMEM (10% FCS; Lonza), respectively,
in 5% CO2 at 37°C. Lentiviral transfected HUVECs expressing green fluo-

rescent protein (GFP) and pericytes were used at passage 6–8. miR-132

and miR-212 were inhibited or enhanced in HUVECs only, either by using

anti-miR-132 and anti-miR-212, or by supplementing miR-132 mimics
and miR-212 mimics, respectively. Control cells were transfected with

non-targeting miR and anti-miR controls. To monitor the effects of miR-

132 and miR-212 in angiogenesis, transfected HUVEC-GFP and PKH26

stained pericytes were suspended in a 2.5 mg/ml collagen type I (BD Bio-
sciences, USA) as described by Stratman et al. [26]. Co-cultures were

imaged after 96 hrs incubation in 5% CO2 at 37°C by fluorescence

microscopy, thereby acquiring four planes of images, followed by 3D-
analysis using a commercial analysis system (Angiosys, Buckingham, UK).

Phospho-ERK1/2 Bio-PlexProTM assay

In brief, 48 hrs after transfection of indicated siRNAs or microRNA mim-

ics, EGM2 was removed and replaced with EBM2 for 3 hrs to starve the

HUVECs. Subsequently, 25 ng/ml recombinant human VEGF165 (293-E-

010; R&D) was added and cells were harvested at indicated time points
and lysed with EDTA-free lysis buffer (Cat. 04719964001; Roche Applied

Science) with 19 protease/phosphatase inhibitor cocktail (#5872; Cell Sig-

naling). Protein concentrations were measured with the BCA protein assay
kit (23227; Thermo Scientific) and diluted into 200 lg/ml. Phospho-ERK1/

2 Bio-PlexProTM assay was performed according to the manufacture’s

instruction. Of each sample, 100 ll was incubated with capture antibodies

(171-v50006M, 171-v60003M; Bio-Rad), and after washing, streptavidin-
PE was applied for visualization. Samples were processed with the

Bio-plex 200 (Bio-Rad) and data were analysed with Bio-Plex Data Pro

software (Bio-Rad) and Graphpad Prism 6.0.

Statistical analysis

Data were using Graphpad Prism 6 and comparisons were performed
with t-test or paired t-test between two groups, and ANOVA for multiple

comparisons. Data were presented as mean � SEM. P-values are indi-

cated as follows: *P < 0.05; **P < 0.01; ***P < 0.001, P < 0.05 is

considered as significant.
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Results

MiRNA-132 and miR-212 is upregulated upon
hind-limb ischaemia

To understand the function of miR-132 and miR-212 in arteriogenesis,
we performed hind-limb ischaemia on WT mice and checked the
expression of these two microRNAs in the thigh muscle at different time
points after hind-limb ischaemia. By qRT-PCR, we found that miR-132
and miR-212 levels were significantly increased on day 4 and day 7
(Fig. 1A and B) after hindlimb ischaemia in the adductor muscle.

The miR-132/212 locus is positioned in the first intron of the human
1700016p03 gene, whose function remains to be investigated. miR-132
and 212 are transcribed as a single transcript and further processed into
two mature microRNAs, which are highly conserved among different
species (Fig. S1A). Although these two miRNAs share the same seed
sequences and hereby belong to the same miRNA family, the level of
mature miR-132 expression is significantly higher than that of miR-212
in the thigh muscle, indicating that miR-132 might be more active in the
arteriogenic response, as previously reported for miR-212 being a more
dominant miRNA in angiogenesis (Fig. 1A).

To further understand its function, we analysed which cell types
express miR-132 in hind-limb tissue by in situ hybridization. As
expected, we found that miR-132 is expressed in endothelial cells
(lectin BS-1 positive cells) of blood vessels and in cells surrounding
the endothelial cell layer in WT mice only (Fig. S1B).

MicroRNA-132/212 is involved in arteriogenesis
after hindlimb ischaemia

The increased expression upon hindlimb ischaemia and the vascular
localization of miR-132 suggests that miR-132 may play a role in

vascular growth, for example, in arteriogenesis. To test this, we com-
pared the arteriogenic response between WT and KO mice. Blood flow
perfusion ratio in the miR-132/212 KO mice was significantly lower
compared to their WT litters at day 7 and 14 as measured by laser
Doppler (Fig. 2A and B), indicating a slower perfusion restoration.
The total number of aSMA positive vessels in the adductor muscle
was similar between WT and KO mice (Fig. 2C), but there is a clear
trend towards smaller collateral arteries in KO mice, as determined by
the cross-sectional diameter of aSMA-positive arteries (Fig. 2D
and E).

miR-132/212 promotes endothelial cells
neovascularization responses in vitro

To further investigate the effect of microRNA-132/212 on vascular
growth, we modulated miR-132/212 activity with overexpression or
inhibition approaches in different in vitro neovascularization assays.

Firstly, we performed WT and miR-132/212 KO mice-derived aor-
tic ring assay [25]. In the growth factor rich environment, we
observed a slight decrease in the number of branches in aortic rings
from KO mice compared to WT control. Interestingly, transfection of
miR-132 mimics rescued, and even significantly enhanced activation
via increasing vascular branching. Although similar effect were
observed with miR-212, the effects were less pronounced as com-
pared with miR-132 (Fig. S1C and D).

