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Abstract

Background: Class prediction models have been shown to have varying performances in clinical gene expression
datasets. Previous evaluation studies, mostly done in the field of cancer, showed that the accuracy of class
prediction models differs from dataset to dataset and depends on the type of classification function. While a
substantial amount of information is known about the characteristics of classification functions, little has been done
to determine which characteristics of gene expression data have impact on the performance of a classifier. This
study aims to empirically identify data characteristics that affect the predictive accuracy of classification models,
outside of the field of cancer.

Results: Datasets from twenty five studies meeting predefined inclusion and exclusion criteria were downloaded.
Nine classification functions were chosen, falling within the categories: discriminant analyses or Bayes classifiers, tree
based, regularization and shrinkage and nearest neighbors methods. Consequently, nine class prediction models
were built for each dataset using the same procedure and their performances were evaluated by calculating their
accuracies. The characteristics of each experiment were recorded, (i.e., observed disease, medical question, tissue/
cell types and sample size) together with characteristics of the gene expression data, namely the number of
differentially expressed genes, the fold changes and the within-class correlations. Their effects on the accuracy of a
class prediction model were statistically assessed by random effects logistic regression. The number of differentially
expressed genes and the average fold change had significant impact on the accuracy of a classification model and
gave individual explained-variation in prediction accuracy of up to 72% and 57%, respectively. Multivariable random
effects logistic regression with forward selection yielded the two aforementioned study factors and the within class
correlation as factors affecting the accuracy of classification functions, explaining 91.5% of the between study
variation.

Conclusions: We evaluated study- and data-related factors that might explain the varying performances of
classification functions in non-cancerous datasets. Our results showed that the number of differentially expressed
genes, the fold change, and the correlation in gene expression data significantly affect the accuracy of class
prediction models.
Background
As one of the major types of analyses for gene expres-
sion studies, supervised learning or classification has re-
ceived high attention. Studies vary from the application
of supervised methods to real-life problems like in [1–3],
methods comparisons [4, 5] and methods development
[6, 7]. Methods to build predictive models are widely
* Correspondence: Novianti-3@umcutrecht.nl
1Biostatistics & Research Support, Julius Center for Health Sciences and
Primary Care, University Medical Center Utrecht, 3508GA, Utrecht, The
Netherlands
Full list of author information is available at the end of the article

© 2015 Novianti et al. This is an Open Access
(http://creativecommons.org/licenses/by/4.0),
provided the original work is properly credited
creativecommons.org/publicdomain/zero/1.0/
available in the literature and it had been shown that the
performance of a classification method varies, depending
on the dataset to which the method is applied [8]. The
characteristics of a dataset that naturally could be han-
dled by a classification function might be one of the
underlying reasons accounting for this variability. A clas-
sical method like linear discriminant analysis works
under an assumption of the equality of covariance matri-
ces between classes; while penalized logistic regression
could handle a dataset with strongly correlated variables.
Other specific study factors had also been shown to de-
termine the predictive ability of a classification model,
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such as model building technique, array platform, clin-
ical problem and sample size [9, 10]. Most of these char-
acteristics are related to the technology or procedure
and not to the specific data at hand. The characteristics
of a gene expression dataset together with the nature of
a classification function may play a key role in yielding a
good class prediction model for gene expression data.
Evaluation studies on the aforementioned factors were

based on classification models within the field of cancer.
The effect of these factors might differ on datasets from
non-cancerous diseases. This is because most cancerous
diseases are often tissue specific unlike non-cancerous dis-
eases that might involve the entire system and hence have
different complexities. As one of gene expression data
characteristics that has been proven by [11] to have an ef-
fect on the performance of probabilistic classifiers when
calibration and refinement scores were used as model
evaluation measurements, correlation structures have
been shown to differ significantly between datasets from
both cancerous and non-cancerous diseases [12]. These
findings had led to the question, what factors do affect the
performance of class prediction models on datasets from
non-cancerous diseases. As such, a literature review study
to quantify the association between study factors and the
performance of classification methods outside the field of
cancer was initiated [13]. The study, however, was limited
to the characteristics of the microarray experiment, with-
out investigating the effect of gene expression data charac-
teristics such as the correlation between genes.
In this study, we outline potential study and data specific

factors and assess their contribution to the accuracy of clas-
sification functions using real life gene expression data. The
factors were chosen from both the experimental settings of
the studies (i.e., disease, medical questions, tissue/cell types
and sample size) and the characteristics of the gene expres-
sion data (i.e., the number of differentially expressed genes,
the fold changes and the within-class correlations).

