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The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chro-
mosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC
family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site se-
lection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with
canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1
homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin load-
ing of SMCHD1 involves an LRIF1-mediated interaction with HP1� at trimethylated histone H3 lysine 9 (H3K9me3)-modified
chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the
inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection.

SMCHD1 is a noncanonical member of the SMC family of
chromosomal proteins that plays an important role in X chro-

mosome inactivation in mammals (1–3). Smchd1 loss of function
results in early lethality in female embryos, attributable to the
derepression of �10% of genes on the inactive X chromosome
(Xi) (4, 5). This effect has been linked to hypomethylation of Xi
CpG islands (CGIs) (6) and a deficiency in Xi chromatin compac-
tion (7). In addition to its role in X inactivation, SMCHD1 is
important for silencing at repeat sequences, several imprinted
gene clusters, and also the monoallelically regulated protocad-
herin gene cluster (4, 5). Similar to Xi, the SMCHD1 function at
these loci is linked to a loss of DNA methylation. Recently, muta-
tions in human SMCHD1 have been shown to underlie type 1 and
type 2 facioscapulohumeral muscular dystrophy (FSHD) (8–10),
with both types of the disease being dependent on the epigenetic
silencing function of SMCHD1 at the D4Z4 repeat sequence. Be-
yond its role in gene repression, SMCHD1 has been shown to be
involved in double-strand-break repair in plants (11) and in non-
homologous end joining in mammalian cells (12, 13).

While progress has been made toward defining biological roles
for SMCHD1, relatively little is known about the biochemical
properties of this protein and how these properties relate to
SMCHD1 localization and function at target loci. SMCHD1 is a
large protein, �230 kDa, and the major conserved domains are
a carboxy-terminal SMC hinge domain (HD), which is flanked
by short coiled-coil regions, and an amino-terminal GHKL
ATPase domain. There is also a region with weak homology to
the bromo-adjacent homology (BAH) domain located near the
GHKL ATPase domain (14). In a recent study, human
SMCHD1 was identified as an interactor of the protein HBiX1,
which in turn interacts with human heterochromatin protein 1
(HP1) paralogs (7).

In this study, we have applied proteomic, biochemical, and
molecular analyses to better understand the mechanism of action
of SMCHD1. Proteomic screening revealed that SMCHD1 inter-
acts with LRIF1, the mouse homolog of HBiX1, and with HP1
protein paralogs. No major stoichiometric interaction partners

were identified. We show that SMCHD1 homodimerizes, primar-
ily through the SMC hinge domain, and that the GHKL domain is
active in hydrolyzing ATP. Electron microscopy (EM) studies
show that SMCHD1 homodimers form aligned rod-like struc-
tures with globular regions at either end, similar to canonical pro-
karyotic and eukaryotic SMC protein complexes. We further show
that an indirect interaction mediated by the LRIF1 and HP1 pro-
teins loads SMCHD1 onto chromatin marked by trimethylation
of histone H3 lysine 9 (H3K9me3). The GHKL ATPase activity
and the BAH domain are not required for the interaction with
H3K9me3, but both are required for SMCHD1 localization to Xi
that occurs independently of the H3K9me3/LRIF1/HP1 pathway.

MATERIALS AND METHODS
Cloning and mutagenesis. Smchd1 was PCR amplified from cDNA from
a 129 background and cloned into either the pcDNA3 vector with a C-ter-
minal hemagglutinin (HA) epitope or the pCBA-Tag1 vector with a C-
terminal double-FLAG epitope. Subsequent mutagenesis was performed
on both HA- and FLAG-tagged Smchd1 plasmids. The QuikChange
Lightning kit (Agilent) and the primers listed in Table 1 were used to
introduce the point mutations E147A and G1872A/G1875A/G1876A ac-
cording to the manufacturer’s protocol. Deletion of the BAH domain was
performed by annealing oligonucleotides dBAH_F and dBAH_R (Table
1) and ligating the construct between the KpnI and PflMI restriction sites.
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Deletion of the hinge domain was accomplished by digesting Smchd1
plasmids with BsrGI and religating the digested plasmid. Lrif1 was cloned
by reverse transcription-PCR (RT-PCR) of cDNA from wild-type (WT)
E14 cells, and the sequence was verified. Lrif1 cDNA was cloned by liga-
tion-independent cloning (LIC) into pCAG-eGFP or pCAG-mCherry to
generate N-terminal fusion proteins.

Protein expression and affinity purification. Full-length FLAG-
tagged recombinant SMCHD1 (rSMCHD1) was expressed by using bac-
ulovirus and purified from Sf9 cells. Sf9 cells were cultured in SF900 II
serum-free medium (Invitrogen) at 27°C. Sf9 cells at 1.5 �106 cells/ml
were infected with Smchd1 P3 virus for 48 h. Cells were consequently
harvested, washed in ice-cold phosphate-buffered saline (PBS), pelleted
again, snap-frozen, and stored at �80°C. Cell pellets were resuspended in
lysis buffer F (10 mM Tris [pH 8.0], 500 mM NaCl, 4 mM MgCl2, 2.0 mM
dithiothreitol [DTT], 20% glycerol, complete protease inhibitor) and ho-
mogenized in a tight-fitting Dounce homogenizer 30 times. Lysates were
spun at high speed, and the supernatant was diluted and mixed with
anti-FLAG M2–agarose beads (Sigma) for 4 h at 4°C with rotation. Re-
covered beads were washed in wash buffer F (10 mM Tris [pH 8.0], 150
mM NaCl, 2 mM MgCl2, 1 mM DTT, 15% glycerol) three times, and
FLAG-SMCHD1 was eluted with 0.2 mg/ml FLAG peptide in wash buffer
F. The hinge domain of SMCHD1 was cloned into pET28a (Novagen) and
transformed into BL21-RosettaBlue cells (Novagen). Expression was in-
duced by the addition of 0.1 mM isopropyl-�-D-thiogalactopyranoside
(IPTG) for 5 h at 30°C. Cells were harvested and lysed by sonication in
lysis buffer (20 mM Tris-HCl [pH 8.0], 250 mM NaCl, 0.1% NP-40).
His-tagged SMCHD1 hinge protein was purified form the soluble bacte-
rial extract by using Talon resin (Clontech) and eluted from the resin with

250 mM imidazole. Eluents were pooled and dialyzed in a solution con-
taining 50 mM HEPES (pH 7.9), 100 mM KCl, 10% glycerol, and 0.5 mM
DTT. The ATPase domain was cloned into pMAL-c2x, transformed, ex-
pressed, and lysed as described above for the hinge domain. Cell lysates
were mixed with amylose resin (NEB) and eluted from the resin with 10
mM maltose. Eluents were pooled and dialyzed as described above.

