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Abstract

Atherosclerotic plaque composition can indicate plaque vulnerability. We segment atherosclerotic plaque components from
the carotid artery on a combination of in vivo MRI and CT-angiography (CTA) data using supervised voxelwise classification.
In contrast to previous studies the ground truth for training is directly obtained from 3D registration with histology for
fibrous and lipid-rich necrotic tissue, and with mCT for calcification. This registration does, however, not provide accurate
voxelwise correspondence. We therefore evaluate three approaches that incorporate uncertainty in the ground truth used
for training: I) soft labels are created by Gaussian blurring of the original binary histology segmentations to reduce weights
at the boundaries between components, and are weighted by the estimated registration accuracy of the histology and in
vivo imaging data (measured by overlap), II) samples are weighted by the local contour distance of the lumen and outer wall
between histology and in vivo data, and III) 10% of each class is rejected by Gaussian outlier rejection. Classification was
evaluated on the relative volumes (% of tissue type in the vessel wall) for calcified, fibrous and lipid-rich necrotic tissue,
using linear discriminant (LDC) and support vector machine (SVM) classification. In addition, the combination of MRI and
CTA data was compared to using only one imaging modality. Best results were obtained by LDC and outlier rejection: the
volume error per vessel was 0.9+1.0% for calcification, 12.7+7.6% for fibrous and 12.1+8.1% for necrotic tissue, with
Spearman rank correlation coefficients of 0.91 (calcification), 0.80 (fibrous) and 0.81 (necrotic). While segmentation using
only MRI features yielded low accuracy for calcification, and segmentation using only CTA features yielded low accuracy for
necrotic tissue, the combination of features from MRI and CTA gave good results for all studied components.
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Introduction

Atherosclerotic disease of the carotid artery is common in the

elderly population, and is a major cause of cerebral ischemia [1,2].

The underlying mechanism is the rupture of atherosclerotic plaque

with subsequent embolisation of thrombus and/or plaque material

in the cerebral circulation. Clinical manifestations and fatal

outcomes are most often associated with plaques of American

Heart Association (AHA) type IV, V and VI [3]. On MRI these

are characterized by presence of a lipid or necrotic core (LRNC)

and possibly calcifications (type IV–V) or a possible surface defect,

hemorrhage or thrombus (type VI) [4]. These characteristics as

found in carotid histology have been related to recent symptoms

[5,6], and measurements of tissue components from MRI have

been related with future events [7,8]. Prevention of (recurrent)

cerebral ischemia is the goal of pharmacological or surgical

treatment. Currently the decision for surgical treatment such as

carotid endarterectomy or carotid artery stenting is based on the

degree of stenosis, but incorporating non-invasive measures of

plaque composition is expected to improve the selection of patients

that will benefit from surgical intervention [9–11].

Non-invasive identification of different plaque components is

possible both with magnetic resonance imaging (MRI) [12–14]

and CT-angiography (CTA) [15,16]. Manual component seg-

mentation and quantification in MRI is time-consuming and

subject to inter- and intraobserver variability [13,17]. Automated

segmentation methods that are accurate and robust are therefore

essential to perform large scale studies that can determine the

clinical relevance of plaque composition, and to be able to

incorporate these measures into daily clinical practice if this is

deemed advantageous. In this paper we perform automatic

segmentation of plaque components using a combination of
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MRI and CTA images and evaluate the advantage of combining

those imaging modalities.

Automated methods that segment plaque components have

been developed previously, but these show some limitations in the

accuracy for different components, and use possibly inaccurate or

biased training and evaluation methods. Considering the accuracy

for different plaque components, in MRI good results have

generally been obtained for quantification of fibrous tissue and

LRNC, but except for the results reported in [18] a low accuracy

for calcification has been found [19,20]. CTA on the other hand,

provides a good estimation of calcium volume, while the

differentiation between LRNC and fibrous tissue is more

challenging due to a large overlap in Hounsfield values [15,16].

A combined analysis of MRI and CTA may be beneficial for

accurate quantification of all plaque components [21,22].

