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Abstract

Background: Immunological parameters are hard to measure. A well-known problem is the occurrence of values
below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like
ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the
analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects.

Methods and results: Quantile regression, a generalization of percentiles to regression models, models the median
or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and
illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression,
groups can be compared and that meaningful linear trends can be computed, even if more than half of the data
consists of non-detects.

Conclusion: Quantile regression is a valuable addition to the statistical methods that can be used for the analysis
of immunological datasets with non-detects.
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Background
Immunological parameters are hard to measure. A well-
known problem [1] is the occurrence of values below the
detection limit, the non-detects. In a project that we
will use as an example in this paper, depending on the
parameter, more than half of the data, concentrations of
soluble biological markers in human blood, consists of
non-detects.
Non-detects (NDs) are a nuisance in statistical ana-

lysis. An ad-hoc solution is to fill in values for the NDs,
e.g. one half of the detection limit. This may be accept-
able if only a few per cent of the observations are NDs.
If there are many of them, estimated values of means,
standard errors and trend lines will be unreliable and
conclusions may be wrong.
NDs occur in many places in science and technology.

They have received a lot of attention in the work of
Helsel [2,3]. Although NDs are extremely common in
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immunology, the literature about them is not very exten-
sive. An exception is the paper by Uh et al. [1] that stud-
ies a number of approaches to analyse datasets with
NDs. In that paper quantile regression was not consid-
ered. We believe it to be a very useful tool, and like to
share our experiences in this expository paper.
Most statistical methods develop a model for the

expected values of the observations. In an analysis of
variance (ANOVA) these will be the mean values for dif-
ferent groups. In the case of the regression line y =ax+ b,
the parameters a and b allow us to compute the expected
value of an observation y for every x, which might be age
or time or another covariate, that we are interested in. In
addition, we can compute prediction intervals, in which a
new observation will lie with a specified probability. This
type of model belongs to the standard toolbox that most
applied scientists learn these days in their statistics lessons.
Modern statistical packages make it very easy to use them
in practice.
Regression and ANOVA (which is a special case of re-

gression), use the so-called principle of least squares:
parameters like a and b in the example above, are com-
puted in such a way that the sum of the squares of the
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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residuals is minimized. The residuals are the differences
between expected values, according to the model, and
the observations. If a part of the observations is wrong,
because of many NDs, the parameter estimates will be
(very) wrong.
In this paper we propose to use quantile regression in-

stead of the usual linear regression models. A simple ex-
ample is provided by ANOVA. Instead of computing
means per groups, one could compute the medians, also
known as P50, the 50th percentile. A familiar recipe for
computing the median of a set of numbers is to sort
them from low to high and pick the middle number in
the sorted list. Half of the data will be below this num-
ber and the other half will be above it. The key point is
that the actual values of the lowest observations play no
role: what matters is that they are lower than the me-
dian. So if we would have 30% NDs and gave them
small values, the computed median would still be the
same.
If more than 50% of the observations are NDs, but

less than 75%, we are still able to compute the P75, the
number below which 75% of the data are found. In
ANOVA we can still compare P75 in the different
groups and look for interesting differences.
For a regression line, the sorting recipe will not work.

However, in the last two decades a very useful genera-
lization of regression modelling has become available,
quantile regression. With this method we can estimate
regression lines, which allow us to compute for y a per-
centile of our choice for any value of x. The only condi-
tion is that all NDs lie below the line. With many NDs,
as in our example data set, this means that it is not pos-
sible to compute a line for the median, but that the P75
is sufficient.
The outline of the paper is as follows. First, we intro-

duce quantile regression. We have tried to limit the
amount of technical material, keeping in mind the
expected statistical level of our audience. We also show
in this section how the required computations can be
done relatively easily with the R system and the package
quantreg [4]. Then we apply quantile regression to a real
data set, with an extremely high number of NDs. The
paper ends with a short discussion.