Results
On average, most classification methods performed
better on hereditary disease. Meanwhile, the highest
Table 1 Individual random effect meta-regression

Study Factor Coef*

Cell type 0.24 +

Medical question −0.32 ++

Sample size −0.01

The number of differentially expressed genes 0.21

Fold change 1.42

Within class correlation 1.74

* Coefficient of the corresponding study factor in the random effects logistic regres
+ Coefficient for the non-blood category in the Cell Type study factor
++ Coefficient for the non-diagnostic category in the Medical Question study factor
variability of the classification performance was ob-
served on infectious disease (Additional file 4: Figure
S1). Of the 25 experiments selected, 19 experiments
addressed a diagnostic study. Diagnostic studies tend
to be easily classified and hence yield higher accuracies
than other (prognostic or response to a treatment)
studies, as experienced by [14]. Despite this, the factor
medical question is not significantly associated to ac-
curacy (Additional file 5: Figure S2). A similar insignifi-
cant effect is also shown by cell type used in the
experiment (Additional file 6: Figure S3). A more for-
mal individual evaluation of the effect of each study
factor to the predictive ability of a classification
method was assessed by a random effects regression
model as described in the Method section. The results
of the individual evaluations are summarized in Table 1
and the individual explained-variation is depicted on
Fig. 1.
The fc and pDEG study factor were positively associ-

ated to accuracy in their respective univariate random
effects models. This intuitive finding confirms that a
classification model could possibly achieve a good per-
formance as the genes’ fold change or the number of dif-
ferentially expressed genes increases (Additional file 7:
Figure S4 and Additional file 8: S5). We transformed the
pDEG to the log2-scale to deal with the high variability
of the number of differentially expressed genes among
studies, which ranged from 0 to 14,488.
Further, pDEG and fc had a relatively high individually

explained-variation, i.e., 72% and 57%, respectively.
Given its highest individual effect on the performance of
classification model, we then used pDEG as the first fac-
tor entering the multiple regression model that was con-
structed by the forward selection approach. We stopped
the modeling process when there was no additional
study factor that improved the multiple regression
model, conditional on the previously selected study fac-
tors in the model. The forward selection procedure
yielded pDEG, fc and the within class average correlation
(withincor) as the factors that simultaneously associated
to the classification models accuracy. We referred this
AIC P value Individual explained-variation

137.9 0.44 4.87%

137.8 0.38 2.55%

135.9 0.10 12.06%

116.0 <0.001 72.16%

118.1 <0.001 57.31%

137.5 0.31 5.80%

sion



Fig. 1 The individual explained-variation of study factors. Abbreviations: the number of differentially expressed genes on the log scale (pDEG), the
fold change (fc), the sample size (n), the average within-class correlation coefficient (withincor), the cell type (celltype), and the medical question (medques)

Novianti et al. BMC Bioinformatics  (2015) 16:199 Page 3 of 12
model as the final model of the multiple random effects
logistic regression. The three study factors in the final
model explained 91.5% of the random between study
variation relative to the null model. As in the univariable
case, pDEG and fc have positive effects on the accuracy
of classification methods. Interestingly, withincor turned
out to be one of the study factors that significantly im-
proved the multiple regression model, although it was
not significant univariately.
Despite a relatively small number of studies, the ran-

dom effects logistic regression model was stable, as
shown by the high agreement of the random effects lo-
gistic regression models in the Jackknife resampling ana-
lyses. The Jackknife analysis was done by leaving out one
study at a time and rebuilding the random effects regres-
sion model in the remaining studies. In the univariable
evaluation of Jacknife resampling, the fc and pDEG study
factors were always found to be significant in the ran-
dom effects models. The sample size, however, came as
one of significant study factors five times, i.e., when uc4,
uc5, hiv3, kd and hf studies were left out from the ran-
dom effect models (Additional file 2: Table S1). In the
multivariable evaluation, the significant study factors in
the final model were selected 19 times out of 25
Jackknife samples yielding a robustness of 76%. The
pDEG, withincor, and fc were in the model for 25 times
(100 %), 24 times (96 %) and 19 times (76 %), respect-
ively (Additional file 3: Table S2).
Discussion
We enumerated possible characteristics of gene expres-
sion data and investigated their impact on the predictive
accuracy of nine chosen classification methods using
twenty-five downloaded gene expression datasets. While
a substantial amount of information is known about the
characteristics of classification methods, little has been
done to determine which characteristics of gene expression
data affect the performance of a classifier. Classification
methods have been shown to have varying performances in
gene expression datasets. The classification methods, on
average, performed differently across the different disease
types (Additional file 4: Figure S1), but the random effects
logistic regression model failed to show a significant rela-
tionship between disease type and the accuracy of classifi-
cation models. This might be as a result of the limited
number of samples available to evaluate such a factor with
five categories.
In general, we might have an issue of statistical power