The use of possibly inaccurate or biased training and evaluation

methods results from the difficulty to obtain an accurate ground

truth. Supervised pattern classification is commonly used as part of

segmentation methods, and voxelwise classification has also been

applied to successfully segment plaque components from MRI

[18–20]. These techniques require a known voxelwise ground

truth for classifier training. The ground truth may be obtained

from manual segmentations [20], but these may be inaccurate due

to overlapping intensities between classes and inter-observer and

intra-observer variability [18,19]. Histology sections are consid-

ered to be more objective [23], but it is difficult to accurately align

these with in vivo scans due to tissue deformations that occur during

surgical plaque excision and histology processing. Histology-

guided manual annotations have been used as well [18,19], but

may introduce a bias toward the in vivo scan data [24]. In this

paper we choose to use the more objective information directly

obtained from histology, while trying to account for misregistra-

tion during classifier development.

Image registration between histology and in vivo data is a topic of

interest in many applications [25–27], and using the registration

with histology as a ground truth for in vivo pattern classification is a

challenging problem [28,29]. For atherosclerotic plaque, image

registration between histology and in vivo data has mostly been

done by manually selecting corresponding slices followed by rigid

2D registration [15,16,18,19]. Non-rigid 3D registration has also

been used, to allow rotation of the in vivo image orientation with

respect to the histology slicing direction, and to compensate for in-

plane deformations in histology [30]. Although this does allow for

the correct rotation angle, it remains difficult to obtain voxelwise

correspondence for the vessel wall and plaque components due to

the large deformations that occur owing to plaque excision and

histology processing.

Another approach to handle registration inaccuracies when

registered data is used to train a classifier, is to account for

inaccurate sample labels during the training phase. Several ways to

cope with inaccurate labels have been proposed. One approach is

to detect outlier samples and reject those samples from the training

set. An overview of methods for outlier rejection is given by Hodge

and Austin [31]. Another approach is to adjust the weight or label

of samples with an uncertain label. Bouveyron and Girard [32]

used prior clustering to detect samples with inconsistent labels and

took these inconsistencies into account during supervised model-

ing. Prior clustering has also been used to create fuzzy labels that

indicate a membership probability for each class [33]. In this way

outlier samples get a low membership value for the class they

belong to according to the hard label. Thiel [34] showed that

classifiers based on such ‘soft’ labels are robust against label noise

by artificially adding different levels of noise to soft labels. The

approaches above use distances in feature space to determine soft

labels. In our case we have additional knowledge on the

probability that labels are accurate. At the border between plaque

components errors are more likely to occur than in the center

because of misregistration between histology and in vivo images. In

addition, locations where the histology and in vivo images align well

provide more accurate labels than locations that are less well

registered. We evaluate two approaches that use this information

to modify the sample labels and/or weights and compare to using

the original hard labels and a standard way of (Gaussian) outlier

rejection. In addition, registration between different MRI

sequences, and between CTA and MRI, is important for accurate

classification. We will present an approach for these registrations.

In this paper we perform plaque component segmentation in in

vivo imaging data. We combine MRI and CTA scans to

differentiate between calcification, fibrous tissue and lipid-rich

necrotic tissue. The main contributions of this paper are 1) the

evaluation of different approaches for training on histology data

which account for registration errors, 2) the combination of MRI

and CTA imaging features for plaque characterization and the

evaluation of their performance, and 3) optimization of a 3D

registration framework to match in vivo MRI and CTA with

histology. Together these steps present a framework for quanti-

fication of plaque components in in vivo data, by training on

registered histology. A preliminary version of this paper has been

presented previously at a conference [35]. The current paper

presents more ways of handling registration accuracy during

training, has a more elaborate evaluation and discussion, and

includes a comparison between MRI and CTA.

Materials and Methods

This section is structured as follows. After the Ethics statement we

first we describe the data, which consist of 13 arteries (13 patients)

that are all imaged with corresponding histology, ex vivo MRI, mCT

and in vivo MRI and CTA. Image registration of the in vivo images

and histology sections, in order to obtain a ground truth to train

the segmentation method, is subsequently described. Next we

describe the design of the classifiers, including the different ways of

handling registration inaccuracies for training. Finally, the

experiments for evaluation are presented. Final registered data

of all subjects (CTA, MRI, histology, labeled ground truth and in

vivo wall segmentation) will be made available upon request.

Ethics statement
This study was approved by the Medical Ethical Committee of

the Erasmus Medical Center. Written informed consent was

obtained from all subjects.