Methods
Quantile regression
In this paper the words quantiles and percentiles will be
used repeatedly. To avoid confusion we first give their
precise meaning. The 90-th percentile is the number
below which 90% of the data lie. It is also the 0.9 quan-
tile. So, when we use percentages we talk of percentiles,
and when we use fractions we talk of quantiles.
In the Introduction we described the familiar sorting

algorithm for computing percentiles. It has a strong
intuitive appeal, and it is easy to implement, or even to
do by hand. However, it cannot be generalized to the
case of a regression line or more complicated models.
Fortunately there exists another, more flexible approach,
based on optimisation.
The mean of n observations, y1 to yn, is computed as

�y ¼ P
i yi=n . Averaging is such a familiar process that

one usually does not give much thought to the fact that
the sum of squares

S2 ¼
X

i

yi � μð Þ2

is minimized when μ= �y , the mean of y. The sum of
squares is stated explicitly in more complicated models
like a linear regression line and it leads to explicit
expressions for optimal values of the parameters in the
model. This is an extremely powerful statistical tool.
For percentiles we can also introduce a function that

has to be minimized, in such way that the desired per-
centile minimizes it. Compared to the sum of squares,
two changes are needed:
1) replace the squares by absolute values, and 2) give

different weights to positive and negative residuals. The
residuals are the differences between the observations
and the percentile that is being computed. As a formula:
minimize

S1 ¼
X

i

wi pð Þjyi � q pð Þj

Here q(p) is the p-quantile (the 100p percentile) for a
chosen value p (with 0< p< 1) and wi(p) is the weight of
observation i, computed as

wi pð Þ ¼ p if yi > q pð Þ
wi pð Þ ¼ 1� p if yi≤q pð Þ

In the case of the 0.9-quantile, the positive residuals
get a nine times larger weight (i.e. 0.9) than the negative
ones (i.e. 0.1). It might not be directly obvious why this
procedure leads to the desired quantile, but after some
mathematical adjustments one finds indeed that 90% of
the observations have to be below q0.9 to minimize S1.
An intuitive explanation is that every observation above
the quantile has to be balanced by nine below it.
Now that we have an optimisation criterion, it is very

easy to extend the quantile idea to more complicated
models. In the case of a linear regression line, the func-
tion to be minimized is

S1 ¼
X

i

wi pð Þjyi � a pð Þ � b pð Þxij

It will be clear that we can generalize this to more
complicated models. Notice that generally the values of
a(p), the intercept, and b(p), the slope, change with p.
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It is easy to state the function that has to be mini-
mized, but computing the solution is harder than for
classical models (based on least squares). Fortunately,
there is excellent open-source software available, free of
charge. We did our computations using the quantreg
package for the statistical software system R [4]. Fitting a
linear regression line for the 90th percentile is as simple
as writing model = rq(y ~x, tau = 0.9). The parameter tau
corresponds to p in our formulas.
With quantile regression it is not possible to get p-

values for model coefficients like slope and intercept; in-
stead the quantreg package delivers 95% confidence
intervals (which actually are more useful).
Although it is not an issue here, quantile regression is

very robust against outliers, in contrast to the mean and
least squares regression. Also a normal distribution of
errors is not assumed.
For those interested in statistical backgrounds of quan-

tile regression, we can recommend a paper by Koenker
and Portnoy [5] and a book by Koenker [6]. An interest-
ing paper from an applied point of view (i.e. that of ecol-
ogists) is the one by Cade and Noon [7].

Results
An implementation
To illustrate the use of quantile regression in immunology,
we use data from the STARDROP-study, a randomized
placebo-controlled trial in 204 youngsters (6–18 years)
with hay fever. A detailed description can be found in
Röder et al [8]. The main aim of the study was to deter-
mine the effect of sublingual immunotherapy (SLIT) with
grass pollen allergen on nose and eye symptoms (e.g.
sneezing and itchy eyes). Allergen-specific immunotherapy
consists of the repeated administration of the allergen to
which the patient is allergic, with the intention to modu-
late the response of the immune system to the allergen [9].
In the case of SLIT, the allergen is administered under the
tongue by drops or tablets. In a sub-study, the effect of
SLIT and other factors on the immune system was
assessed by measuring the levels of soluble biological mar-
kers (SBMs) in plasma during the trial. Serum samples
were collected at five time points during the two-year
treatment period: baseline (T0), after 6 months (T1), after
12 months (T2), after 18 months (T3) and after 24 months
(T4). All samples were collected outside the grass pollen
season. The samples were analysed for their IL-12, IFN-γ,
TNF-α, IL-10, IL-13, sICAM-1, sE-selectin and sIL-
2Receptor content. The following factors were studied:
treatment, age, gender, cohort (i.e. the year of inclusion),
time points and co-sensitisation to birch pollen and house
dust mite.
Out of the 203 youngsters included in this sub-study,