and model over-fitting when considering this variable. A
solution could be to increase the number of studies by
adding cancer studies to increase the statistical power
and possibly lead to a comparison in different behavior
of the study factors between cancerous and non-cancer-
ous diseases. However, supervised learning on gene ex-
pression studies in the field of cancer have been studied
extensively by [9, 10, 15]. As such, we chose to focus on
microarray gene expression experiments outside the field
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of cancer. We assessed the stability of the results from
both univariable and multivariable random effects logis-
tic regression via Jackknife resampling. We excluded one
dataset for each sampling and repeated the random ef-
fects modeling process. We then recorded P values of
each study factor in univariable models and the study
factors that were included in the model in multivariable
evaluation. Large number of datasets needs to be in-
cluded in order to yield more generalizable results and
also to avoid underpowered findings, particularly in an
evaluation or comparison study [16]. Nevertheless, the
evaluation of our results by Jackknife resampling shows
high stability of our results and high agreement as com-
pared to the findings by using full datasets
A similar study that was based on a quantitative re-

view was conducted to evaluate study factors that were
associated with the performance of classification models
in the non-cancer field [13]. That study had found that
the cross-validation technique considerably affected the
predictive ability of classification models, in line with the
finding of MAQC II consortium study [9]. In the current
study, we then controlled for the effect of cross-valid-
ation technique to observe the effect of other study fac-
tors that could not be observed earlier in [13]. The same
predictive modeling technique, including cross-valid-
ation, feature selection and classification functions, was
applied to the preprocessed gene expression datasets.
The performance of the optimum classification models
were measured by calculating the proportion of correctly
classified samples and total sample size. Random effects
logistic regression models showed that gene expression
data characteristics such as fold changes, the number of
differentially expressed genes and the correlation be-
tween genes, contribute to the performance of classifica-
tion models.
We used classification accuracy as the outcome of ana-

lysis. Although it is well-known to be a rough measure for
the performance of a classification model, accuracy is widely
used in practice due to its straightforward interpretation. In
highly imbalanced datasets, accuracy may yield overopti-
mistic results, because a classification model might easily
send all samples to the majority class. The class imbalance
should therefore be taken into account when interpreting
prediction accuracy [15]. A meaningful classification model
necessarily should have higher accuracy than the proportion
of the majority class. To deal with the problem of class
imbalance when using accuracy, we corrected our random
effects models for the class imbalance level.
We showed that the number of the differentially

expressed genes, genes’ fold changes and the average
within-class pairwise correlations significantly affected
the accuracy of classification models. The positive coeffi-
cient of the number of differentially expressed genes
(pDEG) both in the simple and multiple random effects
models shows that the classification models performed
better if the number of differentially expressed genes
present in a dataset is increased. Similarly, fold change
(fc) was significant in both univariable and multivariable
evaluations with positive effects. These intuitive findings
were mentioned earlier by the MAQC II consortium
study [9], where the number of informative genes had
relatively high degree of explained variability of the clas-
sification model performance in cancer studies.
The within-class correlation (withincor) has a positive

effect on the accuracy of classification models together
with pDEG and fc in the final random effect model.
The positive effect of the withincor study factor to the
classification model performance, is in contrast to
knowledge from linear models that correlated variables
bring no additional information to the model and
therefore tend to reduce the predictive ability of the
model. Our results show that the relationship between
withincor and model accuracy is confounded by the
pDEG and fc. To explain this finding, let’s first consider
the within class correlation between two genes, both
with a certain fold change. The two classes are more
separable when the pairwise within class correlation be-
tween two genes becomes stronger (Fig. 2: one gene
up- and the other down regulated and positive within
class correlation and S7: both genes up regulated and
negative within class correlation). Meanwhile, we hardly
observe an effect of the within class correlation in the
other possible scenarios (Additional file 9: Figure S8:
one gene up- and the other down regulated and nega-
tive within class correlation and S9: both genes up reg-
ulated and positive within class correlation). Thus,
there are two possible effects of the within class correl-
ation to the classification model‘s performance, i.e., ei-
ther positive or no effect, which might be the reason
for an overall significant positive coefficient of the with-
incor study factor.
The theoretical examples given above concern probe-

sets with relatively high fold changes, reflecting the
probesets that were involved in the classification
models. In our classification approach, we ranked pro-
besets based on the limma feature selection methods
and used top-K probesets to feed the classifiers, as
commonly done in practice, e.g., by [2, 3, 17–20] in
non-cancer and [14] in the cancerous diseases. By using
this approach, we ensured that the probesets involved
in the classification models had considerable fold
changes. Thus, it supports the confounding effect of
the fc study factor to the withincor in the multivariable
random effect regression model.
The correlation structure in gene expression data

had been proven to have a negative impact on the per-
formance of probabilistic classifiers [11]. This could
possibly be due to the measure of evaluation and/or