Data
Fifteen patients (all male, age 68+9 years) who were scheduled

for carotid endarterectomy (CEA) were selected for this study and

gave informed consent. Nine had an ischemic stroke, five had a

transient ischemic accident and one was asymptomatic. A subset of

this data has previously been used for the development of a 3D

registration framework [30] and to develop a segmentation

method on ex vivo MRI [36]. Due to incomplete imaging data

and a low quality of histology two patients were excluded, leaving

thirteen datasets for the analysis. Before CEA, patients underwent

in vivo MRI (Signa Excite (3 Tesla), GE Healthcare, Milwaukee,

USA) and CTA (Sensation 16 (n = 4)/Sensation 64 (n = 9),

Siemens, Erlangen, Germany) scanning. MRI was made one day

prior to CEA, and CTA 38+26 days earlier. We used four MRI

scans that were made before contrast administration (2D-T1w,

2D-PDw, 2D-TOF and 3D-T1w), and one 3D-T1w scan
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4.6+3.4 minutes after intravenous administration of gadofosveset

(Vasovist, 0.03 mmol/kg body weight, Bayer Schering Pharma

AG). Details are provided in Table 1. Due to the better

performance of contrast-enhanced T1w scans to differentiate

plaque tissues compared to T2w scans, no T2w scans were used

[37–39]. CTA images were made with a standardized contrast-

enhanced protocol [40] and had a resolution of 0.27+0.05 mm

in-plane with a slice thickness of 0.9+0.1 mm and a slice distance

of 0.5+0.1 mm. After registration of the MRI and CTA scans

(Section Image registration) manual annotations of the vessel wall

were made on the registered in vivo scans. Annotations were based

on a combination of CTA, PDw MRI and postcontrast T1w MRI,

with visual inspection of the other in vivo MR sequences.

As previously published [30], to facilitate registration of the in

vivo data to histology, ex vivo MRI (3D-T1w Gradient Echo,

0.160.160.1 mm, Signa Excite, GE Healthcare) and mCT scans

(18618618 mm, Skyscan 1072, Skyscan, Belgium) of the excised

plaque were made. In addition photographs of the specimen were

taken every 1-mm interval during histology slicing, called ‘block-

face’ images (15+1615+1 mm). Histology sections were taken

every 1-mm interval (1.861.8 mm) and stained with Elastica von

Gieson staining (Merck, Germany). To obtain ground truth

segmentations the vessel wall was manually segmented in

histology, and divided into fibrous and lipid-rich necrotic regions.

The ground truth for calcification was obtained by thresholding

the mCT at a fixed value for all scans [36]. Based on histology

quality, 11+4 histology slices with registered in vivo images were

included per subject (range 3–17 slices).

Image registration
Our registration framework is an extension of the 3D

registration of CTA with histology as described by Groen et al.

[30]. That method registered CTA to histology image data using

the following steps. First, a 3D histology stack is created by non-

rigid registration of histology slices to a stack of ‘block-face’

photographs taken during sectioning. CTA is registered to mCT

using isotropic scaling based on annotated landmark points in both

imaging modalities, which are mainly calcium spots. To align mCT

with ex vivo MRI, and ex vivo MRI with the 3D histology stack, a

rigid transformation based on manually annotated landmarks is

applied. Subsequently the 3D histology stack is deformed in-plane

to match the ex vivo vessel wall, annotated in the ex vivo MRI, using

a B-spline model [41] that maximizes mutual information (MI)

[42,43] of both image intensity and vessel wall annotations.

We made a number of modifications to this framework. Firstly,

we added in vivo MRI. All MRI scans were rigidly registered to the

postcontrast 3D-T1w scan, and this scan was rigidly registered to

the CTA. These registration steps were based on mutual

information of image intensity and made use of a mask around

the vessel that was annotated in the fixed images (CTA and

postcontrast MRI). Secondly, compared with Groen et al. the

registration of histology and in vivo data was refined in two ways. 1)

In the registration of CTA to mCT isotropic scaling was replaced

by a thin-plate spline deformation [44], to account for deforma-

tions that occur during plaque excision. This was based on

landmarks only (7.8+1.6 landmarks per plaque), by fitting an

approximating thin-plate spline with relaxation factor of 0.1 [45].

