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Abstract Combining genotype data across cohorts in-

creases power to estimate the heritability due to common

single nucleotide polymorphisms (SNPs), based on

analyzing a Genetic Relationship Matrix (GRM). Howev-

er, the combination of SNP data across multiple cohorts

may lead to stratification, when for example, different

genotyping platforms are used. In the current study, we

address issues of combining SNP data from different co-

horts, the Netherlands Twin Register (NTR) and the Gen-

eration R (GENR) study. Both cohorts include children of

Northern European Dutch background (N = 3102 ? 2826,

respectively) who were genotyped on different platforms.

We explore imputation and phasing as a tool and compare

three GRM-building strategies, when data from two

cohorts are (1) just combined, (2) pre-combined and cross-

platform imputed and (3) cross-platform imputed and post-

combined. We test these three strategies with data on

childhood height for unrelated individuals (N = 3124,

average age 6.7 years) to explore their effect on SNP-

heritability estimates and compare results to those obtained

from the independent studies. All combination strategies

result in SNP-heritability estimates with a standard error

smaller than those of the independent studies. We did not

observe significant difference in estimates of SNP-herit-

ability based on various cross-platform imputed GRMs.

SNP-heritability of childhood height was on average esti-

mated as 0.50 (SE = 0.10). Introducing cohort as a co-

variate resulted in&2 % drop. Principal components (PCs)

adjustment resulted in SNP-heritability estimates of about

0.39 (SE = 0.11). Strikingly, we did not find significant

difference between cross-platform imputed and combined

GRMs. All estimates were significant regardless the use of
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PCs adjustment. Based on these analyses we conclude that

imputation with a reference set helps to increase power to

estimate SNP-heritability by combining cohorts of the

same ethnicity genotyped on different platforms. However,

important factors should be taken into account such as

remaining cohort stratification after imputation and/or

phenotypic heterogeneity between and within cohorts.

Whether one should use imputation, or just combine the

genotype data, depends on the number of overlapping

SNPs in relation to the total number of genotyped SNPs for

both cohorts, and their ability to tag all the genetic variance

related to the specific trait of interest.

Keywords Genotyping platform � Heterogeneity �
Imputation � GCTA � SNP-heritability � Height

Introduction

Before embarking on Genome Wide Association (GWA)

projects, the heritability of complex traits is often assessed in

twin and family studies, or, more recently, assessed based on

common single nucleotide polymorphisms (SNPs). Such

SNP-based heritability can be estimated when genetic simi-

larities between distantly related individuals are summarized

in a genetic relatedness matrix, which then is used to predict

their phenotype similarity (Visscher et al. 2010; Lubke et al.

2012; Lee et al. 2012; Zaitlen et al. 2013). This technique,

known as genomic-relatedness-matrix restricted maximum

likelihood (GREML; Benjamin et al. 2012), is implemented,

for example, in the software package GCTA (Genome-wide

Complex Trait Analysis; Yang et al. 2011). Estimating the

heritability based on measured SNPs requires the availability

of raw genotype and phenotype data. Therefore, these ana-

lyses are usually performed in one, or a few separate cohorts

that contribute to a meta-analysis GWAS. However, in single

studies, these SNP-based heritability estimates tend to have

large standard errors due to small sample sizes. The large

standard errors also result in variation in estimates between

different studies for the same trait.

Here we investigate the possibility to combine indi-

vidual-level genotype data across cohorts in order to obtain

a larger and better GRM. A cross-cohort GRM will allow

inclusion of all possible combinations of pairs of indi-

viduals, both within, as well as between cohorts, and esti-

mation of the genetic variance explained by common

variants (SNP-heritability) will likely improve. However, it

requires sharing and pooling of raw phenotype and geno-

type data from multiple cohorts. For genotype data this

likely means that data of multiple genotyping platforms

need to be combined and this might lead to biased results

due to ‘‘platform stratification’’, when relationships

between individuals of different cohorts are estimated

based on overlapping SNPs only. In case of GWA meta-

analyses, each individual cohort performs its own impu-

tation using a reference set (e.g. HapMap or 1000 Genome)

and statistical analysis prior to the combination of results.

In this way the confounding effects of genotyping plat-

forms are avoided. SNPs showing platform stratification

effects will be detected with heterogeneity testing and

meta-analysis Quality Control (QC). With GREML ana-

lyses, the genotyped data of cohorts need to be combined at

the SNP level. If different platforms have been used for

genotyping, a cross-platform imputation is required in

order to combine genotypes from several cohorts and as-

sure that all individuals have the same SNP information to

estimate relationships between them.