Fig. 2 Visualization of the generated gene expression datasets with the scenario of fc1 = +,fc2 = −,cc1 = cc2 = +. Abbreviations: fc1(2): fold change
of gene 1 (2); cc1(2): correlation coefficient of gene 1 (2)
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the fact that all genes were used and not a top number
from a ranked list. In the non-probabilistic classifier, its ef-
fect has not been studied yet. The result of this study
could be a preliminary proof of the effect of correlation
between genes (or probesets) to the performance of gen-
eral classification models (for both probabilistic and non-
probabilistic classifiers). Given our results, a similar simu-
lation study as [11] by considering broad range of combin-
ation values of fold changes, the number of informative
genes and correlation structure of a gene expression data-
set, is worth initiating by applying both probabilistic and
non-probabilistic functions.
Conclusions
We evaluated factors that possibly had an impact on the
performance of classification models in gene expression ex-
periments outside the field of cancer. The factors were cate-
gorized into two main groups: the study- and the data-
related factors. Our study showed that the data-related fac-
tors ‘number of differentially expressed genes’, ‘fold change’,
and ‘within-class correlation’ significantly affect the accur-
acy of classification functions.
Methods
Data extraction
We downloaded microarray gene expression datasets from
the ArrayExpress data repository. The criteria for selecting
the datasets were that the experiments 1) had been con-
ducted in humans; 2) outside the field of cancer; 3) had
samples with class labels in at least two classes; 4) were
published after 2005; and 5) provided raw cell files. To
reduce the source of variability of classification model per-
formances because of the array used in the experiments, we
retained studies conducted with the only Affymetrix array.
This additional exclusion criterion was also motivated by
the widely used of Affymetrix array by studies that were
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recorded in the ArrayExpress repository. Out of 54169 re-
corded studies in the ArrayExpress, 21284 (39.2%), 4436
(8.2%) and 3896 (7.2 %) studies used Affymetrix, Illumina
and Agilent array, respectively (last checked in November
18, 2014). We took only two disease classes or dichoto-
mized the outcomes if there were more than two classes in
a study. In total, we downloaded twenty five gene expres-
sion datasets [2, 17, 21–34] briefly described in the Sup-
plementary Material (Additional file 1) and summarized
in Table 2. In addition to the extracted datasets, the fol-
lowing study characteristics were recorded: medical ques-
tion addressed, disease type, tissue/cell type, microarray
platform, paper availability, year of publication and sample
size. The twenty five gene expression datasets came from
microarray studies that were conducted in thirteen differ-
ent diseases. We grouped the diseases based on etiology
resulting in five major types namely; inflammatory (10),
infectious (4), immune (4), degenerative (4), and heredi-
tary (3) diseases. The disease grouping was aimed to
evaluate the potential effect of the disease complexity to
the performance of the classification methods.

Preprocessing
The raw datasets were normalized using quantile
normalization, background correction performed ac-
cording to manufacturer’s platform recommended cor-
rection and log base two transformed [28]. Median
polish was used as a summarization method to quan-
tify expression values because of its ability to deal with
outlying probes [29]. For each dataset, we filtered out
non-informative probesets using two filtering criteria.
First, we retained probesets that had expression values
greater than five in at least ten percent (10%) of the
total samples. Secondly, we filtered the retained pro-
besets whose standard deviations were greater than
0.5 (sd > 0.5). We refer to the retained list as the actual
expression data.

Classifier building
We built and evaluated in each dataset class predic-
tion models with the set of nine classifiers described
in the classification functions subsection. Since we are
only equipped with a finite sample and the underlying
distribution is unknown, the empirical counterpart to
the generalization accuracy of a classification function
f is estimated as

Remp f½ � ¼
1
n

Xn
i¼1

L yi; f xið Þð Þ;
ð1Þ

where n is the number of available samples and L(.,.) is a
loss function with L(u, v) = 1 if u = v, L(u, v) = 0 otherwise
[35].
Though this empirical counterpart to the generalization
accuracy can be used to evaluate classifiers, it usually
overfits the sample S . A general practice is to split the
samples into a learning set ℒ and a testing set T . Pre-
dicted value from a classification function f ̂ :ð Þ is con-
structed from a learning set ℒ only and evaluated using a
testing set T [35]. In case sample sizes are very small, a
good practice is to generate several learning and testing
sets from the available sample, construct a classifier with
each learning set and using the corresponding testing set,
estimate the empirical generalization accuracy. The final
empirical generalization accuracy is the average across the
testing sets. Suppose B learning sets ℒb (b = 1,… B) are

generated from sample S and the corresponding testing

sets T ¼ S ℒ bj with f ̂b :ð Þ obtained from ℒb (b = 1,… B)

then an estimate of the accuracy is calculated by

acc ¼ 1
B

XB
b¼1

1
T bj j

X
i�Tb

L yi f b
̂
xið Þ

� �
; ð2Þ

where | ⋅ | is the cardinality of the considered set [35].
As such, each dataset was split into two-thirds for the