2) After registration using all previously mentioned steps (light gray

area in Figure 1), the ex vivo MRI was deformed to match the in vivo

postcontrast MRI. This was done based on maximization of the

sum of MI of image intensity, MI of manual segmentations of the

lumen and MI of the outer vessel wall with a B-spline model.

Similar to the registration of ex vivo MRI with histology, a

multiresolution scheme with 4 resolution levels and a final B-spline

control point spacing of 2 mm was used. Optimization was done

using adaptive stochastic gradient descent optimization [46]. The

resulting transformation was applied to the ground truth

segmentations (histology and mCT), to obtain a better overlap of

the vessel wall in the ground truth and the in vivo data. The toolbox

elastix [47] was used for all registrations, in combination with

MeVisLab for rigid point-based registration and Python for

scripting. A summary of all steps of our modified registration

framework is given in Figure 1 and Table 2, and a more detailed

description and evaluation can be found in [30] and [36]. The

effect of the two refinements mentioned above is evaluated in

Registration results.

Classifier design
Regions of interest of all in vivo MR images were corrected for

intensity inhomogeneities using N3 [48], and normalized by

setting the mean intensity to 0 and the standard deviation to 100

within these selected regions. A set of 24 image features was

calculated for each voxel: the intensities in the normalized 3D-

T1w (pre- and postcontrast), T1w, PDw and TOF images, these

images blurred with a Gaussian filter (s = 1 mm), the gradient

magnitude and Laplacian at the same scale, the original CTA

intensity, the Euclidean distances to the lumen and outer vessel

wall, and the product of these distances. Intensity, first and second

order derivatives and distances have previously proven to be

effective [18,20,36]. The product of the two distances was added

to enable a linear separation between LRNC and fibrous tissue,

which better prevents the lipid-rich necrotic core from touching

the lumen or outer vessel wall border. Together these distance

features represent both wall thickness and the voxel location

relative to the lumen and outer wall. For training the distances

were based on the deformed histology segmentation, for testing on

the distance to the manual in vivo contours. All images (ground

truth and features) were resampled to 0.2560.25 mm in-plane

using cubic B-spline interpolation, such that they had a resolution

in the order of the in vivo CTA.

Table 1. MRI settings.

Repetition time (ms) Echo time (ms) Flip angle
In-plane resolution
(mm) Slice thickness Slice distance

2D-T1w Fast Spin Echo 425677 12.161.1 90u 0.4160.07 1.5 1.5

2D-PDw Fast Spin Echo 46356284 17.261.9 90u 0.4160.06 1.5 1.5

Fast Time of flight 15.361.2 3.460.3 40–60u 0.9160.11 2–3 1.5–2

3D-T1w Gradient Echo
(Pre- and postcontrast)

15.360.3 3.15 16u 0.6160.05 0.8–1 0.4–0.5

doi:10.1371/journal.pone.0094840.t001
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To account for registration inaccuracies, which lead to

inaccurate training labels, we compared three approaches:

1. Uncertainties in the ground truth were taken into account by

two mechanisms. First, the binary ground truth segmentations

(calcification (C), lipid-rich necrotic tissue (LRNC) and fibrous

tissue (F)) were blurred with a Gaussian filter with standard

deviation s (Gs), followed by normalizing the sum of the three

components to 1. This creates soft labels that indicate a

Figure 1. Overview of the framework for histology processing and registration. The light gray blocks show registration of in vivo MRI and
CTA with histology, via ex vivo MRI and mCT. The large dot with a dotted line indicates the space to which all images are transformed. After these
transformations the registration step in dark gray block is done to directly optimize the registration of ex vivo with in vivo data. The arrows point from
the fixed to the moving image. Numbers in this figure refer to registration steps with a detailed description in Table 2.
doi:10.1371/journal.pone.0094840.g001

Table 2. Settings for the different registration steps.*

Fixed image Moving image Def.model Information Comp. time Manual time

1 Stacking of block-face images, by registering
each slice to its adjacent slice

Rigid Landmarks Few sec per slice ,2–3 min per slice

2 Block-face Histology Rigid Landmarks Few sec per slice ,2–3 min per slice

3 Block-face Histology B-spline MI of intensity, lumen
mask and outer wall
mask

,2–3 min per slice ,15 min per slice
(including composition in
histology)