In this paper, we compare approaches that combine

autosomal genotype data from different cohorts and

genotyping platforms into a single GRM. We aim to ad-

dress and resolve problems of stratification when cohorts

differ in genotyping strategies and phenotype characteris-

tics. Therefore this study has two aims: (1) to allow the

combination of genetic data from two cohorts, where par-

ticipants are genotyped on different platforms with little

overlap, (2) to explore the effect of three different strate-

gies of combining such data on SNP-heritability estimates,

when two cohorts are either cross-platform imputed (post-

or pre-combined) or just combined (Fig. 1). We base our

analysis on genotype data from two Dutch cohorts, the

Netherlands Twin Register (NTR; Boomsma et al. 2006;

van Beijsterveldt et al. 2013) and the Generation R study

(GENR; Tiemeier et al. 2012; Jaddoe et al. 2012). NTR

recruits twin families across the Netherlands, whereas

GENR targets a birth cohort from Rotterdam. The cohorts

have genotyped their participants on different Affymetrix

and Illumina platforms, respectively. We illustrate the

imputation approaches and test their performance using

NTR 

phenotype Affymetrix ≈ 520 K Affymetrix 

Illumina ≈ 

120 K

Missing

1)
CO

M
BIN
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GENR 

phenotype Missing Illumina ≈ 350 K

NTR 

phenotype Affymetrix + Illumina based on

GoNL reference set ≈ 990 K

2)
and 3) IM

PU
TED

GENR 

phenotype 

GoNL reference set

Fig. 1 Strategies of combing two cohorts genotyped on different

platforms, when two cohorts are either (1) combined or (2) and (3)

cross-platform imputed
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principal components analysis (PCA) to check for stratifi-

cation due to genotyping platform. Subsequently we

demonstrate the differences of using cross-platform impu-

tation versus just combining datasets for childhood height.

The methods considered to pre-combine and cross-

platform impute the NTR and GENR genotype data include

combining both genotype data sets at the SNP level and

then phasing (i.e. estimating haplotypes) the combined data

as a single dataset. We phase combined data without- and

with a reference imputation set using MaCH (Li et al.

2010) and MaCH-Admix (Liu et al. 2013) and inherently

impute. When a reference set was used, the data were

imputed with reference to data from the Genome of the

Netherlands (GoNL) project (Boomsma et al. 2014, Gen-

ome of the Netherlands Consortium 2014). The GoNL

imputation reference set is a resource of sequenced data

from the Netherlands, where a group of 250 trio’s from all

Dutch provinces was sequenced at a depth of *12–139.

We chose this reference panel, because this set is the

closest to both cohorts with respect to their genetic back-

ground (Deelen et al. 2014). Our results show that phasing

without a reference set is not able to eliminate differences

between platforms. However, phasing together with a ref-

erence set helps to bring the two cohorts together with

minimum platform stratification left. Strict imputation

quality control (pre- and post-QC) as well as GCTA

specific quality control is required to eliminate remaining

platform stratification in cross-platform imputed dataset.

Materials and methods

Sample

Two population based cohorts comprising a Dutch children

supplied genotype information and data on height (Sil-

ventoinen et al. 2007; Jaddoe et al. 2012; Boomsma et al.

1992). Genotype data were available for 3102 children

from the NTR and 2826 children from GENR (Table 1).

All children were of Northwestern European Dutch back-

ground as was checked by PCA. Among them, 2226 sub-

jects had height measurements in GENR and 2072 in NTR

(Table 2; Fig. 2). After applying a cut-off of 0.025 for

genetic relatedness recommended in GREML analyses

(Yang et al. 2010) there were 1134 and 1990 individuals

left in NTR and GENR, respectively, with height mea-

surements. The NTR cohort comprised 528 males and 606

females at ages 4.6–11 years old. The GENR cohort

comprised 998 males and 992 females at ages 4.8–9 years

old (Table 3; Fig. 2). All parents gave informed consent.

Study protocols were approved by Medical Ethics Com-

mittee of the VU University Medical Center, Amsterdam

for NTR and by Medical Ethical Committee of the Erasmus

Medical Centre, Rotterdam for GENR.

Within sample pre-imputation SNP QC

The 3107 subjects in the NTR cohort were genotyped for

692,694 SNPs on Affymetrix 6.0 chip (Scheet et al. 2012).

The 2830 subjects in the GENR cohort were genotyped for

489,878 SNPs on two Illumina chips (660 W, 610 K)

(Medina-Gomez et al. 2015). Outliers were excluded from

the GENR sample (4 individuals) and from the NTR sample

(5 individuals) based on visual inspection of PC1 versus PC2

plots prior to analysis. As a result, individuals cluster within

-0.06[PC1\0.05 and -0.05[PC2\ 0.07 intervals in

GENR and -0.06[PC1\ 0.06 and -0.05[PC2\ 0.04

intervals in NTR. For GENR, the overlapping SNPs between

the two platforms were used as input for imputation as re-

ported before (Benke et al. 2014). Standard quality control

steps were applied to the separate data sets using Plink 1.07

(Purcell et al. 2007). A sample call rate[0.975 and a SNP

call rate[0.950 were applied for both cohorts. SNPs with

minor allele frequency (MAF) \0.001 and SNPs with

Hardy–Weinberg equilibrium (HWE) p value\10-5 were

excluded. Individuals were checked for excess heterozy-

gosity and subjects with an inbreeding coefficient, as esti-

mated in Plink, F B -0.05 or F[ 0.05 were excluded.