learning set and one-third for the testing set taking into
account the number of samples per class (i.e., stratified
sampling), using Monte Carlo cross-validation (MCCV)
[35] and the probesets were ranked using the moderated
t-statistic [36] on the learning set. The learning set was
further split into an inner-learning set and an inner-
testing set using leave one out cross-validation
(LOOCV). The parameter(s) of the classification func-
tions (if any) were tuned by ranking the probesets on
the moderated t-statistic and building the classifier with
different values of the parameter(s) using the inner-
learning set and evaluated with the out of bag inner-
testing set as proposed by [37]. The number of top pro-
besets to be included in the classification function was
also determined among p = 5, 10, 15, 20, 25, 50, 55 for
non-discriminant and p = 2, 3, 4, 5 (except for the GAU
dataset, p = 2, 3) for linear discriminant analysis (LDA)
and diagonal linear discriminant analysis (DLDA) using
the corresponding inner-learning and inner-testing sets.
The restriction of the top probesets for the discriminant
functions is due to the inability of these functions to ac-
commodate a number of probesets greater than the
number of samples. With the optimal probeset(s) and
number of top probesets (p) for each classification func-
tion, the class prediction model was built for each classi-
fication function using the learning set and then
evaluated within the testing set. The process was re-
peated B = 100 times. The numbers of correctly-
classified and misclassified samples in both learning and
testing sets were then recorded.



Table 2 Characteristic of the gene expression experiments

Disease ID+ Medical question Disease class Cell/Tissue
type

Affymetrix
platform

Citation
*

N p Ndeg fc cc

UC1 E-
GEOD-
14580

Response to treatment
(non-/responder)

Inflammation Colonic
mucosal
biopsies

HG U133
Plus 2.0

yes 24
(16,8)

4650 623 1.551 0.162

UC2 E-
GEOD-
21231

Response to treatment
(non-/responder)

Inflammation Blood HG 1.0 ST yes 40
(20,20)

3388 0 0.207 0.112

UC3 E-
GEOD-
36807

Diagnostic (UC/CD) Inflammation Intestinal
biopsy

HG U133
Plus 2.0

no 28
(15,13)

6541 21 2.222 0.305

UC4 E-
GEOD-
23597

Response to treatment
(non-/responder)

Inflammation Colonic
biopsy

HG U133
Plus 2.0

yes 14 (7,7) 4793 0 1.119 0.298

UC5 E-
MTAB-
331

Diagnostic (UC/CD) Inflammation CD8+ T cell HG 1.0 ST
and HG
1.1 ST

yes 59
(30,29)

1402 312 0.714 0.164

UC6 E-
GEOD-
9452

Diagnostic
(with/without inflammation)

Inflammation Colon HG U133
Plus 2.0

yes 17 (8,9) 3702 2401 3.697 0.165

UC7 E-
GEOD-
6731

Diagnostic (UC/CD) Inflammation Colon HG
U95AV2

yes 30
(11,19)

1055 0 0.485 0.228

AST1 E-
GEOD-
27011

Diagnostic (mild/severe) Inflammation Blood HG 1.0 ST no 36
(19,17)

1293 39 0.302 0.113

AST2 E-
GEOD-
51392

Diagnostic (asthma/rhinitis) Inflammation Bronchial
epithelial
cells

HG U133
Plus 2.0

no 11 (6,5) 3969 0 1.805 0.171

AST3 E-
GEOD-
31773

Diagnostic (non/severe) Inflammation CD4 T cells HG U133
Plus 2.0

no 12 (4,8) 18321 14488 16.964 0.317

DYS E-
GEOD-
19419

Diagnosis (carrier/symp) Infection Blood HG 1.0 ST yes 45
(22,23)

2811 0 0.182 0.153

HIV1 E-
GEOD-
35864

Diagnostic (HIV/HIV with
complication)

Infection Basal ganglia HG U133
Plus 2.0

no 18(6,12) 8737 0 1.14 0.346

HIV2 E-
GEOD-
14278

Prognostic (resistant/susceptible) Infection Peripheral
blood

HG U133
Plus 2.0

no 18 (9,9) 11286 4 0.58 0.12

HIV3 E-
GEOD-
6740

Diagnostic
(chronic/non chronic)

Infection CD4 T cell HG U133A yes 15
(10,5)

865 5 0.74 0.168

PSO E-
GEOD-
18948

Response to treatment
(non-/responder)

Immune Blood HG U95 yes 16 (7,9) 1987 34 1.131 0.369

KD E-
GEOD-
16797

Response to treatment
(IVIG responsive /non)