4* Ex vivo MRI Block-face Rigid Landmarks ,10 sec ,5 min per 3D volume

5* Ex vivo MRI 3D histology Rigid MI of intensity, lumen
mask and outer wall
mask

,1 min ,15 min per 3D volume
(histology annotation
from step 3)

6 Ex vivo MRI 3D histology in-plane B-spline MI of intensity, lumen
mask and outer wall
mask

,3–4 min - (Uses annotations from
steps 3 and 5)

7 Ex vivo MRI mCT Rigid Landmarks 0.5–1 min ,5 min per 3D volume

8 Ex vivo MRI mCT Rigid MI of intensity 0.5–1 min -

9 mCT CTA Thin-plate spline Landmarks ,10 sec ,5 min per 3D volume

10 CTA Postcontrast T1w MRI Rigid MI of intensity within mask ,0.5 min ,2–3 min per 3D volume

11 Postcontrast T1w MRI Other MRI images Rigid MI of intensity within
mask

,0.5 min ,2–3 min per 3D volume

12 Deformed in vivo
postcontrast T1w MRI

Deformed ex vivo MRI B-spline MI of intensity, lumen
mask and outer wall mask

,5–6 min ,10 min per 3D volume

* For registration the inverse transformation of steps 4 and 5 was applied to the ex vivo MRI. Def. model = deformation model, Comp. time = computation time,
MI = Mutual Information.
doi:10.1371/journal.pone.0094840.t002
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probability of belonging to each of the three components,

where points close to component boundaries get a similar,

lower, probability for multiple components. Second, since the

reliability of the labels depends on the registration accuracy, we

estimated registration accuracy. Hereto the Dice overlap

between the vessel wall segmentation in histology and

registered MRI/CTA was calculated for each slice [49]. Slices

were subsequently weighted by their registration accuracy by

multiplying the normalized soft labels by Dicen. Here n is an

exponent, where with larger n the difference in contribution of

slices with low or high Dice overlap becomes larger. The final

labels assign a weight to the samples, such that samples close to

region boundaries or from slices with a low registration

accuracy contribute less to the classifier than samples with a

more certain ground truth. In our experiments, we determined

the optimum value for s and n using cross-validation on the

training set (Section Evaluation). In the equation below wi(x) is

the sample weight for class i at voxel x, with Mi the binary

mask for class i.

wi(x)~
Gs �Mi(x)P

i

Gs �Mi(x)
:Dicen ð1Þ

2. Approach 1 uses the same degree of blurring at all locations to

obtain soft labels, and assigns a higher or lower weight to an

entire slice based on registration accuracy. In case one part of

the section is aligned more accurately than the other, a more

local weighting of registration accuracy would be appropriate.

To achieve this we calculated for each voxel the Euclidean

distance to the lumen and the outer vessel wall, in both

histology and the in vivo scans. The sample weight w(x) (eq. 2)

was then defined as a function of weight based on outer wall

(wwall(x)) and lumen registration accuracy (wlumen(x)), where

the weight was determined to be 1 for a difference between the

histology and in-vivo contour of 0 and 0 for a difference of

5 mm, linearly scaled between these values. The ratio of the

two weights was determined by the relative distance of the

voxel to the lumen and outer wall (R(x)):

w(x)~
R(x) � wwall(x)zwlumen(x)

R(x)z1
ð2Þ

wwall(x)~{0:2:(DWhistology(x){Win{vivo(x)D)z1

wlumen(x)~{0:2:(DLhistology(x){Lin{vivo(x)D)z1

R(x)~
Lhistology(x)zLin{vivo(x)

Whistology(x)zWin{vivo(x)

where L indicates the distance to the lumen and W the

distance to the outer wall. An example is shown in Figure 2B.

3. The third approach is Gaussian outlier detection, which

excludes samples that are outliers in feature space without

taking into account the position of these samples in the original

image or the registration accuracy. For each of the three

components, 10% of the samples was rejected. A Gaussian

target distribution was modelled to the data. The mean and

standard deviation for each class were robustly estimated by

iteratively reweighing the samples by their distance to the

(previously estimated) mean [50]. Outliers can be in misreg-

istered areas for which the image characteristics do not

correspond to the class label, but also variations in image

intensity for certain scans, or imaging artifacts can be rejected.

We choose to reject 10% of the samples in outlier rejection

expecting this would be a good balance between not discarding

too many samples and at the same time being sure that all

outliers are rejected. For an example see Figure 2C.