Identical by state (IBS), identical by descent (IBD) and

gender mismatch were checked and samples not fitting the

expected relations and/or gender were removed.

The next quality control step was a cross-check of alleles

and SNP positions between the two cohorts as well as the

GoNL reference set v.4 (build 37). SNPs that did not match

by strand were flipped to the reference set strand. SNPs with

discordant alleles or that were not present in the reference set

were excluded. Genotyped data from the NTR and GENR

cohorts have 120,568 overlapping autosomal SNPs, of

Table 1 Cohort description
Sample N Sex N families N independent

observations
Males Females

GENR 2826 1450 1376 171 2508a

NTR 3102 1381 1721 1709 1644a

a Based on the list of distantly related individuals, which were selected using GCTA cut-off 0.025 inde-

pendently in each cohort

516 Behav Genet (2015) 45:514–528

123



which 255 (0.2 %) SNPs were significantly different in

frequency across cohorts (p value\10-5, one-sided test).

Pairwise comparison between the SNPs overlapping in NTR

and GoNL, in GENR and GoNL and in NTR and GENR

combined identified 4001 SNPs, which were significantly

different in allele frequency (p value\10-5, 1969 between

NTR and reference set, 2012 between GENR and reference

set and 255 between NTR and GENR combined). All SNPs

differing in allele frequency were removed. The resulting set

of SNPs was either present on both platforms and in the

reference set, or in a single platform and in the reference set.

In order to minimize the amount of imputation stratification

between samples, we selected the SNPs from the GoNL

reference set that were present either on one or both geno-

typing platforms (Illumina or Affymetrix, N = 989,757)

using VCFtools (Danecek et al. 2011).

After QC was performed there were 3102 NTR (1381

males, 1721 females) and 2826 GENR (1450 males, 1376

females) individuals left. These individuals were geno-

typed for 641,554 and 468,259 SNPs in NTR and GENR

respectively. The two data sets were merged in Plink for

pre-combined imputation.

Imputation strategies

First explorations of pre-combined cross-platform impu-

tation approaches were done for chromosome 22. Geno-

type data comprising 13,712 SNPs were extracted, phased

and imputed using the three methods described below,

aiming to determine the one to apply to the autosomal

genome. The first approach uses MaCH phasing (selected

because GCTA can read MaCH dosage files) and, inher-

ently, also imputation of the missing genotypes. No ref-

erence set is involved. The second approach uses MaCH

phasing but this time with the GoNL reference set. Here

the haplotypes are predicted and genotypes are imputed

based on the GoNL reference set, which contains the full

SNP haplotypes representing the Dutch population re-

gardless of the platform. The third approach uses MaCH-

Admix instead of MaCH. Here, a new piecewise reference

selection method is employed (Liu et al. 2013) with GoNL

as a reference set. This method, which is implemented in

MaCH-Admix, breaks a genomic region into small pieces

and searches for haplotypes in the reference set that

matches every piece. In all three approaches we imputed

Fig. 2 Distributions of height across cohorts after correction for age and sex. a Shows the distribution of height for all individuals. b Shows the

distribution of height for the distantly related individuals

Table 3 Height measurements

of the distantly related

individuals

Sample N Sex Age mean (SD) Height in centimeters

mean (SD)
Males Females

GENR 1990 998 (50.2 %) 992 (49.8 %) 6.1 (0.4) 119.6 (5.6)

NTR 1134 528 (46.6 %) 606 (53.4 %) 7.7 (1.4) 129.7 (9.8)

GENR ? NTR 3124 1526 (48.8 %) 1598 (51.2 %) 6.7 (1.2) 123.2 (8.8)

Table 2 Height measurements

of all individuals
Sample N Sex Age mean (SD) Height in centimeters

mean (SD)
Males Females

GENR 2226 1124 (50.5 %) 1102 (49.5 %) 6 (0.4) 119.6 (5.6)

NTR 2072 948 (45.8 %) 1124 (54.2 %) 7.7 (1.4) 129.6 (9.8)

Behav Genet (2015) 45:514–528 517
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missing genotypes as dosage scores. We have not con-

sidered only using the SNPs that were present on both

platforms, because the final data set would comprise of

only &120 K SNPs after genome-wide QC.

After an imputation approach for the pre-combined

dataset is chosen, we evaluate the effect of the two possible

scenarios of imputation on platform stratification and SNP-

heritability estimates. In the first case we pre-combine

datasets and then impute using chosen approach; in the

second case we impute datasets independently using the

same software and reference set as for pre-combined

dataset and post-combine.