Size exclusion chromatography (SEC). Nuclear extracts (NEs) from
embryonic stem cells (ESCs) were applied to a Superose 6 column (GE
Healthcare) for separation of SMCHD1 complexes and collected in 52
fractions of 0.25 ml. Affinity-purified FLAG-rSMCHD1 was further pu-
rified by using a Superose 6 column with wash buffer F. For the hinge gel
filtration experiment, affinity-purified wild-type and mutant hinges were
applied to a Superdex 75 10/300 column (GE Healthcare) and collected in
0.5-ml fractions.

ATPase assay. An ATPase activity assay was performed by using the
PiLock Gold kit (Innova Biosciences) with 1.0 �M protein in reaction
buffer (125 mM NaCl, 50 mM Tris [pH 7.5], 5.0 mM MgCl2, 1.0 mM
ATP) in a final volume of 50 �l for 60 min at 37°C. A standard curve was
generated by using the phosphate standards in the kit, and activity was
calculated according to the manufacturer’s instructions. For the ATPase
assays with radicicol, the compound was resuspended in dimethyl sulfox-
ide (DMSO) and diluted to the concentrations listed in Fig. 4D.

Sucrose gradient analysis. Five micrograms of purified FLAG-
rSMCHD1 or 100 �g of nuclear extract, 30 �g of ovalbumin (43 kDa) and
conalbumin (67 kDa), and 50 �g of aldolase (158 kDa), ferritin (443 kDa),
and thyroglobulin (669 kDa) were loaded onto an 11-ml 5 to 20% sucrose
gradient made in a solution containing 0.3 M KCl, 20 mM HEPES (pH
7.9), 2 mM EDTA, 10% glycerol, and 10 mM �-mercaptoethanol. The

TABLE 1 Oligonucleotide sequences

Primer Sequence

rSmchd1_LIC_F TACTTCCAATCCATGGCAGCGGAGGGCGCCAGCGATCCC
rSmchd1_LIC_R TATCCACCTTTACTGCTAGTGATGATGATGATGATGGCTGCTGCCCATGTTTGGTACGTCACCTTTTGGCC
Hinge_F GCAGTCGAATTCATGAATGATGTTAAGAAGCAGCAA
Hinge_R GTAACTCTCGAGTCAAGTCATTCCGAGTTTCTGCTC
ATPase_F GCAGTCGAATTCATGAATATGGCAGCGGAG
ATPase_R GTAACTCTCGAGTCAGTGGTGGTGGTGGTGGTGGGGTGTCTTCCCCTTTTCAAAC
SDM Hinge GATAGAATTAGAAGTAATGCGAAGTTTGCGGCCCTTCAGAATAAAGCTCCG
SDM Hinge CTATCTTAATCTTCATTACGCTTCAAACGCCGGGAAGTCTTATTTCGAGGC
E147A_F TGCCATTTGCTCTTGCAGCGTTAATCGCCAATTCATTGTCAGCTAC
E147A_R GTAGCTGACAATGAATTGGCGATTAACGCTGCAAGAGCAAATGGCA
�BAH_F CTGGGTACCATCCCTTCTTATATGATAGAGAAACCTTTCCTGATGACGGGAAATGGCCTTACTGGTTTA

AAAAAATGGAAAATATCCAGAAACTGGCAT
�BAH_R ATGCCAGTTTCTGGATATTTTCCATTTTTTTAAACCAGTAAGGCCATTTCCCGTCATCAGGAAAGGTTT

CTCTATCATATAAGAAGGGATGGTACCCAG
Lrif1_LIC_F TACTTCCAATCCATGTCTAATAGTCTCCAGAGCGTCATTCTGAAAACC
Lrif1_LIC_R TATCCACCTTTACTGCTATTGTTTTTGGTACATCTTCTTACGCAATTCTTCAAGAGCTGC
�-actin RT_F AGATCTTCTCCATGTCGTCC
�-actin RT_R GATATCGCTGCGCTGGTCGT
Lrif1 RT1_F(i) AACCGCAGAGGAAAAGTCAG
Lrif1 RT1_R(i) TTTTCCATCGCTGCCAATCG
Lrif1 RT2_F(ii) TGCCCCCAGAAAAGGAAATC
Lrif1 RT2_R(ii) TGCCATCTCATACTGCGTCTG
Lrif1 RT3_R(iii) ATTCCTGACCATCTGAGCTCTG
Lrif1 RT3_R(iii) CATCTTCATGGTTTCCGCTTTTC
Lrif1_gRNA1_F CACCGATGCCATCTCATACTGCGTC
Lrif1_gRNA1_R AAACGACGCAGTATGAGATGGCATc
Lrif1_gRNA2_F CACCGTGTCTTCCCTGGTTGTACTA
Lrif1_gRNA2_R AAACTAGTACAACCAGGGAAGACAc
HP1�_gRNA1_F CACCGACTTACCAATGTAGTTTTAT
HP1�_gRNA1_R AAACATAAAACTACATTGGTAAGTC
HP1�_gRNA2_F CACCGGGGTCCCATGCGTCCCAAAC
HP1�_gRNA2_R AAACGTTTGGGACGCATGGGACCCC
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gradient was centrifuged for 19 h at 40,000 rpm in a Beckman SW41 rotor
at 4°C. Fractions (0.5 ml) were taken from the top of the gradient and
precipitated with trichloroacetic acid. Samples were either run on a 10%
SDS-polyacrylamide gel and Coomassie blue stained for the indicated
standards or run on a 6% gel and Western blotted to detect SMCHD1.

Electron microscopy of negatively stained SMCHD1. A total of 3.0 �l
of a 100-ng/ml solution of purified protein was applied to a freshly glow-
discharged carbon-coated copper grid and negatively stained with 0.75%
(wt/vol) uranyl formate. Samples were visualized at 80 kV with an FEI T12
electron microscope. Low-dose images were acquired at a �0.8-�m un-
derfocus with 15 e�/Å2 on a high-sensitivity FEI Eagle 4,096- by 4,096-
pixel charge-coupled-device (CCD) camera at a nominal magnification
of �46,000, which corresponded to a sampling of 0.27 nm/pixel.