For classification, a linear discriminant classifier (LDC) and

support vector machine (SVM) classifier were used. The LDC has

been used successfully in previous studies [20,36]. The definition is

as follows [51]

rk(x)~xT S{1mk{
1

2
T
k S{1

kzlogpk, ð3Þ

where r is the posterior probability, k are the classes, S the pooled

covariance matrix, k the class means, pk the class prior

probabilities, and x the feature vector to classify. Each sample

was assigned to the class with the highest posterior probability. As

LDC is a relatively simple, non-flexible classifier, we used a

support vector machine (SVM) with a radial-basis function (RBF)

kernel for comparison. Compared to LDC, SVM is more flexible

and it has proven successful in many applications. The classifica-

tion problem is solved as [52]:

min
v,v0,j

1

2
vT vzC

Xl

i~1

ji,

subject to yi(v
T w(xi)zv0)§1{ji, ji§0

ð4Þ

with kernel K(xi,xj)~w(xi)
T w(xj)~exp({cDDxi{xj DD2),cw0

with v the SVM classifier and x the feature vector. C is the penalty

parameter of the error term that trades-off between minimizing

misclassification and maximizing the margin, c the kernel radius, j
the misclassification weight and yi [ {21,1} the sample label. The

decision boundary is then defined as:

f (x)~vT w(x)zv0~0 ð5Þ

New samples are labelled by thresholding f (x) at 0. Multiclass

classification was done by combining different one vs one

classifiers. For classifier development and evaluation the Matlab

toolbox prtools [53], and libsvm [52] were used.

Evaluation
Leave-one-out experiments were performed in which repeatedly

12 subjects were used for training and the 13th for testing.

Classifiers were trained on 10% of all voxels that were within the

vessel wall in both the histology segmentation and the in vivo wall

segmentation, and tested on all voxels within the in vivo vessel wall.

The same 10% of samples were extracted for training for each

experiment.

For labeling approach 1 with ground truth blurring and

weighting with Dicen, s values equal to 0, 0.25, 0.5, 0.75, 1, 1.5

and 2 mm were evaluated, and n was varied from 0 to 39 with

intervals of 3, with a separate cross-validation within the training

set of 12 subjects, again by leave-one-subject-out experiments. For

Plaque Component Segmentation in MRI and CTA Data
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each combination of s and n the absolute error of the calculated

volumes (% of the vessel wall) of all three components with respect

to the ground truth volumes was averaged over all slices of the 12

subjects, and the s and n that corresponded to the lowest error

were chosen. Using the same approach the penalty parameter C

and kernel radius c were optimized in the training set for all SVM

classifications. Here, the features were normalized to have zero

mean and a standard deviation of 1.

Classification with LDC and SVM was performed using the

four different types of sample labels: 1) original hard labels, 2)

labels obtained by ground truth blurring and weighting by the

Dice overlap, 3) local weights obtained using the contour distances

and 4) Gaussian outlier rejection. All voxels within the in vivo

segmented vessel wall were classified. The results were evaluated

by comparing plaque component volumes as a percentage of the

vessel wall with histology, both per subject and per slice. For each

classifier, the results per slice were tested for statistical significant

differences between the four different approaches. The absolute

errors of the three components were averaged as they are strongly

related, and compared using Friedman analysis, with post-hoc

Tukey-Kramer testing to account for multiple comparisons.

To evaluate performance when classification is based on a single

imaging modality, voxel classification was repeated using only

MRI and only CTA features, both with and without the distance

features. For completeness, also classification using only distance

features was evaluated using the same approach. Finally, an

experiment was carried out to indicate which features are most

relevant for classification. Forward feature selection with LDC

accuracy as the evaluation criterion was performed for all three

combinations of two components. All voxels of all 13 subjects were

used, with their corresponding hard label.