Post-imputation SNP QC

Post imputation QC aimed to examine the stratification

between NTR and GENR due to genotyping platform after

imputation on chromosome 22 at first and on the autosomal

genome afterwards. A comparison between all imputation

approaches was done based on the imputation quality

metric (R2) calculated by the MaCH tools. The R2 mea-

sures imputation quality and ranges between 0 and 1 with

higher value indicating better imputation accuracy, hence

better genotype prediction. We used R2 to inspect whether

filtering on this measure helps to reduce platform stratifi-

cation. Subsequently, a case–control analysis of the im-

puted sample with cohort as phenotype was done using the

Mach2dat software (Li et al. 2010) for dosages and Plink

for best-guess to check if there were differences in allele

frequencies after imputation. Note that in order to pool two

independently imputed samples we had to (1) convert

dosage files to best-guess and (2) merge using Plink. The

latter should be taken into account when comparing N of

SNPs different in frequency between cohorts based on

dosages and best-guess. The threshold for significance

chosen was a genome-wide suggestive p value of 10-5.

Genetic pairwise relationships estimation (GRM)

Genetic relationship matrices (GRMs) were built from pre-

combined cross-platform imputed dosages of the three

approaches for chromosome 22 using GCTA. Different

SNP filter criteria can be used to build these GRMs, which

might affect the results. Therefore, we employed the cri-

teria from three filters to estimate the matrices resulting in

9 GRMs. These criteria were: (1) without any filtering

options on SNPs, (2) filtering on the imputation quality of

R2[ 0.8, leaving only the high quality imputed SNPs and

(3) filtering with R2[ 0.8 and MAF[ 0.01, additionally

excluding alleles with low minor allele frequency. To es-

timate the effects of stratification by SNP platforms after

imputation we examined the GRMs using PCA in GCTA

tool. We performed PCA on data from unrelated

individuals. As PCs can be confounded by inversions of

long linkage disequilibrium (LD) regions of chromosomes,

which are observed in the Dutch population (Price et al.

2008; McEvoy et al. 2009), we pruned GoNL for LD with

standard Plink options (–indep 50 5 2), excluded 24 long

LD regions (Abdellaoui et al. 2013) and repeated PCA for

each GRM selecting GoNL pruned set of SNPs. The

method that showed the least stratification due to geno-

typing platform and higher imputation quality was chosen

for the pre-combined cross-platform imputation of the au-

tosomal genome. To explore the effect of cross-platform

imputed pre-combined, cross-platform imputed post-com-

bined and combined GRMs on SNP-heritability estimate of

childhood height, we built: (1) a GRM with MAF[ 0.01

and R2[ 0.8 filters from the total cross-platform imputed

data set, (2) a GRM with MAF[ 0.01 and R2[ 0.8 filters

from NTR and GENR cohorts imputed independently and

(3) a GRM with a MAF[ 0.01 from QC-ed NTR and

GENR genotypes combined, merged in Plink. Additional-

ly, to check the effect of QC we built the GRM with

MAF[ 0.01 and R2[ 0.8 filters from the total cross-

platform imputed data set excluding SNPs significantly

different in frequency between cohorts after imputation. To

distinguish between combination approaches throughout

the paper we will refer to these GRMs as ‘‘imputed’’,

‘‘imputed independently’’, ‘‘combined’’ and ‘‘imputed

clean’’, respectively. Finally, SNP-heritability of height

was estimated in NTR and GENR after building two

separate GRMs with MAF[ 0.01 filter from QC-ed NTR

and GENR samples. We performed PCA for each of the

autosomal GRM based on GoNL pruned set of SNPs and

included these PCs in the analysis of height.

Statistical analysis

Estimation of variance due to genetic effect of childhood

height

Using GCTA, we estimated SNP-heritability of height us-

ing GRMs based on the autosomal genome. Imputation,

SNP quality control as well as employing the different

imputation approaches all determine the GRM relatedness

of individuals. Therefore, for fair comparison between

different ways of combing the genotype data in a GRM, we

used the same unrelated individuals for each analysis.

These were selected using the relatedness cut-off of 0.025

for individuals with height measurements from the com-

bined and imputed GRMs (N = 3124). The difference in

relatedness selection between the combined and imputed

GRM was 22 individuals, which were excluded from the

analyses. For the independent study analyses, however, we

selected unrelated individuals, as one would have based on

the GRM of the single study alone, using the same GRM

518 Behav Genet (2015) 45:514–528
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cut-off of 0.025. Hence, if there are samples with family

relations between NTR and GENR studies, they are still

included in these separate study analyses.

In the SNP-heritability analyses, age and sex were in-

cluded as covariates. To test whether there is still a platform

effect present after imputation we included cohort as an extra

covariate in addition to sex and age and compared results of

both analyses. To detect and account for possible genetic

stratification in relation to height (Abdellaoui et al. 2013) we

included the first 10 PCs obtained from each GRM for un-

related individuals excluding long LD regions. Finally, we

ran association analysis of height for imputed, combined,

NTR and GENR datasets, with age and sex as covariates for

unrelated individuals and built quantile-quantile (QQ) plots

to check for possible inflation of the test statistics before and

after pooling cohorts together without using 10 PCs and

cohort as covariates.