Cell culture. Fibroblasts were grown in EC10 medium (Dulbecco’s
modified Eagle medium [DMEM]; Life Technologies) supplemented with
10% fetal calf serum (FCS; Seralab), 2 mM L-glutamine, 1� nonessential
amino acids, 50 �M 2-mercaptoethanol, and 50 �g/ml penicillin-strep-
tomycin (Life Technologies) in a 37°C incubator under 5% CO2. ESCs
were grown in EC10 medium supplemented with leukemia inhibitory
factor (LIF)-conditioned medium at a concentration equivalent to 1,000
U/ml. Stable clonal cell lines were established and maintained under se-
lection with 0.5 �g/ml G418 (Life Technologies).

The following cell lines were used in this study: human HEK293T cells;
mouse mammary C127 cells; Smchd1	/	 and Smchd1�/� mouse embry-
onic fibroblasts (MEFs); and the ESC lines E14TG2a, J1, PGK12.1, and
Smchd1�/� ES23. The Smchd1�/� ES23 XY cell line was derived from the
inner cell mass (ICM) of an embryonic day 3.5 (E3.5) embryo obtained
from an intercross of MommeD1 heterozygote mice (the Smchd1-Mom-
meD1 mutant allele is described in reference 3). WT and Smchd1�/�

matched MEF cell lines were derived from WT or Smchd1-null E9.5 em-
bryos. Transgenic Smchd1 cell lines were generated by transfection with
Lipofectamine (Life Technologies) and selection with G418 antibiotic.
Surviving clones were picked, and the SMCHD1-FLAG or SMCHD1-
tandem affinity purification (TAP) expression level was analyzed by West-
ern blotting.

Immunofluorescence. Cells were split onto slides 16 h before staining
at a low density. Slides were then washed in PBS, fixed with 2% formalde-
hyde in PBS for 15 min, and permeabilized with 0.4% Triton X-100 in PBS
for 10 min. After being washed with PBS, the slides were blocked for 1 h in
0.2% fish gelatin (Sigma) in PBS and incubated for 1 h with primary
antibody (diluted in 0.2% fish gelatin and 5% normal goat serum). Slides
were washed three times in 0.2% fish gelatin and incubated for 1 h with an
Alexa Fluor-conjugated secondary antibody (Life Technologies). After
two washes in fish gelatin and two washes in PBS, slides were mounted by
using mounting medium containing 4=,6-diamidino-2-phenylindole
(DAPI) (Vector Laboratories).

Cell fractionation. Cell fractionation experiments were performed by
using a commercially available subcellular protein fractionation kit
(Thermo). NEs for Western blot analyses, peptide pulldown experiments,
and immunoprecipitation (IP) assays were prepared according to a mod-
ified version of the method described previously by Dignam et al. (15).
Briefly, cells were lysed in buffer A (10 mM HEPES [pH 7.9], 1.5 mM
MgCl2, 10 mM KCl, 0.5 mM DTT, and complete protease inhibitors) with
a Dounce homogenizer. Recovered nuclei were resuspended in buffer C (5
mM HEPES [pH 7.9], 10 mM KCl, 26% glycerol, 1.5 mM MgCl2, 0.2 mM
EDTA, and complete protease inhibitors) supplemented with 125 U Ben-
zonase for 60 min on ice, followed by the addition of 300 mM NaCl and
incubation on ice for an additional 30 min. The samples were centrifuged
at 13,000 rpm for 20 min at 4°C, and the supernatant was taken as the
nuclear extract.

Immunoprecipitation. One hundred micrograms of NE (300 mM
NaCl) was diluted into IP buffer (50 mM Tris [pH 7.5], 0.05% NP-40) to
a final concentration of 150 mM NaCl in 400 �l. A total of 3.0 �l of
antibody (see below) and 20 �l of protein A magnetic beads (Life Tech-
nologies) were added, and the mixture was incubated for 4 h at 4°C with

rotation and then washed four times in IP buffer. Beads were resuspended
in 2� Laemmli sample buffer and boiled.

FLAG immunoprecipitation and mass spectrometry. Nuclear ex-
tracts for mass spectrometry (MS) experiments were prepared as de-
scribed previously (16, 17). Immunoprecipitation of SMCHD1-FLAG
from ESC nuclear extracts using the mouse M2 FLAG antibody (Sigma)
and mass spectrometry analysis were carried out as previously described
(16). SMCHD1-TAP tag IP from HEK293T cells was performed as de-
scribed previously (17), and mass spectrometry analysis was performed at
the Taplin Biological Mass Spectrometry Facility (Harvard Medical
School). Raw data are available for download from our laboratory website
or by request (https://sites.google.com/site/brockdorfflab).

Peptide pulldown assay. Biotinylated histone peptides containing the
N-terminal 41 amino acids of the histone H3 tail, either unmodified or
trimethylated on lysines 4, 9, and 27, were purchased (GL Biochem).
Twenty micrograms of peptide was mixed with magnetic streptavidin
beads (Thermo) in binding buffer (150 mM NaCl, 50 mM Tris [pH 7.5],
0.1% NP-40) for 2 h at 4°C and washed three times in binding buffer.
Peptide-conjugated beads were incubated with 400 �g of NE in 400 �l of
binding buffer for 4 h at 4°C with rotation and washed four times in
binding buffer. Beads were resuspended in 2� Laemmli sample buffer
and boiled.

Western blotting. Samples were analyzed by 6% or 15% SDS-PAGE
and transferred onto polyvinylidene difluoride (PVDF) membranes.
Membranes were blocked in 5% milk in Tris-buffered saline (TBS) plus
0.1% Tween 20 (TBST). Membranes were incubated with antibodies in
2.5% milk in TBST and washed in TBST.