Immune Blood HG U133
Plus 2.0

yes 12 (6,6) 11043 5 1.688 0.224

Dia1 E-
GEOD-
18732

Diagnostic
(type 2 diabetes/intolerant)

Immune Skeletal
muscle

HG U133
Plus 2.0

no 71
(45,26)

2038 10 0.279 0.16

Dia2 E-
CBIL-
30

Diagnostic
(diabetes type 2/abnormal glucose)

Immune Skeletal
muscle

HG U133A yes 26
(18,8)

1749 0 0.269 0.435

ALZ1 E-
GEOD-
1297

Diagnostic (severe/not severe) Degenerative Hippocampus HG U133A yes 22
(7;15)

2295 13 0.693 0.287
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Table 2 Characteristic of the gene expression experiments (Continued)

ALZ2 E-
MEXP-
2280

Diagnostic (Alz/Pick's disease) Degenerative Medial
temporal
lobe

HG U133
Plus 2.0

yes 19
(7,12)

6899 1592 1.086 0.231

PARKI E-
GEOD-
6613

Diagnostic
(Parkinson/non-Parkinson)

Degenerative Blood HG U133A yes 83
(50,33)

638 0 0.192 0.361

HF E-
GEOD-
26887

Diagnostic (with/-out Diabetes) Degenerative Left ventricle
cardiac
biopsies

HG 1.0 ST yes 19
(7,12)

2068 0 0.374 0.131

GAU E-
GEOD-
21899

Diagnostic (type 1/ 3) Hereditary Skin HG U133A
2.0

no 10 (5,5) 2017 4 1.807 0.143

CS E-
MEXP-
2236

Diagnostic (Apert/Muenke) Hereditary Skin HG U133
Plus 2.0

yes 20
(10;10)

5422 21 0.59 0.255

CF E-
GEOD-
10406

Diagnostic
(Chronic rhinosinusitis/+Cystic fibrosis)

Hereditary Sinus mucosa HG U133
Plus 2.0

no 15 (9,6) 7604 0 0.786 0.206

+ : The ArrayExpress accessing ID
* : Paper availability
Ndeg : The number of differentially expressed probesets
fc : The average fold change from all probesets
cc : The average within class correlation values from all probesets
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Classification functions
The nine classification functions were chosen to represent
the broad list in the literature that falls within the categories:
discriminant analyses or Bayesian (linear discriminant ana-
lysis (LDA), diagonal linear discriminant analysis (DLDA),
and shrunken centroid discriminant analysis (SCDA)), tree
base (random forest (RF) and tree-based boosting (TBB)),
regularization and shrinkage (RIDGE, LASSO and support
vector machines (SVM)), and k-nearest neighbors (kNN)
methods K-nearest neighbour (KNN).
Linear discriminant analysis (LDA)
Discriminant analyses are Bayes optimal classifiers,
which assume that the conditional distributions of pre-
dictors given the classes are multivariate normally dis-
tributed and the within-class covariance matrices are
equal for all classes [35]. In order to get an optimum
LDA classifier, we optimized the number of probesets to
be included in the model.

Diagonal linear discriminant analysis (DLDA)
As LDA, DLDA also works under the assumption of
multivariate normality of class densities and a diagonal
within-class covariance matrix for each class [35]. The
optimum number of probesets was tuned by cross-
validation.

Shrunken centroid discriminant analysis (SCDA)
It is also well-known as the prediction analysis of micro-
array (PAM) and it is specially developed to handle the
high-dimensionality of gene expression microarray data.
The method works by shrinking the class centroids to
the overall centroid. For binary classification, the mean
for each probesest j in each class k is calculated, and is
called the class centroid. The class centroids are first
normalized by overall mean, pooled standard deviation
and sample sizeThis normalized class centroid is de-
noted by djk. The goal of this method is to shrink djk to-
wards zero by reducing djk by an amount of Λ. A large Λ
value implicitly means excluding more probesets, which
lead to a reduction in the model complexity. On the
other hand, less number of probesets in a model would
increase the risk of excluding informative probesets [38].
To balance this trade-off, parameter Λ was optimized
amongst the following values: 0.1, 0.25, 0.5, 1, 2, and 5.
SCDA is categorized as an embedded filtering method
because of its ability to do filtering and model building
simultaneously [39].
Random forest (RF)
Random forest is a classification method designed for
decision tree classifiers. It combines the predictions
made by multiple decision trees to yield the final predic-
tion of a test sample. Supposed the sample size of the
training set is N, each tree is constructed by: (i) sampling
with replacement a random sample of cases of size 2

3N
and (ii) at each node, a random sample of predictor vari-
ables m sampled from all predictor variables is selected
and the predictor variable with the best split based on a
given objective function is used. Step (ii) above is re-
peated until the tree is grown to terminal nodes with
minimum size k. The out-of-bag (oob) samples are used
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to evaluate the constructed tree. Randomization helps to
reduce the correlations among decision trees so that the
generalization accuracy of the classifier can be improved.
A higher value for the minimum terminal node size k
would possibly lead to smaller grown trees. Once mul-
tiple trees have been built, they are then combined by
voting; that is each tree cast a vote at its terminal nodes
[40]. The parameters m and k are often optimized using
cross-validation. In this study, we fixed the number of trees
in a forest at 500 and the number of random probesets at
each split m and the minimum terminal nodes size k were
tuned within the values 0:1; 0:25; 0:5; 1; 2ð Þ � ffiffiffi

p
p� �

and
(1, 2, 3), respectively. Where p is the total number of
probesets.