Results

Imputation method

Three imputation approaches aimed to pre-combine and

cross-platform impute two cohorts were tested on chro-

mosome 22: the first was MaCH without a reference set

(i.e., the two datasets were only phased and imputed

against each other), the second was MaCH with the GoNL

reference set and the third was MaCH-Admix with the

GoNL reference set. The comparison of the post-imputa-

tion quality control measures for these approaches is shown

in Figs. 3 and 4. A NTR versus GENR case–control ana-

lysis after imputation showed that 4535, 203, and 93 SNPs

were significantly different in frequency for the first, sec-

ond and third method, respectively (p\ 10-5, Wald test).

The R2 measure also demonstrated different imputation

quality: mean = 0.83 and median = 0.86 for the first,

mean = 0.93 and median = 0.98 for the second and

mean = 0.95 and median = 0.99 for the third method.

We plotted the first (PC1) and second (PC2) principal

components for each imputed GRM matrix in R (Team

RC 2012). In Fig. 3 the GRMs based on the R2[ 0.8 and

MAF[ 0.01 filters are shown. As expected given the

median quality of SNPs, filtering on R2 and MAF (4611

and 46, 1684 and 106, 1186 and 105 SNPs were excluded

in the first, second and third approach, respectively) did

not affect the outcome of the imputation results (Fig. 5).

As shown in Fig. 3(1a), PC1 clearly captures the cohort

differences due to genotyping platform. GENR and NTR

are separated into two clusters with the first PC. For the

PC2 component we observe three blocks that disappear

after eliminating the long LD regions as shown on

Fig. 3(1b). Figures 3(2a, 2b) show that homogeneity is

reached when using MaCH phasing with a reference set,

with and without excluding long LD regions. Similarly,

Figs. 3(3a, 3b) using MaCH-Admix instead of MaCH also

shows no population stratification due to genotyping

platform. Finally, from Fig. 4 it becomes clear that

MaCH-Admix outperforms MaCH with overall imputa-

tion quality.

When examining imputation differences for individual

SNPs by comparing the allele frequencies between cohorts,

we identified some significantly different SNPs, as was

noted above. We computed squared LD correlations be-

tween each significant SNP that resulted from post-impu-

tation QC analysis of the chromosome 22 imputation with

MaCH-Admix and all neighboring SNPs within a 1 Mb

region in Plink. The majority of these estimates were low

(interquartile range = 0.0009, mean = 0.005, medi-

an = 0.0003), indicating regions with weak LD around

significant SNPs. Therefore we can hypothesize that these

SNP differences may arise from imperfect phasing and

imputation for these SNPs with low LD.

Repeating the same MaCH-Admix imputation procedure

of chromosome 22, (1) the NTR and GENR pre-combined

sample was cross-platform imputed for all autosomal chro-

mosomes and subsequently an ‘‘imputed’’ GRM was made;

(2) the NTR and GENR samples were imputed indepen-

dently for all autosomal chromosomes, post-combined and

an ‘‘imputed independently’’ GRM was built. Figures 6 and

7 demonstrates QC results after imputation of the whole

sample: Fig. 6 shows PC1 and PC2 plot with and without

exclusion of long LD regions and Fig. 7 displays the R2

distribution for imputed (mean = 0.97, median = 0.99),

imputed clean (mean = 0.97, median = 0.99), NTR im-

puted independently (mean = 0.97, median = 1.0) and

GENR imputed independently (mean = 0.96, median =

1.0) samples. The quality of imputation in NTR seems

slightly better than in GENR, which showed 203

monomorphic SNPs after imputation. These SNPs were

excluded from calculation of mean and median of R2 for

GENR. They also did not contribute to further analysis, as

they have MAF = 0 and were filtered out with MAF[ 0.01

option. As shown in Fig. 6(1a–4a) PC2 captures three blocks

that are inversions of long LD regions of chromosomes and

we do not observe any cohort differences due to the geno-

typing platform for any of GRMs resulted after different

combination approaches. After exclusion of long LD re-

gions, PC1 and PC2 capture population structure for each of

the approaches (Fig. 6(1b to 4b). Figure 8 displays QQ plots

of GWAS test-statistics for imputed (lambda (k) = 1.04),

combined (k = 1.02), NTR (k = 1.01) and GENR

(k = 1.02) datasets. NTR versus GENR case–control ana-

lysis showed a total of 4340 SNPs and 18,306 SNPs that

significantly differ in frequency after imputation, when

datasets were pre-combined and imputed and imputed and

Behav Genet (2015) 45:514–528 519
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post-combined, respectively. We excluded 4430 SNPs from

GRM ‘‘imputed’’ to build GRM ‘‘imputed clean’’.