Antibodies. Antibodies to FLAG (catalog number F3165; Sigma), HA
(clone 3F10; Roche), mCherry (catalog number ABE3523; Source Biosci-
ence), green fluorescent protein (GFP) (catalog number ab290; Abcam),
HP1
 (catalog number MAB3584; Millipore), HP1� (catalog number
MAB3450; Millipore), histone H3 (catalog number ab1791; Abcam),
H3K9me2 (catalog number 154-050; Diagenode), H3K9me3 (catalog
number 05-1242; Millipore), H3K27me3 (catalog number 61017; Active
Motif), and tubulin (catalog number 21445; Cell Signaling) were used in
this study. Smchd1 rabbit polyclonal antibody was raised against a mix-
ture of SMCHD1 fragments produced in bacteria (positions 1 to 385, 1197
to 1549, and 1615 to 1963), affinity purified, validated by Western blot
analysis (see Fig. 5B), and used for experiments depicted in Fig. 5A, 7D,
and 8. Smchd1 antibody (catalog number ab31865; Abcam) was used for
experiments depicted in Fig. 1C and E.

Clustered regularly interspaced short palindromic repeat (CRISPR)/
Cas9 mutagenesis. ES23	 or C127 cells were seeded at 1 � 105 cells/ml
and transfected on the following day with 1.0 �g of PX459 (18) containing
genomic RNAs (gRNAs) for Lrif1 or HP1�. Transfected cells were selected
with either 1.0 or 4.0 �g/ml puromycin (Sigma) for 48 h, followed by
recovery and picking of surviving clones. Two guide RNAs for one gene
(Table 1) were cotransfected, clones were screened by PCR for genomic
DNA deletion, and mutations were confirmed by sequencing. Quantita-
tive RT-PCR (qRT-PCR) was performed to demonstrate the loss of the
Lrif1 transcript by using primers listed in Table 1, and the loss of HP1� was
shown by Western blotting. Several clones of each mutant were tested, and
the representative clones shown in the figures are listed in the correspond-
ing legends.

qRT-PCR. RNA was prepared with the RNeasy minikit (Qiagen), fol-
lowed by DNase treatment using a Turbo DNA-free kit (Life Technolo-
gies). cDNA was synthesized by using 2.0 �g RNA, using Super-Script III
reverse transcriptase (Life Technologies). Quantitative PCR assays were
performed on a Rotor-Gene Q instrument (Qiagen), using iQ SYBR green
custom supermix (Bio-Rad) and the primers listed in Table 1.

RESULTS
Biochemical analysis of SMCHD1 complexes. Eukaryotic con-
densin, cohesin, and Smc5/6 complexes form a trimeric ring
structure comprised of a heterodimer of two SMC family proteins
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and a third kleisin subunit (19, 20) (Fig. 1A). SMCHD1 has been
classified as an SMC family protein based on the presence of an
SMC hinge domain flanked by coiled-coil domains (Fig. 1B).
However, the domain organization differs from that of conven-
tional SMC proteins, as the hinge domain is located at the C ter-
minus, rather than centrally, and in that SMCHD1 has a putative
GHKL ATPase rather than a Walker A/B ATPase. Additionally, a
previous bioinformatic analysis identified a region in SMCHD1,
adjacent to the putative GHKL ATPase, that shows homology to
the BAH domain family (14) (Fig. 1B).

To identify potential SMCHD1-interacting proteins, we car-
ried out a proteomic analysis using an embryonic stem cell (ESC)
line that stably expresses SMCHD1-FLAG at a level similar to that
of endogenous SMCHD1 (Fig. 1C). SMCHD1-FLAG was immu-
noprecipitated from nuclear extracts (16, 17) (Fig. 1C and D), and
copurifying proteins were then identified by tandem MS (MS/
MS). In addition to SMCHD1, we identified two isoforms of
LRIF1 and three HP1 proteins (Table 2; also see the data at https:
//sites.google.com/site/brockdorfflab). HP1� and LRIF1 were also
identified in a second independent experiment (Table 3; also see
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the data at https://sites.google.com/site/brockdorfflab), and we
therefore conclude that these are genuine SMCHD1 interactors.
LRIF1 is the mouse homolog of HBiX1, which was found to inter-
act with both SMCHD1 and HP1 proteins in human cells (7). We
did not detect any protein with similarity to the kleisin subunit of
canonical SMC complexes, indicating that SMCHD1 probably
does not participate in a tripartite ring complex.

We next analyzed SMCHD1 complexes by fractionation of
high-salt nuclear extracts using size exclusion chromatography
(SEC) and sucrose gradient analysis. Both endogenous and FLAG-
tagged SMCHD1 proteins fractionate in the megadalton mass
range by SEC (Fig. 1E), suggesting the existence of a large multi-
meric complex. However, sucrose gradient analysis demonstrated
both endogenous and FLAG-tagged SMCHD1 sediment at �100
kDa (Fig. 1F and G), indicating that the native complex is much
smaller, with a mass similar to that of an SMCHD1 monomer.
A possible explanation for these disparate observations is that
SMCHD1 behaves anomalously in SEC experiments, for example,
because it adopts a rod-like shape (see also below).

SMCHD1 forms a stable homodimeric complex. Conven-
tional eukaryotic SMC proteins heterodimerize (21), whereas
prokaryotic SMC proteins form homodimers (22). Given that
other SMC proteins were not identified in our proteomic analysis
(Table 2), we hypothesized that SMCHD1 most likely forms ho-
modimers. To test this, we cotransfected HEK293T cells with
SMCHD1 with a C-terminal HA or FLAG tag and then deter-
mined their association by immunoprecipitation (IP). As shown
in Fig. 2A, IP with anti-HA coprecipitated FLAG-tagged SMCHD1
and vice versa, clearly demonstrating self-association, as either
dimers or possibly oligomers. In support of this conclusion,
MS/MS analysis of TAP-tagged mouse SMCHD1 expressed in
human HEK293T cells identified human-specific SMCHD1
peptides at similar levels (Fig. 2B; see also the data at http://sites
.google.com/site/brockdorfflab).