Secondly, we performed a HUVEC and pericyte co-culture assay,
thereby better mimicking the in vivo situation by taking the interplay
between endothelial cells and pericytes into account [26]. As shown
in Figure 3A, supplementing miR-132 and miR-212 mimics to
HUVECs enhanced the total number of junctions, tubules and tubule
length compared to that of miR controls. Conversely, inhibiting miR-
132 and miR-212 using anti-miRs resulted in some decline in the total
number of junctions, tubules and tubule length (Fig. 3B).
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Spred-1, Spry1 and Rasa1 are direct targets of
the microRNA-132/212 family

Based on Ago-Hits-clip [27], PAR-CLIP [28] and CLASH studies
[29] and our results above, we decided to focus on targets related
to growth factor signalling. In combination with bioinformatics tar-
get site prediction algorithms (Targetscan), we selected Rasa1,
Spred1 and Spry1 which have a high prediction context score and
are conserved among species, as shown in Figure 4A and D.
Since Rasa1 was already a confirmed miR-132 target [10], we
only cloned the 30UTR of Spred1 and Spry1 into a luciferase
reporter vector and analysed whether miR-132 and miR-212 could
suppress luciferase activity in HEK293 cells. We found that both
miR-132 and miR-212 can significantly suppress the Spred1-
30UTR and Spry1-30UTR luciferase activity at 25 nmol/l, compared

with scramble control miRNAs (Fig. 4B and E). Additionally, we
performed a dose-response assay with Spred1-30UTR, Spry1-
30UTR and 30UTRs with three mutated nucleotides in indicated
binding regions (Fig. 4A and D). Inhibitory effects were dose-
dependent and mutations within the seed region significantly
affected the suppressing effects on luciferase activity, even com-
pletely abolishing the suppressive effect at a concentration of
1 nmol/l (Fig. 4C and F).

We next investigated the direct regulation of these targets in HU-
VEC cells. Following overexpression of miR-132 and miR-212 in HU-
VECs in the co-culture assays, we detected reduced levels of Spred1,
Spry1 and Rasa1 protein; while inhibition of the miR-132 and miR-
212 led to elevated Spred1, Spry1 and Rasa1 expression. This indi-
cates that these genes are also regulated by miR-132/212 in HUVECs
(Fig. 4G and H).
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miR-132/212 modulates growth factor-activated
Ras-MAPK signalling in HUVECs

Spred1, Spry1 and Rasa1 are known inhibitors of Ras-MAPK signal-
ling and their inhibition can prolong Ras-MAPK signalling upon
growth factor stimulation [30–33]. We therefore tested whether miR-
132/212 could prolong Ras-MAPK signalling by inhibiting Spred1,
Spry1 and Rasa1 in HUVECs. Compared with siRNA controls and miR
controls, overexpression of miR-132 and miR-212 or knockdown of
Spred1, Spry1and Rasa1, indeed prolonged ERK1/2 phosphorylation
(Fig. 5A–D). By using a non-linear one-phase exponential decay

model and interpolation of the time of phosphorylated ERK1/2T1/2 to
reach 50%, we observed that T1/2 was prolonged both by overexpres-
sion of miR-132/212 and by knockdown of its targets (Fig. 5E).

Spred1, Spry1 and Rasa1 knockdown promotes
endothelial cells neovascularization responses
in vitro

We have shown that overexpression of miR-132 or miR-212 pro-
motes endothelial cells neovascularization. As microRNA functions by
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inhibiting its targets, we reason that knockdown of Spred1, Spry1 and
Rasa1 should have similar effect as overexpression of miR132 and
miR-212. As expected, subsequent knockdown of Spred1, Spry1,
Rasa1 and a combination of these three via siRNA knockdown in

HUVECs (Fig. 6C) showed similar neovascularization responses as
overexpression of miR-132 or miR-212, total number of junctions,
tubules and tubule length were increased compared to control condi-
tions (Fig. 6A and B).
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miR-132/212 family modulates Ras-MAPK
signalling by targeting Spred1, Spry1 and Rasa1
in vivo

We reasoned that if Spred1, Spry1 and Rasa1 are in vivo targets of
miR-132 or 212, they should be expressed in the arteries of the thigh
muscle. By immunofluorescent staining, we observed that Spred1,
Spry1 and Rasa1 could all be detected in the vascular wall (Fig. S2).
By comparing the expression of Spred1, Spry1 and Rasa1 in the
adductor muscle from WT and KO after femoral artery ligation using
Western blot, we observed that Spred1 and Rasa1 are significantly
more present in the KO mice (Fig. 7A and B). Surprisingly we found
that there is no difference in the Spry1 protein between WT and KO
mice (Fig. 7A and B). Next we asked if higher level of Spred1 and
Rasa1 expression could have an effect on the Ras-MAPK pathway. By
Western blotting we detected lower phosphorylated ERK1/2 in the
area of blood vessel growth in KO mice 14 days after hindlimb
ischaemia (Fig. 7C and D).