Tree-based boosting (TBB)
Boosting is a classification method that combines the out-
put of several “weak” classifiers to produce a powerful
“committee” [41]. It is an iterative procedure used to adap-
tively change the distribution of the training samples so
that the base classifiers focus on samples that are hard to
classify. Boosting assigns a weight to each learning sample
and may adaptively change the weight at the end of each
boosting round. These weights are then used either as a
sampling distribution or can be used by the base classifier
to learn a model that is biased toward higher-weight sam-
ples. The idea is to give all observations the same weights
at the start, draw a bootstrap sample and build a classifier,
which in this case is a classification tree (hence tree-based
boosting) then test the classifier with all the subjects. The
weights of misclassified subjects are increased in the next
bootstrap sample thereby given them higher chances to be
sampled. We optimized the number of trees (bootstrap
samples) that falls within these following values: 50, 100,
200, 500 and 1000.

Ridge regression (RIDGE)
The L2-penalization is used in logistic regression to
shrink the less significant coefficients toward zero. The
amount of shrinkage is controlled by a parameter λ,
where larger λ implies a larger degree of shrinkage [41].
The parameter λ of the penalization is a tuning param-
eter obtained by cross-validation (λ = 0.0625, 0.125, 0.25,
0.5, 1, 2, 4, 8, and 16).

LASSO
As in ridge regression, LASSO uses a penalization par-
ameter (λ) to estimate the coefficients of logistic regres-
sion, this time using L1-penalization. λ is interpreted as
truncating the less significant coefficients, so that LASSO
also works as a method for variable selection. We selected
the optimum λ parameter within the range 0.1:0.9 by 0.1
using cross-validation [41].
Support vector machines (SVM)
SVM classification is a binary classification method that
fits an optimal hyperplane between two classes by maxi-
mizing the margin between the classes' closest points.
The points lying on the boundaries are called support
vectors, and the middle of the margin is the optimal sep-
arating hyperplane. Data points on the “wrong” side of
the discriminant margin are weighted down to reduce
their influence and it is controlled by the cost parameter
C. For the nonlinear case, SVM uses a nonlinear map-
ping (via kernels) to transform the original training data
into a higher dimension. Within this new dimension, it
searches for the linear optimal separating hyperplane
that is, a “decision boundary” separating the tuples of
one class from another. The SVM finds this hyperplane
using the support vectors (“essential” training tuples)
and margins are defined by the support vectors [42]. We
used a linear kernel and the optimal cost parameter was
obtained from 0.1, 1, 5, 10, 50, 100, 500 using cross-
validation.
K-nearest neighbor (KNN)
For a sample S, the KNN algorithm classifies this sample
S based on a measure of distance between S and other
learning samples. It finds the K samples in the learning
set closest to S and then predicts the class of . by ma-
jority votes. The value K is usually specified by the user.
It should be noted that if K is too small, then the
nearest-neighbor classifier may be susceptible to over-
fitting. On the other hand, if K is too large, the nearest-
neighbor classifier may misclassify the test instance, be-
cause its list of nearest neighbors may include data that
are located far away from its neighborhood [43]. The op-
timal value of K is chosen by cross-validating amongst
K = 1 : 10 by 1.
Predictive factors
The study characteristics (referred to as “study factors”)
were evaluated for their effect on the performance of the
classification methods. The factors were chosen from
both the experimental settings of the studies and the
characteristics of the gene expression data. We selected
study factors that have been proven in the literature or
intuitively have association with the performance of clas-
sification models. To represent the experimental setting,
we chose study factors like medical question, sample size
and cell/tissue type used in the experiment. The gene
expression data were explored further to find the charac-
teristics that might contribute to the performance of clas-
sification methods, namely the number of differentially
expressed genes, fold changes and within-class pairwise
correlations. The study factors are described as follows:
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Medical question
The medical questions were of different types: diagnos-
tic, prognostic and response to treatment related studies.
Diagnostic studies tend to have higher classification
model performance than prognostic or response to a
treatment studies, as experienced by e.g., [14]. This
factor also came out as one of the factors that was as-
sociated with classification model performance outside
the field of cancer [13]. We classified the medical
questions of the experiments as either diagnostic or
non-diagnostic.