Heritability of childhood height

The pooled data set comprised a total of 3124 distantly

related individuals, where 1526 were males and 1598 were

females. Childhood mean height in the pooled data set was

123.2 cm (SD = 8.8) at mean age of 6.7 years (SD = 1.2)

(Table 3). GREML analysis of height yields a SNP-herit-

ability estimate of 0.43 (SE = 0.10) when combining (not

imputing) the data from both cohorts (Table 4). The esti-

mates of the SNP-heritability based on GRMs of the im-

puted data are 0.51 (SE = 0.10), and 0.49 (SE = 0.10)

after cleaning SNPs that were significantly different be-

tween the two cohorts. The estimate of the SNP-heritability

Fig. 3 Comparison of imputation quality for chromosome 22. 1–3 (a,
b) PC1 versus PC2 plots of GRM based on MaCH without reference

set, MaCH with reference set and MaCH-Admix with reference set

respectively. a, b PCs plots including and excluding long LD regions

(a. including, b. excluding). All PC plots are based on GRMs filtered

with R2[ 0.8 and MAF[ 0.01, where black color represents NTR

and grey color represents GENR
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based on GRM data imputed independently is 0.52

(SE = 0.10). When considering only NTR individuals or

GENR participants in the various GRM matrices, NTR

gives estimates of 0.42 (SE = 0.29), 0.39 (SE = 0.29),

0.45 (SE = 0.29) and 0.50 (SE = 0.28) for the imputed

GRM, imputed clean GRM, imputed independently and

combined GRMs, respectively; GENR gives estimates of

0.52 (SE = 0.16), 0.52 (SE = 0.16), 0.53 (SE = 0.16),

0.58 (SE = 0.17) for the imputed GRM, imputed cleanFig. 4 Comparison of R2 distribution of three methods for chromo-

some 22

Fig. 5 Chromosome 22 PC plots based on GRMs, each with three

filtering options. a (1–3) the performance of MaCH without reference

set, b (1–3) the performance of MaCH with reference set and c (1–3)

the performance of MaCH-Admix with reference set. 1–3 application

of different filter criteria (1. none, 2. R2[ 0.8, 3. R2[ 0.8 and

MAF[ 0.01) for the corresponding imputation method

cFig. 6 PCA results of combined (1a, b), imputed (2a, b), imputed

clean (3a, b) and imputed independent datasets (4a, b), respectively.
PC1 versus PC2 plots are made from GRM with R2[ 0.8 and

MAF[ 0.01 filters in case of imputed and with MAF[ 0.01 filters in

case of combined GRMs. a–b Shows PCs plots including and

excluding long LD regions (a. including, b. excluding)

Behav Genet (2015) 45:514–528 521

123



522 Behav Genet (2015) 45:514–528

123



Fig. 7 Comparison of R2 distribution of imputed, imputed clean, independently imputed NTR and GENR datasets. a all SNPs, b SNPs with

R2[ 0.8

Fig. 8 Quantile-quantile plots based on test-statistics from association analysis of height of a imputed, b combined, c NTR and d GENR datasets

respectively
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GRM, imputed independently and combined GRMs, re-

spectively. The variances explained by the independent

cohorts were 0.47 (SE = 0.27) for NTR and 0.57 for

GENR (SE = 0.17), if one would conduct two separate

GCTA studies. These results show that for each of the

individual cohorts (NTR or GENR)—selected either from

the imputed GRMs or from combined—the amount of

variance explained by the SNPs remains the same given the

large standard errors. Strikingly, cross-platform imputed

GRMs shows suggestive, if any, increase of the variance

explained by the SNPs in comparison to the combined (not

imputed) GRM. If cohort is taken into account as a co-

variate, results show a &2 % reduction of explained

variance in the cross-platform imputed GRMs, while the

combined GRM estimate remains the same (Table 5). This

indicates that there is still little stratification left by plat-

form. Repeating the comparison procedure including the

first 10 PCs resulted in SNP-heritability estimates that were

on average&11 % lower for all pooled GRMs,&13 % for

NTR and &7 % for GENR (Table 6). When cohort was

used as a covariate together with 10 PCs (Table 7) there

was no effect on SNP-heritability estimates in comparison

to the effect of 10 PCs alone. The comparison of results

shows that all SNP-heritability estimates, given the stan-

dard errors, are not significantly different from each other.

However, the standard errors are largely reduced as the

sample size increased by combining the two cohorts al-

lowing the SNP-heritability to reach significance.

Discussion

GREML estimates the narrow-sense heritability from all

common SNPs genotyped or imputed in a sample. How-

ever, often sample sizes are small, for example, when

closely related individuals are excluded. In this paper, we

examined imputation-phasing approaches to create a GRM

that combines genotype data across genotype platforms and

cohorts and explored the effect of using different GRM

build strategies, when cohorts are (1) just combined, (2)

pre-combined and cross-platform imputed and (3) cross-

platform imputed and post-combined (Fig. 1). Imputed

GRM genetic relationships between individuals are

Table 4 SNP-heritability (h2)

results of analyses of height

based on imputed, imputed

clean, imputed independently

and combined GRMs including

results of specific analysis of

NTR and GENR selected

individuals

Data set h2 SE N P value

Imputeda 0.51 0.10 3124 1 9 10-7

Imputed cleanb 0.49 0.10 3124 2.9 9 10-7

Imputed independentlyc 0.52 0.10 3124 8.8 9 10-8

Combinedd 0.43 0.10 3124 2 9 10-6

NTR imputeda 0.42 0.29 1134 0.07

NTR imputed cleanb 0.39 0.29 1134 0.09

NTR imputed independentlyc 0.45 0.29 1134 0.07

NTR combinedd 0.50 0.28 1134 0.04

NTR independente 0.47 0.27 1173 0.04

GENR imputeda 0.52 0.16 1990 3.7 9 10-4

GENR imputed cleanb 0.52 0.16 1990 3.9 9 10-4

GENR imputed independentlyc 0.53 0.16 1990 3.4 9 10-4

GENR combinedd 0.58 0.17 1990 2 9 10-4

GENR independente 0.57 0.17 1994 2.2 9 10-4

a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards
d GRM based on the combined SNP data without imputation
e GRM based on each genotyped sample separately