103 subjects were observed all 5 times and 74 only once.
The 26 remaining subjects were observed 2 to 4 times.
We start by presenting histograms of the measure-
ments, emphasizing the need for a statistical method that
can handle a large proportion of NDs. Then we compute
trends with age using quantile regression.
Distributions and non-detects
The samples were analysed in two parts, because an
interim-analysis had to be presented to our sponsor. As
a consequence, two different assays with different detec-
tion limits were used.
Initially, for the time points T0, T1 and T2, the production

of the SBMs was detected with Enzyme-Linked Immuno-
sorbent Assay (ELISA). The sensitivity limits for quantitative
determinations were 1.19 pg/ml (IFN-γ), 1.15 pg/ml (IL-10),
7.85 pg/ml (IL-12), 5.21 pg/ml (IL-13), 8.81 pg/ml (TNF-α),
13.40 pg/ml (sIL-2R), 0.11 ng/ml (sE-selectin), and 1.43 ng/
ml (sICAM-1). For the later time points T3 and T4, the
SBM production was measured with Cytometric Bead Assay
Flex sets (CBA). The sensitivity limits for quantitative deter-
minations were 0.3 pg/ml (IFN-γ), 2.3 pg/ml (IL-10), 2.2 pg/
ml (IL-12), 1.6 pg/ml (IL-13), 0.7 pg/ml (TNF-α), 12.5 pg/ml
(sIL-2R), 5 pg/ml (sE-selectin), and 0.23 ng/ml (sICAM-1).
The measurements above the detection limits were not
affected by the change in assays.
We chose to apply the detection limits of one method

to all data. The detection limits of the first method
(ELISA) were used because these limits were higher than
those of the second method (CBA) for all SBMs except
IL-10. For IL-10 the detection limits of both methods
were used. All values below the detection limit were
replaced with the value between 0 and the detection limit.
For the analysis and presentation of the data in this

implementation we use the logarithms (to base 10) of
concentrations. The highest concentrations measured
were around 5000 pg/ml, the lowest were always at the
detection limit. Because of the enormous range of the
concentrations, the highest ones being more than a 1000
times higher than the lowest, we work exclusively on the
logarithmic scale.
Figure 1 shows histograms of the logarithms (expressed

as pg/ml or ng/ml; to base 10) of the concentrations of
the eight SBMs. For IL-10, IL-12, IL13, IFN-γ, TNF-α
and sIL-2R the percentage of NDs ranged from 4% up
to 52%. The NDs clearly stick out as isolated bars at the
left side of the histograms and are relatively close to
the rest of the distribution. For sICAM-1 and sE-selectin
they are small and at a large distance. For those SBMs
the fraction of NDs was below 1%. In fact one could
well apply a classical statistical analysis to these SBMs
after discarding the few NDs. The number of NDs also
varied between time points, as demonstrated for IL-10
in Figure 2. Also visible in this figure is the change in de-
tection limit between T2 and T3. Except for IL-12 at one
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Figure 1 Histograms of (logarithms) of SBM concentrations, all five time points combined.
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time point, the percentage of non-detects did not
exceed 75%.
Summarizing, due to changes in detection limits and

the presence of a substantial number of NDs for some
SBMs, classical statistical analyses, like ANOVA and re-
gression, could not be applied to this dataset.

Trends and quantile regression
One of the research questions was to determine whether
concentrations of SBMs change with age. We use quan-
tile regression for P75, the 75th percentile. In general any
quantile level can be modelled and it would be more at-
tractive to model P50, the median. The percentage of
non-detects for some SBMs, however, was more than
50% and therefore we have to settle for a higher percent-
ile. We chose P75, and we are aware that this arbitrary.
Any percentile can be chosen, as long as it results in a
quantile regression line that is above the values of non-
detects everywhere.
Before a quantile regression line on age only was calcu-

lated, the influence of the variable “time point” was
explored. Figure 3 shows an example, again for IL-10.
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The data points have been “jittered” by adding small (be-
tween −0.2 and 0.2) random numbers to the time point,
shifting the dots in horizontal direction and thereby giv-
ing an impression of the distribution of the concentra-
tions. For each time point the P75 midpoint with its
95% CI is presented. The line represents the P75 quan-
tile regression line with only “time point” as an explana-
tory variable. Because this line showed a slightly
increasing trend, “time point” was incorporated as an
additional factor (i.e. with a separate coefficient for each
time point) in the analysis on the effect of age. Also
visible in Figure 3 is the change in the analytical proced-
ure between T2 and T3, leading to an increase in detec-
tion limits. As stated before, the measurements above
the detection limits were not affected by the change in
assays. Figure 4 shows the results of the analysis on the
influence of age on the IL-10 levels. Age was rounded to
integer years and again the data points have been “jit-
tered” in the horizontal direction for better visibility.
Two lines are presented in Figure 4. The full line is the
result of quantile regression on age only. The broken
line adds the factor “time point” as an explanatory
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variable. Thus, age appears not to have an effect on
this SBM.