To gain insight into the molecular architecture of SMCHD1,
we carried out an analysis of recombinant SMCHD1 (FLAG-
rSMCHD1) expressed and purified from insect cells. SEC and su-
crose gradient analyses revealed that the properties of FLAG-
rSMCHD1 are indistinguishable from those of native SMCHD1
present in nuclear extracts (compare Fig. 1E and F and 2C and D),

suggesting that SMCHD1 homodimers represent the predomi-
nant functional form in vivo. We went on to analyze FLAG-
rSMCHD1 by negative-stain electron microscopy (EM) (Fig. 2E).
Individual molecules can be observed to possess a rod-like appear-
ance, �40 nm in length, with globular domains on either end
potentially corresponding to the hinge and ATPase domains. A
large proportion of particles were seen to have two linked arms,
some closely associated along their entire length (Fig. 2E, arrow-
heads), indicating homodimerization of individual SMCHD1 sub-
units. These structures bear a close resemblance in both size and
appearance to those in EM micrographs of other SMC complexes,
notably homodimeric bacterial condensins (23, 24). Conforma-
tional flexibility precluded further refinement of SMCHD1 struc-
tures, but the results nevertheless define a probable molecular
architecture, illustrated in Fig. 2F.

The SMC hinge domain mediates SMCHD1 homodimeriza-
tion. The SMCHD1 HD is homologous to HDs found in both
prokaryotic and eukaryotic SMC proteins. Interestingly, phyloge-
netic analysis indicates that the SMCHD1 HD is more closely re-
lated to that found in the prokaryotic SMC proteins, which, like
SMCHD1, form homo- rather than heterodimers. A SWISS-
MODEL (25, 26) structure homology search identified the HD of
the Thermotoga maritima SMC protein (Fig. 3A, left) as being
highly similar to the SMCHD1 HD (root mean square deviation
[RMSD], 0.102) (Fig. 3A, right). To test the importance of the
SMCHD1 HD for dimerization, we cotransfected HEK293T cells
with SMCHD1-FLAG and SMCHD1-HA as described above, us-
ing a deletion of the entire HD (�Hinge residues 1642 to 1918)
(Fig. 3B). As shown in Fig. 3C, a deletion of the HD results in a loss
of SMCHD1 dimerization. In contrast, a deletion of the putative
BAH domain (�BAH) (Fig. 3B and C) and a mutation abrogating
GHKL ATPase activity (Fig. 3B and C and 4) had no effect on
SMCHD1 dimerization. In the latter case, it should be noted that
the mutant protein can still bind ATP, and in other GHKL family
members, this is sufficient for dimer formation (27, 28).

We further analyzed the dimerization of the HD using a re-
combinant wild-type HD expressed in bacteria (residues 1616 to
1963) or a mutant form with alanine substitutions of three con-
served glycines, G1872A, G1875A, and G1876A (referred to as the
AAA mutant), which, in prokaryotic HDs, are required for dimer

TABLE 2 SMCHD1 interactors identified by mass spectrometrya

Protein Description Hit Score emPAI Coverage (%) No. of peptides

SMCHD1 SMC hinge domain-containing 1 1 9,529 17.57 61.4 126
HP1� Chromobox homolog 3 20 733 6.39 38.7 9
LRIF1 Ligand-dependent nuclear receptor-interacting factor 1 isoform 1 30 537 0.44 10.6 8
LRIF1 Ligand-dependent nuclear receptor-interacting factor 1 isoform 3 32 525 1.78 31.1 8
HP1
 Chromobox homolog 1 46 342 1.52 23.8 3
HP1� Chromobox homolog 5 78 190 0.56 12.6 2
a Shown are the names, descriptions, overall ranks (Hit), mascot scores, exponentially modified protein abundance indices (emPAI), percent coverages, and numbers of unique
peptides detected for candidate SMCHD1 interactors identified by mass spectrometry (clone G6).

TABLE 3 Confirmed SMCHD1-interacting proteinsa

Protein Description Hit Score emPAI Coverage (%) No. of peptides

SMCHD1 SMC hinge domain-containing 1 1 3,067 1.02 27.1 45
LRIF1 Ligand-dependent nuclear receptor-interacting factor 1 78 118 0.12 2.3 1
HP1� Chromobox homolog 3 92 85 0.18 9.2 1
a A second mass spectrometry experiment using Smchd1�/� ESCs stably expressing SMCHD1-FLAG (clone G2) confirms that LRIF1 and HP1� interact with SMCHD1.
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formation (29) (Fig. 3D and E). Dimer formation was analyzed by
SEC, as performed previously for other SMC hinge domains (30).
As shown in Fig. 3F, wild-type HD forms dimers, but this is abro-
gated by the use of the AAA mutant, visualized by the slower
migration of the monomeric hinge. Together, these findings dem-
onstrate that the SMCHD1 HD mediates homodimerization and
that the mechanism is similar to that reported for the HD in ca-
nonical SMC proteins.

The GHKL ATPase domain hydrolyzes ATP. The GHKL
ATPase domain in SMCHD1 is highly homologous to those found
in several other proteins, notably DNA gyrase B, HSP90, and
MUTL (Fig. 4A and B). Several GHKL domains function as

dimers, forming ATP-activated clamps or gates that allow entrap-
ment of the substrate, for example, DNA in the case of DNA gyrase
B, MUTL, and topoisomerase II (31).

To test the activity of the putative GHKL domain in SMCHD1,
we expressed the conserved region, spanning residues 1 to 385, as
a recombinant protein in bacteria and then assayed ATP hydroly-
sis using a colorimetric assay (Pi ColorLock Gold; Innova Biosci-
ences). As a control, we mutated a conserved glutamic acid residue
that is required for catalysis in other GHKL ATPase domains
(E147A) (27, 28) (Fig. 4B). As shown in Fig. 4C, WT but not
E147A mutant SMCHD1-GHKL hydrolyzes ATP. We confirmed
this result using full-length recombinant SMCHD1 (Fig. 4C).