Table 5 SNP-heritability (h2) results of analyses of height with co-

hort included as a covariate based on imputed, imputed clean, im-

puted independently and combined datasets

Data set h2 SE n P value

Imputeda 0.49 0.10 3124 3 9 10-7

Imputed cleanb 0.47 0.10 3124 7 9 10-7

Imputed independentlyc 0.50 0.10 3124 3.6 9 10-7

Combinedd 0.43 0.10 3124 3.8 9 10-6

a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs

significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards
d GRM based on the combined SNP data without imputation
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estimated within studies as well as between studies based

on all Illumina and Affymetrix SNPs. Combined GRM

genetic relationships are estimated in three groups: the

within cohort pairs of NTR which all have Affymetrix

SNPs, the within cohort pairs of GENR which all have

Illumina SNPs, and the between cohort pairs which only

have the overlapping SNPs. Therefore cross-platform im-

putation is required to supply individuals genotyped on one

platform with SNPs genotyped on another platform. Note

that we do not aim to impute a large number of additional

(rare) SNPs from the reference set to increase number of

SNPs. Instead the total number of SNPs in cross-platform

imputed dataset remains approximately the same (Affy-

metrix SNPs ? Illumina SNPs), but all individuals from

both cohorts pooled together have complete information

from the same SNPs. In this way we tried to minimize the

possible differences between platforms, while also trying to

retain as much information of the genotyping platforms as

possible. Because the quality of cross-platform imputation

depends on LD-phase information, that correctly represents

the Dutch population, from which GENR and NTR cohorts

were drawn, we used the Dutch GoNL reference set.

Based on the chromosome 22 analyses of pre-combined

cross-platform imputation approaches, we showed that

phasing and imputation of missing genotypes with a ref-

erence dataset that contains all SNPs and LD information

between these SNPs does not substantially increase cohort

stratification due to genotyping platform within the GRM,

while phasing without a reference set, lacking this essential

LD information, does. Using only the SNPs that are

overlapping between genotyping platforms as an imputa-

tion backbone is insufficient which was evident from the

subsequent PC analyses. Given that one could consider two

cohorts with different platforms as a stratified population,

the use of MaCH-Admix additionally seems to have helped

to improve the imputation quality. However, this effect was

much weaker in comparison to the use of a reference set.

The analysis based on PCs, also showed that post impu-

tation filtering on MAF and R2 did not largely seem to

influence the cohort stratification, mainly because the

quality of the imputed SNPs was generally high. Imputa-

tion of the autosomal genome followed by PC analysis

showed that to some extend there is still platform stratifi-

cation present after imputation (Fig. 6). Interestingly, the

combined GRM did not show platform stratification, which

may indicate that a backbone of &120 K SNPs is enough

to estimate the genetic relationships between individuals

from different cohorts.

The analysis of childhood height yielded relatively the

same estimates of SNP-heritability for cross-platform im-

puted GRMs, suggesting a slight increase of the estimate in

comparison to the combined GRM. Adjusting for 10 PCs

with or without study as covariate results in &11 % re-

duction of SNP-heritability for all GRMs, including

the combined one. Whereas there was only &2 % reduc-

tion in SNP-heritability when study was used as a covariate

for imputed GRMs and not for the combined one. PC ad-

justment of independent cohorts results in a SNP-heritability

drop of &13 % for NTR and &7 % for GENR. Drop in

NTR SNP-heritability estimate in contrast to GENR is more

pronounced, as individuals in NTR spread across the

Netherlands resulting in a more diverse cohort. Given that k
estimates obtained from association analysis are not inflated

it is possible that PCs may capture true variation of height

along with platform stratification and may overcorrect the

estimates. On the other hand, PCs may help to capture and

correct for other sources of stratification within cohorts.

Interestingly, SNP-heritability estimates resulting from

GRM imputed and GRM imputed independently are ap-

proximately the same for all conditions. Moreover, SNP-

heritability estimates from the combined GRM are just

Table 6 SNP-heritability (h2) results of analyses of height based on

imputed, imputed clean, imputed independently and combined data-

sets adjusted for age, sex and 10 PCs, but not for cohort as covariate.