Discussion
Immunological datasets often contain many non-detects.
When a signal produced by the stimulant is too small for
the instrumentation to discriminate the signal from the
background noise, a value cannot be determined pre-
cisely. Values below a given detection limit are called
non-detects (NDs). The presence of NDs will cause the
data to be left-censored and special attention should be
paid to selecting the appropriate statistical method to
analyse such a censored dataset.
Several statistical methods are being used to deal with

NDs. Uh et al. evaluated the performance of several com-
monly used methods in immunology and more advanced
methods used in other fields such as environmetrics and
econometrics via simulation studies [1]. Two often-used
approaches, deletion or single value substitution followed
by linear regression, did not perform well. Because NDs
are not missing at random, bias can be expected when
dropping NDs. Uh et al. showed that even with a ND pro-
portion of 10%, the bias was unacceptable. Substitution of
NDs with 0, half of the detection limit or the detec-
tion limit itself, followed by linear regression, underesti-
mated the variance. Two more sophisticated methods, the
TOBIT method and the multiple imputation technique,
performed well but only when the proportion of NDs was
less than 30% and 50%, respectively. In our dataset, for
some markers the percentage of NDs was higher. Fur-
thermore, use of the TOBIT method requires that the
normality assumption is met. Like in our dataset, immu-
nological measurements are often positively skewed and
even after logarithmic transformation normality cannot
always be achieved. Therefore, we had to seek for a
method that could handle large proportions of NDs with
no assumptions on the underlying distribution. We
explored the use of quantile regression, a generalization
of percentiles to regression models. Like for the compu-
tation of simple percentiles, the only information that is
being used is whether observations are below or above
estimated model values. If the number of NDs is not
too large, one can estimate models for P50, the median.
In extreme cases, like for some immunological markers
in the data set we used as an example, it is necessary to
go to higher percentiles. In fact we chose P75.
We illustrated quantile regression with data from a clin-

ical trial in youngsters with hay fever, in which the effect
of immunotherapy treatment and other factors on the
immune system was evaluated by measuring levels of sol-
uble biological markers (SBMs). We showed that groups
can be compared and that meaningful linear trends can be
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computed, even with very large fractions of NDs. The slope
of the regression line for a percentile is the same as that for
the mean in the case of a linear relationship plus errors with
a constant variance, the common default assumption in lin-
ear regression. That means that the estimated slope for the
P75 is also a very good estimate for the usual regression
slope that would be obtained if NDs did not occur.
We have not discussed efficiency. It is true that quantile

regression uses less information, that is, only the signs of
residuals, disregarding their size, leading to wider confi-
dence intervals and consequently loss of power. This
means that if data are complete (no NDs), estimated clas-
sical regression coefficients have more narrow confidence
intervals than those obtained from quantile regression. But
this knowledge does not help us much if we have many
NDs. When analysing our data set, we chose one percent-
ile level, 75% for all variables. In principle it could vary
with the fraction of NDs, so that for some variables P50
could have been chosen. However, we felt that this would
have made the interpretation more complicated.
The data have been analysed as 662 independent

observations, which is a limitation, as 558 observations
represent multiple observations on 129 participants. In
the world of standard least squares statistical methods,
one would use repeated measure ANOVA or a mixed
model for a proper analysis. Unfortunately similar tech-
nology is not yet developed enough for quantile
regression, although research is ongoing. NDs can, how-
ever, generate unpleasant complications when using
mixed models. It might happen that all or most measure-
ments of some of the subjects are NDs. Consequently
mixed models, which rely on fitting (restricted) individ-
ual coefficients to subjects, might be difficult to use. As
far as we know, no statistical technology is yet available
to handle mixed models with NDs.
An alternative approach is reducing the problem to lo-

gistic regression, after setting proper thresholds (with a
different value for each variable). Choosing the thresholds
can be a matter of debate, which is avoided in quantile re-
gression. In fact the quantile regression line acts as a
“moving threshold” in such a way that on average (in the
case of P75) a quarter of the data lies above it. Neverthe-
less, thresholding an logistic regression could be an inter-
esting venue for longitudinal data modelling, because
mixed model technology for binary responses is available.
In our application trends are so weak that there is no

need for anything more complex than a straight line. But
we remark that the quantreg package also allows com-
puting more complex non-parametric trends.

Conclusions
Quantile regression is a valuable addition to the statis-
tical methods that can be used for the analysis of immu-
nological datasets with non-detects.
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