FIG 2 SMCHD1 forms a functional homodimer. (A) Reciprocal immunoprecipitation and Western blotting of SMCHD1-HA and SMCHD1-FLAG from
nuclear extracts of HEK293T cells cotransfected with SMCHD1 plasmids. In, input (10%); IP, immunoprecipitate (15%). (B) Silver-stained IP sample from
TAP-tagged mouse SMCHD1 expressed in human HEK293T cells. Both human and mouse SMCHD1 peptides were detected at similar levels. (C) Anti-FLAG
Western blotting of fractions following size exclusion chromatography of rSMCHD1. (D) Anti-FLAG Western blotting of fractions from sucrose gradient
sedimentation of rSMCHD1. Molecular mass standards (kilodaltons) for panels C and D are labeled above each blot. (E) Electron microscopy images of
negatively stained rSMCHD1. Selected images are further magnified and presented at the right. Bars, 100 nm (left image) and 10 nm (right images). (F) Schematic
of the proposed homodimeric form.
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FIG 3 SMCHD1 homodimerizes through the SMC hinge domain. (A, left) Thermotoga maritima Smc hinge dimer structure (PDB accession number 1GXL),
shown as light and dark blue monomers. (Right) The SWISS-MODEL-predicted SMCHD1 hinge structure based on the T. maritima hinge is also composed of
two monomers, shown in gold and orange. (B) Graphical representation of the FLAG- and HA-tagged SMCHD1 derivatives used in cellular assays. (C)
Anti-FLAG immunoprecipitation and Western blotting of SMCHD1 derivatives tagged with either FLAG or HA and cotransfected into HEK293T cells. In, input
(10%); IP, immunoprecipitate (15%). (D) ClustalW2 alignment of the hinge domains from several canonical SMC proteins and SMCHD1. Five species are
represented in this alignment: Thermotoga maritima (Tm), Bacillus subtilis (Bs), Saccharomyces cerevisiae (Sc), and Mus musculus (Mm). The conserved glycine
residues mutated in the SMCHD1 hinge AAA mutant are labeled and highlighted in gray. (E) Hinge dimer ribbon diagram with conserved glycine residues
mutated in the SMCHD1 hinge AAA mutant highlighted. These three glycine residues are predicted to be positioned at the interface of the two hinge domain
monomers. (F) HD dimerization analysis by size exclusion chromatography. The A280 peak for the WT (black) and AAA mutant (gray) hinges are shown (top),
and the corresponding 0.5-ml fractions were run on an SDS-PAGE gel and Coomassie stained (bottom).
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Consistent with these observations, the addition of radicicol, a
specific inhibitor of the GHKL ATPase family (32, 33), reduced
the ATPase activity of the SMCHD1 GHKL domain in a dose-
dependent manner (Fig. 4D). Given the molecular architecture of
the homodimeric complex determined by EM (Fig. 2E and F), we
suggest that, analogous to other GHKL ATPase proteins, SMCHD1
functions as an ATP-activated gate or clamp.

Role of SMCHD1 conserved domains in chromatin binding.
To investigate the role of conserved domains in SMCHD1, we first
analyzed the distribution of SMCHD1 in soluble compared to
chromatin-bound nuclear extracts by using Smchd1-null ESCs
stably expressing either WT SMCHD1-FLAG (here referred to as
ES23	) or domain mutant proteins as described above. As shown
in Fig. 5A, WT SMCHD1-FLAG shows similar distributions be-

tween chromatin-bound and soluble fractions, as does endoge-
nous SMCHD1 (Fig. 5A and B). Deletion of the BAH domain or
mutation of the GHKL ATPase had no effect on chromatin asso-
ciation. Deletion of the HD, on the other hand, resulted in the
complete dissociation of SMCHD1 from the chromatin-bound
fraction. The latter observation may indicate that the HD medi-
ates direct or indirect chromatin binding or, alternatively, that
SMCHD1 dimerization is important for this interaction (see also
below).

SMCHD1 plays an important role in gene silencing in X chro-
mosome inactivation, and consistent with this, the SMCHD1 pro-
tein is strongly enriched over the Xi territory in differentiated XX
somatic cells (3, 6, 7). To determine the importance of SMCHD1
conserved domains for Xi localization, we transfected WT and
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(left) and the predicted SMCHD1 ATPase domain (green) (right), shown with ATP (orange) and the catalytic glutamic acid (blue/red) highlighted. (B)
ClustalW2 alignment of the conserved GHKL ATPase domains from the DNA mismatch repair protein MutL and DNA gyrase subunit B (GyrB) alongside
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mutant SMCHD1-HA expression constructs into Smchd1�/� XX
mouse embryonic fibroblasts (MEFs). As illustrated in Fig. 5C,
WT SMCHD1-HA localizes to Xi territories, as defined by
costaining with antibody against the Xi-enriched histone modifi-

cation H3K27me3 (34, 35). However, a mutation affecting the
activity of the GHKL ATPase and deletion of the BAH domain
result in the complete loss of Xi localization (Fig. 5C). This con-
trasts with the effect of these mutations on the chromatin associ-
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ation of SMCHD1, as determined by nuclear fractionation exper-
iments (Fig. 5A). SMCHD1 lacking the HD also failed to localize
to Xi. The latter observation was expected given the complete
dissociation of the HD mutant protein from chromatin (Fig. 5A).

Interaction of SMCHD1 with histone H3K9me3. Indepen-
dent proteomic screens identified SMCHD1 as interacting with
the histone modification H3K9me3 (36, 37). To further investi-
gate the molecular basis of this observation, we performed peptide
pulldown on nuclear extracts from ES23	 cells and assessed the
binding of SMCHD1 with histone H3 tail peptides methylated at
different lysine sites. As shown in Fig. 6A, SMCHD1 bound to
H3K9me3 but not to unmodified H3, H3K4me3, or H3K27me3.
Additionally, we observed that SMCHD1 interacts with H3K9me2
albeit to a lesser extent and does not interact with H3K9me1
(Fig. 6B).

We next determined if mutation of SMCHD1 conserved do-
mains affects H3K9me3 binding by performing peptide pulldown
experiments on nuclear extracts from Smchd1�/� ESCs comple-
mented with either WT or mutant Smchd1. In particular, we were
interested to test the role of the BAH domain, which in other
proteins has been shown to bind nucleosomes (38), histone H3
(39), or specific histone lysine methylation sites, including
H3K9me3 (40, 41). However, as shown in Fig. 6C, we found that
neither the BAH domain nor SMCHD1 GHKL ATPase activity is
required for H3K9me3 binding. Deletion of the HD, on the other
hand, resulted in the loss of binding to H3K9me3, indicating that
either this region mediates H3K9me3 binding or SMCHD1
dimerization is important for the interaction.