Additionally, results of analysis of height in NTR and GENR inde-

pendent cohorts adjusted for age, sex and 10 PCs

Data set h2 SE N P value

Imputeda 0.41 0.11 3124 4.6 9 10-5

Imputed cleanb 0.38 0.11 3124 1.2 9 10-4

Imputed independentlyc 0.39 0.11 3124 1.2 9 10-4

Combinedd 0.33 0.10 3124 7.2 9 10-4

NTR independente 0.34 0.28 1173 0.12

GENR independente 0.50 0.17 1994 1.6 9 10-3

a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs

significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards
d GRM based on the combined SNP data without imputation
e GRM based on each genotyped sample separately

Table 7 SNP-heritability (h2) results of analysis of height based on

imputed, imputed clean, imputed independently and combined data-

sets adjusted for age, sex and 10 PCs, as well as for cohort as

covariate

Data set h2 SE N P value

Imputeda 0.41 0.11 3124 5 9 10-5

Imputed cleanb 0.38 0.11 3124 1.4 9 10-4

Imputed independentlyc 0.39 0.11 3124 1.2 9 10-4

Combinedd 0.32 0.10 3124 9 9 10-4

a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs

significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards
d GRM based on the combined SNP data without imputation
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slightly lower in comparison to the imputed GRMs, which

may support the conclusion that relationships between in-

dividuals across cohorts, estimated from SNPs overlap of

&120 K, is enough to explain substantial proportion of

variation in childhood height.

In this study we estimated SNP-heritability of childhood

height using different GRM building strategies. These

GRMs yielded significant estimates of SNP-heritability in

range from 0.33 to 0.52 depending on various correction

options. Height is a highly heritable trait with heritability

estimates ranging from 0.89 to 0.93 in adults (Silventoinen

et al. 2003). A SNP-heritability of 60 % has been estimated

based on all common SNP together in the recent GWA

meta-analysis study of adult height (Wood et al. 2014). In

children, heritability estimates vary during growth. Mook-

Kanamori et al. showed that heritability increases from 26

and 27 % at birth to 63 and 72 % at 36 months in twins

from the NTR study and in singletons from GENR study

(parent–child trio’s design) (Mook-Kanamori et al. 2012).

Notably, heritability estimates for singletons and twins

were very similar, justifying the pooling of data from these

cohorts. In this study we have used height, which is a

highly heritable GCTA benchmark trait and it can be easily

measured. For other traits, which are less heritable and less

easily measured additional increase of sample size may be

required in order to increase power to accurately estimate

SNP-heritability. To calculate the power given a sample

size one can use the GCTA-GREML Power Calculator

(Visscher et al. 2014).

Strategies aiming to detect and correct for platform

stratification after cross-platform imputation were consid-

ered in this study for cohorts with the same ethnicity.

However, when combining cohorts with a different eth-

nicity this approach is unlikely going to be appropriate for

several reasons (de Candia et al. 2013). First, SNP-herit-

ability of combined multi-ethnic dataset will depend on

the heritability of the trait in each population, which can

differ. Second, different LD-patterns may imply that causal

SNPs in one population will be tagged better than in the

other population. Third, if cohorts with different ancestry

are genotyped on different platforms it might be difficult to

distinguish the two confounding factors, platform and

population stratification. Finally, informative SNPs that are

common in one population and rare in another will be

eliminated from analysis after QC and effect of remaining

SNPs, reflecting ancestry, will be corrected with PCs. Thus,

the estimate would reflect part of SNP-heritability, which is

based on causal SNPs shared across ethnicities. The extent

to which causal SNPs are shared between different eth-

nicities depends on the genetic architecture of the trait in

each population. For example, a recent study has provided

an evidence that genetic variation is largely shared between

two different ethnic cohorts, African and European, for

schizophrenia risk (de Candia et al. 2013). There are also

other statistical methods that can be applied to combine

cohorts information to estimate the SNP-heritability of

traits, such as the density estimation (DE) method (So et al.

2011). The DE method does not require the raw genotype

data, as it uses summary statistics from GWAS or meta-

analysis GWAS. However, it requires LD-pruning to obtain

a list of relatively independent SNPs to estimate their ef-

fect, which may result in variability of estimates depending

on the pruning threshold and on SNP density in a single

GWAS (van Beek et al. 2014). Van Beek et al. also sug-

gested that SNP-heritability can be underestimated due to

genotypic heterogeneity or phenotypic differences between

cohorts in meta-analysis GWAS and summary statistics

correction, such as for multiple testing and genomic control

inflation factor.

In conclusion, using the complete information of a refer-

ence set for phasing and imputation of all SNPs on two dif-

ferent genotyping platforms, allows the combination of cohort

data genotyped on both of these platforms. When combining

genotype data across platform or cohort thorough pre- and

post QC is required, which can be tested with association and

principal component analyses. For our approach we assume

that the cohorts have a similar ethnicity/genetic background.

To account for platform stratification or phenotypic differ-

ences in the dataset, cohort should always be included as a

covariate. Whether one should use imputation, or just com-

bine the genotype data, depends on the number of overlap-

ping SNPs in relation to the total number of genotyped SNPs

for both cohorts, and their ability to tag all the genetic vari-

ance related to the specific trait of interest.
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