Discussion

Here, we show that upregulation of miR-132 and miR-212 upon
hindlimb ischaemia is involved in the arteriogenic response:
microRNA-132/212 KO animals display delayed perfusion restoration
upon femoral artery occlusion. Furthermore, we demonstrate that this

effect is attributable to miR-132/212 modulation of the Ras-MAPK
signalling pathway through direct targeting of Spred1 and Rasa1. To
the best of our knowledge, this is the first study showing a single
microRNA family, and probably mediated via the more abundantly
expressed miR-132, that can facilitate the arteriogenic responses by
suppressing multiple targets within the Ras-MAPK pathway.

The Ras-MAPK pathway is very important in neovascularization
during development and after ischaemic challenges. In the developing
retina, for example, this physiological pathway only becomes appar-
ent in active sprouting endothelial cells [18]. Reduced ERK1/2 activa-
tion leads to reduced lumen formation, whereas excessive activation
of ERK1/2 results in larger arteries [34, 35]. Upon ischaemic chal-
lenge, e.g. in hindlimb ischaemia models, shear stress-stimulated
endothelial cells induce Monocyte Chemotactic Protein 1(MCP-1)
expression, which in turn attracts neutrophil granulocytes and macro-
phages [36]. These circulating inflammatory cells start producing
growth factors which eventually activate Ras-MAPK signalling path-
way in the smooth muscle cells and endothelial cells further and pro-
mote their proliferation and extracellular matrix remodelling.
Recently, attempts have been made to interfere in arteriogenesis
through manipulation of Ras-MAPK signalling genetically and chemi-
cally, for example by suppression of Sproutys to promote blood flow
recovery in the hindlimb ischaemia model [7]. Since therapeutic acti-
vation of Ras-MAPK signalling is still challenging, inhibition of their
endogenous inhibitors using microRNA therapeutics holds a great
promise as an alternative strategy.
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We confirmed that Rasa1 is a direct target of miR-132 and
miR-212, and further expanded their target spectrum thereby
including Spred1 and Spry1. Using 30UTR reporters of Spred1 and
Spry1, we demonstrated a direct binding of miR-132 and 212,
which was abolished by disrupting the corresponding binding sites.
Knockdown of these three targets mimicked overexpression of
miR-132 or miR-212 in the in vitro neovascularization assay and
on the modulation of phosphorylated ERK1/2. Our data show that
Rasa1 is the most potent regulator among the three targets in pro-
moting neovascularization and prolonging pERK1/2 activation in
HUVECs, probably as being the most upstream signalling molecule
as compared to Spry1 and Spred1. Another possibility is genetic
redundancy, in which the loss of Spred1 or Spry1 can be compro-
mised partially by other family members; Spry1 has at least four
homologues [37] and Spred1 has at least two homologues in mice
[38]. Our in vitro observations were confirmed in vivo where levels
of Rasa1 and Spred1 were significantly higher in the adductor
muscle in the miR-132/212 KO mice upon hind-limb ischaemia.
Although Spred1 and Rasa1 protein levels were higher in miR-132/
212 KO mice, Spry1 expression levels were similar between WT
and KO mice. Accordingly, we demonstrated lower levels of
phosphorylated ERK1/2 as a downstream effect of lower active
Ras-MAPK signalling.

The biological function of miR-132 and miR-212 may be different,
althoughtheysharethesameseedsequence.Ithasbeenshownthatmicr-
oRNA targets determination is beyond the seed sequence [39]. Consis-
tentwith thisnotion,weobservedifferent effects invariousassays.Since
bothmiR-132andmiR-212areremovedintheKOmice, it is impossible to
determinewhichoneshouldbe responsible for the impairedarteriogene-
sis response. Given the fact that the expression of thematuremiR-132 is
40-fold higher thanmiR-212 (Fig. S1A), we tend to believe thatmiR-132
plays amajor role in the arteriogenic response after hindlimb ischaemia.
However, it is still possible that a specific cell population, highly express-
ingmiR-212 but notmiR-132, ismore important for the vascular growth
after hindlimb ischaemia. In line with this hypothesis, a recent study
showed that miR-212 is stronger in the regulation of vasodilatation than
miR-132 [40]. To exclusively clarify the different roles and locations of
thesetwomicroRNAs, improvedmicroRNA insitu techniqueswithhigher
sensitivity areneeded that candetect lowabundantexpressedmicroRNA
incombinationwithmicewithindividualmicroRNAKOs.Ourresultsdem-
onstrateanewrole formiR-132andmiR-212 in the facilitationof thearte-
riogenic responses after hind-limb induced by targeting and enhancing
Ras-MAPK signalling. This extends the role for miR-132 beyond the is-
chaemic challenges andpromotingangiogenesis. Itwouldbe interesting
to test if we can enhance arteriogenesis by specifically deliver these two

microRNAs in the ischaemia vasculature or in combination with other
Ras-MAPK activators such as growth factors to further boost their pro-
arteriogenic capacity. However, local delivery strategies should still be
furtherimproved[41].
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