We failed to detect binding to H3K9me3 using full-length
FLAG-rSMCHD1 in the peptide pulldown assay (Fig. 6D), sug-
gesting that the interaction is likely to be indirect. A previous study
demonstrated that HBiX1, the human homolog of LRIF1, inter-
acts with the HP1 family of proteins that bind to H3K9me3 as well
as with human SMCHD1. Moreover, we identified both LRIF1
and HP1� proteins as being SMCHD1 interactors (Tables 2 and
3). To determine if LRIF1 mediates SMCHD1 binding to H3K9me3,
we generated Lrif1-null ES23	 ESCs using CRISPR/Cas9 genome
editing (see Materials and Methods) (Fig. 6E) and then, using
nuclear extracts from these cells, determined the interaction with
H3K9me3 peptides. As shown in Fig. 6F, mutation of Lrif1 entirely
abolishes H3K9me3 binding of SMCHD1 but does not abolish
binding of HP1�. Additionally, by analysis of HEK293T cells
cotransfected with mCherry-LRIF1 and SMCHD1/SMCHD1
mutants, we determined that only the HD region is required for
the interaction of SMCHD1 and LRIF1 (Fig. 6G). This observa-
tion is consistent with the finding that HD deletion abrogates
H3K9me3 binding (Fig. 6C).

Autonomous pathways mediate SMCHD1 loading at H3K9me3
sites and on Xi. To determine the importance of the LRIF1-me-
diated interaction of SMCHD1 and H3K9me3, we analyzed the
effect of Lrif1 mutation on the distribution of SMCHD1 in differ-
ent nuclear fractions in ES23	 cells. As shown in Fig. 7A, loss of
Lrif1 results in a dramatic redistribution of most, although not all,
of the SMCHD1 from the chromatin-bound to soluble nuclear
fractions. This result suggests that LRIF1 functions as a loading
factor directing SMCHD1 to H3K9me3-modified chromatin,
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likely through the interaction of LRIF1 with both the SMCHD1
and HP1 proteins. However, analysis of SMCHD1 localization by
immunofluorescence indicates a more complex picture in relation
to H3K9me3. Specifically, we observed SMCHD1 at pericentric
heterochromatin domains, major sites of H3K9me3 accumula-
tion, in only a minority of cells (Fig. 7B). The majority of cells
exhibit broad pannuclear SMCHD1 staining and, in female so-
matic cells, a single focus corresponding to Xi (Fig. 7B and C).

A possible explanation is that LRIF1 mediates the interaction
of SMCHD1 specifically with HP1�, which, in contrast to
HP1
/�, localizes strongly to H3K9me3 sites on chromosome
arms (42, 43) (Fig. 7D). Consistent with this suggestion, HP1� was
the predominant isoform identified in proteomic analyses of
SMCHD1-interacting proteins (Tables 2 and 3). To test this hy-

pothesis, we generated HP1�-null ES23	 ESCs by CRISPR/Cas9
mutagenesis (Fig. 7E) and then analyzed the SMCHD1-FLAG dis-
tribution by a cell fractionation assay. Our results show a shift of
SMCHD1-FLAG from the chromatin fraction to the soluble nu-
clear fraction (Fig. 7F), although the effect is not as strong as that
in Lrif1-null cells (Fig. 7A). Together, our observations suggest
that LRIF1 mediates the loading of SMCHD1 at sites where HP1 is
bound to H3K9me3, notably on the chromosome arms.

In human cells, Xi shows enrichment of H3K9me3 within spe-
cific subdomains, and SMCHD1 localization has been linked to
the recruitment of HBiX1/SMCHD1 (7). However, there is no
detectable enrichment of H3K9me3 on Xi in mouse cells, and
although there is an accumulation of H3K9me2 (44) (Fig. 8A), the
developmental kinetics are quite distinct from those observed for
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SMCHD1 (3, 6). To further investigate the relationship between
LRIF1 and SMCHD1, we transfected GFP-tagged LRIF1 in WT
and Smchd1�/� XX MEFs. As shown in Fig. 8B, LRIF1 localizes to
Xi in WT cells but not in Smchd1�/� cells. This result suggests that
the enrichment of LRIF1 on Xi is attributable to the interaction
with SMCHD1 rather than binding of H3K9me2 or other modi-
fications present on Xi.

It is possible that LRIF1 and SMCHD1 have an interdependent
relationship with regard to Xi localization in mouse cells, as pre-
viously suggested for human cells (7). To test this possibility, we
generated Lrif1�/� C127 XX somatic cells using the same CRISPR/
Cas9 strategy as the one described above (Fig. 6E). As shown in
Fig. 8C, SMCHD1 localizes to the inactive X territory in the ab-
sence of LRIF1. Nucleoplasmic staining for SMCHD1 was in-
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representing the means from 3 replicates (n � 50 cells [B] and n � 200 cells [C]). Bars, 5 �m. (D and E) Cell fractionation and Western blotting for endogenous
SMCHD1 in WT and Lrif1-null (clone G6) C127 cells. HP1� is shown as a control.
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creased in Lrif1�/� cells relative to WT controls, presumably a
by-product of the dissociation from genome-wide chromatin tar-
gets. Consistent with this hypothesis, we observed that the major-
ity of SMCHD1 dissociates from chromatin in Lrif1�/� C127 cells
(Fig. 8D), similar to our observation of ESCs (Fig. 7A). The HP1�
association with chromatin, on the other hand, was unaffected in
Lrif1�/� cells (Fig. 8E). Taken together, these results demonstrate
that two distinct pathways determine SMCHD1 loading at chro-
matin target sites. GHKL ATPase/BAH-independent binding to
H3K9me3 modified nucleosomes via interaction of SMCHD1
with LRIF1/HP1 and the GHKL ATPase/BAH-dependent associ-
ation with Xi.

DISCUSSION
Biochemical properties of SMCHD1. Through a direct analysis of
proteins that interact with SMCHD1, we identified LRIF1 and
HP1�, an observation that is consistent with a previous study that
identified human SMCHD1 as an interactor of the LRIF1 ho-
molog HBiX1 (7). However, we find no evidence for major inter-
acting proteins. Moreover, native SMCHD1 and recombinant
SMCHD1 behave very similarly in gel filtration and sucrose den-
sity gradient analyses. In this regard, SMCHD1 is distinct from
other SMC complexes, all of which include an essential stoichio-
metric kleisin subunit essential for function. Interestingly, despite
this fundamental difference, EM micrographs of SMCHD1 ho-
modimers bear a striking resemblance to those reported for
canonical SMC proteins. We conclude that the SMCHD1 ho-
modimer most likely represents the core functional complex in an
in vivo context.