Sample size
Microarray datasets suffer from a severe curse of dimen-
sionality. The impact of the number of samples used in
the analysis was therefore investigated, particularly in
the field of cancer by [10] . The class imbalance is an-
other point of consideration when building a classifica-
tion model. It may introduce bias towards the majority
class in a prediction model and the classification per-
formance will be overestimated, especially when the ac-
curacy is used to evaluate the model [44]. The class
imbalance factor is calculated as the number of samples
in the majority class divided by the total sample size.

Cell type
The tissue or cell type used in the experiment is likely to
be dissimilar between studies and may impact the
resolution of information and also the performance of
classifiers. In a specific cancer case, like in acute mye-
loid leukemia (AML), the findings could be greatly af-
fected by the cell type used in the experiment (e.g., in
[E-GEOD-12662, E-GEOD-14924, E-GEOD-35010]).
We therefore considered the cell type as one of the
factors. We used a broad categorization of blood ver-
sus non-blood cell types.

The number of differentially expressed genes (pDEG)
For each dataset, we performed a differential expression
analysis by fitting a linear model for microarray data
(well-known as limma) [45] and controlling the false dis-
covery rate (FDR at 5%) defined as expected proportion
of false rejection among the rejected hypotheses using
the Benjamini and Hochberg (BH) procedure [46].

The within-class correlation level (withincor)
We constructed the within-class correlation matrices for
each dataset. A shrinkage approach was applied to esti-
mate the correlation matrix to deal with the high dimen-
sionality and sparsity [47]. We took the average of
absolute pairwise correlations within each class and av-
eraged those values over the two classes to represent the
level of the within-class correlation coefficient for a
dataset.
The fold change (fc)
We calculated the fold change for each actual probeset
as the absolute difference of the mean of log2 expres-
sions between samples in two groups, divided by the
pooled standard deviation. We summarized the fold
changes in each dataset as the mean fold changes from
all probesets.

Random effects logistic regression
The nine classification models were built in the twenty
five gene expression microarray datasets. We considered
these datasets as clustered data, where the selected stud-
ies and the classification methods act as clusters. Fur-
ther, in each study, we treated the accuracy as a grouped
binomial variable, for which we had the number of sam-
ples that were correctly and incorrectly classified. We
therefore evaluated the six aforementioned predictive
factors for classification accuracy by a logistic random
intercept regression model [48]. The logistic random ef-
fects model is the generalization of the linear mixed
model to binomial outcomes. In this case, the sigmoid
logistic link function is applied to the common linear
mixed model and the error distribution is binomial in-
stead of normal.
As the accuracy is well known to be biased towards

the majority class, the random intercept logistic model
was corrected by the class imbalance level, which was al-
ways included in the regression model. For the lth study
factor, the random effects model is written as

log
π xiSMð Þ

1−π xiSMð Þ

� �
¼ β0 þ ϑ0s þ ϑ0M

� �
þ β1classimbalanceS
þ β2predictivefactorlS;

where π(xisM) is the probability of a sample i in study
S to be correctly classified with the classification model
M; ϑ0S and ϑ0M are the random intercepts with respect
to study S (ϑ0S ~N(0, σ0S

2 )); and classification method M
(ϑ0M ~N(0, σ0M

2 )). All the aforementioned study factors
were evaluated by simple and multiple logistic random
intercept regression models. Multiple regression evalu-
ation was done by a forward selection approach. In each
step, two nested models, with and without a particular
study factor, were compared by Akaike’s information cri-
terion (AIC). Each factor l was also evaluated by its
explained-variation of the random intercept variance
term,

varl ¼
σ2null−σ

2
l

σ2null
;

ð3Þ

where σnull
2 is the random intercept variance from a

model with “class imbalance” only (referred to as null
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model). Since the logistic models have two random ef-
fects variables, σnull

2 is the combined variance of the
study (σ0S

2 ) and the classification method (σ0M
2 ) random

effect from a null model. Meanwhile, σl
2 is the combined

variance from a random effects model with the lth factor.
The explained variation of all significant factors in the
model (we refer to as “final model”) was also evaluated.
It was calculated by replacing the σl

2 in Eq.3 with the
combined variance in the final model.
We evaluated the stability of the simple and multiple

random effect logistic regression models by performing
Jackknife resampling analysis. In each iteration, one
study was left out and the model building process was
repeated using the retained studies.

Software
All statistical analyses were performed in R software by
using these following packages: affy for preprocessing
procedures [49], CMA for predictive modeling [35],
limma for fitting a linear model for microarray data [45],
lme4 for random effects linear model [50] and ggplot2
for data visualization [51]. The R scripts are available in
the Supplementary Material (Additional File 10).
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