We show that the hinge domain of SMCHD1 mediates the
homodimerization of the protein, a finding that is consistent with
a very recently reported study demonstrating that the SMCHD1
hinge domain forms dimers (45) and with the similarity of the
SMCHD1 hinge domain to canonical bacterial SMC proteins,
which also form homodimers. We also demonstrate that the
SMCHD1 GHKL ATPase hydrolyzes ATP and, based on analogy
with other GHKL ATPase proteins, likely functions as a molecular
clamp or pincer.

In addition to the hinge and GHKL domains, SMCHD1 has a
domain that shares weak homology with the BAH domain, found
in several chromatin binding/modifying proteins. The role of the
SMCHD1 BAH domain is not clear at present, although our data
suggest that it does not mediate interactions with specific histone
H3 tail modifications, notably H3K9me3, as has been reported for
some other BAH domains (40, 41). Our data also suggest that the
BAH domain is not required for general chromatin associations,
as the deletion mutants localize with the chromatin fraction in
nuclear extracts. We cannot rule out that the BAH domain binds
to other untested histone tail modifications or that it is required
for targeting to specific chromatin regions. However, we favor an
alternative model in which the BAH domain plays a structural role
required for the catalytic cycle of the SMCHD1 protein, similar to
the previously suggested role for the BAH domain in the DNA
methyltransferase DNMT1 (46). Taking into consideration data
from our biochemical analysis, we speculate that the SMCHD1
dimer clamps the chromatin fiber and, through GHKL ATPase
activity, catalyzes dynamic changes in chromatin organization, for
example, by bringing together distant sites, either in cis or in trans.

Interaction of SMCHD1 with histone H3K9me3. We ob-
served a specific interaction of SMCHD1 with H3K9me3, con-

firming previously reported observations (36, 37), and further
show that this interaction is indirect, mediated by LRIF1 binding
to both the SMCHD1 and HP1 proteins. Analysis of SMCHD1
mutants indicates that LRIF1/H3K9me3 binding requires the
hinge domain but neither the BAH domain nor the GHKL ATPase
activity of the complex. It was previously shown that a coiled-coil
domain at the C-terminal end of the LRIF1 homolog HBiX1 me-
diates interactions with SMCHD1 (7). This domain could poten-
tially interact with the SMCHD1 HD, although we think that it is
more likely that the interaction occurs between the LRIF1 coiled-
coil and the short coiled-coil domains that flank the SMCHD1 HD
(Fig. 1B).

Our in vitro analysis demonstrates that LRIF1 mediates the
interaction of SMCHD1 with H3K9me3, but somewhat paradox-
ically, SMCHD1 shows a broad nuclear localization with a con-
centrated signal over Xi and usually not over pericentric hetero-
chromatin domains, the major sites of H3K9me3 deposition and
HP1 binding. A possible explanation, suggested by our proteomic
analysis, is that SMCHD1/LRIF1 preferentially interacts with
HP1�, which, unlike other HP1 paralogs, localizes extensively to
H3K9me3 on chromosome arms in addition to pericentric het-
erochromatin domains (42, 43). While our cell fractionation ex-
periments in HP1�-null cells reveal some functional overlap of
HP1
/� regarding SMCHD1 bulk chromatin loading, this result
remains consistent with the hypothesis that SMCHD1/LRIF1
complexes favor HP1�. A similar preference for HP1� was evident
in proteomic data obtained for the HBiX1 interactome (7).
Moreover, defined loci that are regulated by HP1� binding to
H3K9me3, notably telomeres (47) and the D4Z4 locus in FSHD
patients (48), have also been identified as SMCHD1/LRIF1 targets
(9, 49). These considerations suggest that SMCHD1 is an impor-
tant downstream effector of HP1� at H3K9me3 sites on the chro-
mosome arms.

Chromatin loading of SMCHD1. Nuclear fractionation anal-
ysis demonstrates that a major pool of SMCHD1 protein is stably
bound to chromatin. Neither GHKL ATPase activity nor the BAH
domain is required for this association. However, deletion of
LRIF1 or of the SMCHD1 hinge domain region that is required
for LRIF1 interactions results in a redistribution of the bulk of
SMCHD1 to the soluble nucleoplasm. These findings suggest that
LRIF1, in conjunction with HP1� located principally on chromo-
some arms, functions as an SMCHD1 loading complex (Fig. 9B).
This may be analogous to the role of Scc2/4 in loading the cohesin
complex (50). We suggest that LRIF1-dependent loading estab-
lishes an initial association of SMCHD1 with chromatin that is
subsequently maintained independently of LRIF1. One possibility
is that loading results in a topological trapping of the chromatin
fiber by the SMCHD1 dimer, similar to cohesin and possibly other
canonical SMC complexes (Fig. 9B). We further suggest that the
GHKL ATPase and/or the BAH domain plays a role in SMCHD1
dynamics/unloading, as neither is required for the stable associa-
tion of SMCHD1 with chromatin.

While the LRIF1/HP1-mediated interaction with H3K9me3
appears to be the primary mechanism for chromatin loading of
SMCHD1, our findings demonstrate that a completely indepen-
dent loading pathway accounts for SMCHD1 localization to Xi in
mouse cells (Fig. 9C). Specifically, we find that LRIF1 localization
to Xi is dependent entirely on SMCHD1 and, conversely, that
SMCHD1 localizes to Xi independently of LRIF1. These results
indicate that LRIF1-mediated recognition of H3K9me3 does not
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significantly contribute to SMCHD1 Xi enrichment. The molec-
ular basis for the alternative loading pathway is unclear, although
both GHKL ATPase activity and the BAH domain are required,
suggesting that SMCHD1 turnover/dynamics may underpin Xi
localization. Analysis of the dynamics of SMCHD1 associations
with Xi and other sites may be applied to test this idea in the future.
Additionally, it will be interesting to determine whether SMCHD1
recruitment to other target sites, for example, the protocadherin
and FSHD loci, depends on the LRIF1 or alternative loading path-
ways.

In summary, our results provide important insights into the
molecular mechanisms for loading the chromosomal protein
SMCHD1 at different sites in the genome. The LRIF1/H3K9me3
loading pathway highlights the role of SMCHD1 as an important
downstream effector at HP1 target sites, with implications for un-
derstanding the regulation of heterochromatin at diverse loci and
in biological processes that include telomere function, silencing of
transposable elements/repeat sequences, and heritable gene si-
lencing.
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