Results

Registration results
Registering CTA to mCT with a thin-plate spline deformation

instead of the isotropic scaling as was used in [30], showed that in

cases with large deformations an improved match was obtained

(visual inspection). When deforming the ex vivo MRI vessel wall to

match the in vivo MRI vessel wall (dark gray right column in

Figure 1), the Dice overlap increased from 0.61+0.18 (range

0.14–0.88) to 0.77+0.12 (range 0.31–0.95). Applying this

deformation to the histology segmentations increased the Dice

overlap between the histology vessel wall and in vivo vessel wall

from 0.57+0.18 (range 0.11–0.87) to 0.67+0.16 (range 0.22–

0.94). The final mean wall distance between histology and in vivo

data was 0.87+0.63 mm for the lumen and 0.67+0.39 mm for

the outer wall. As this error is in the order of several voxels we can

assume that voxelwise correspondence was not obtained. Two

examples are shown in Figure 3.

Segmentation results
The average bias, absolute error and Spearman rank correla-

tions of relative component volumes with respect to the relative

volumes in the ground truth (histology and mCT), per subject, are

given in Table 3. The results show that for LDC good calcification

classification was obtained, with errors smaller than 2% and

correlation values higher than 0.75. The amount of fibrous tissue

was overestimated and the amount of LRNC underestimated, but

correlations .0.75 could be obtained as well. For LDC, both

blurring and Dice weighting, and outlier rejection decreased the

bias, but only outlier rejection reduced the absolute error, for all

three components. This error was significantly smaller than for the

two methods that use sample weighting, and may be slightly better

than using hard labels (p = 0.06). Additionally, the improvement in

absolute error using outlier rejection was significantly related with

the amount of lipid per slice (r = 20.23, p,0.01). For slices with

higher lipid amounts, the advantage of using outlier rejection was

larger than for slices with no or little lipid.

While classification with LDC yielded better correlations than

with SVM, SVM yielded a lower bias, and, when weighting by

contour distance, a lower absolute error. For SVM the three

methods to handle registration errors seem to have a larger effect

than for LDC. The correlations for fibrous tissue and LRNC also

improved, but the results for calcification deteriorated. The

differences in error between the methods with SVM, were not

significant.

Overall, classification with LDC and Gaussian outlier rejection

lead both to a relatively low absolute error and a good correlation

with histology for all three components. Therefore, additional

visualizations of these results are provided. Scatter plots in Figure 4

show the correlation between the relative volume of each tissue

component in histology and in the segmentation result. The

segmentation results for all slices of one subject are shown in

Figure 5. Segmentations of the other subjects can be found in

Movie S1. The segmentations visually show acceptable spatial

fidelity.

Figure 2. Different ways of handling registration accuracy in training. A. Soft labels for each class are derived by blurring the original
segmentations. In this example s = 0.5 mm and the soft labels of the three classes sum to the Dice overlap between histology and in vivo data in each
voxel (0.93 in this slice). In the hard segmentation dark gray is calcification (C), light gray fibrous tissue (F) and white lipid-rich necrotic tissue (N). B.
Sample weights are determined by the distance between lumen and outer wall contours in histology (white line) and the in vivo data (blue dashed
line). C. Outlier rejection: Based on 10% outlier rejection on the combination of all 13 vessels, the black areas in the right bottom figure would be
rejected as outliers. In this slice mainly lipid/necrotic voxels from the right half of the section are considered outliers in feature space.
doi:10.1371/journal.pone.0094840.g002
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The voxelwise accuracy in the overlapping areas of the vessel

wall in histology and in in vivo data, was 68+6% for LDC and

hard labels and 69+6% for LDC after outlier rejection. However,

this evaluation is hampered by registration errors and the results

should therefore be interpreted with caution.

For the approach with blurring and weighting with LDC the

optimal values found for s (ground truth blurring) were

0.15+0.16 mm (range 0–0.5 mm) with n = 23.8+11.5 (range

12–39, ground truth weighting). Thus, no or little blurring of the

ground truth segmentations was performed, but high weighting of

slices based on registration accuracy was applied. This led to a

skewed sample weight distribution with an interquartile range of

0.0001–0.0038–0.0411 (total range 0–0.44). For SVM s was

0.38+0.35 mm (range 0–1 mm), with n = 9.0+6.1 (range 0–15),

and a sample weight interquartile range of 0.014–0.128–0.493

(range 0–1). Using local contour distance the obtained sample

weights were 0.91+0.06 (range 0.44–1).

MRI vs. CTA
The experiments to compare performance on MRI and CTA

were also performed using LDC and Gaussian outlier rejection.

The results using only MRI or CTA are given in Table 4. When

only MRI features were used, calcification was underestimated

and in most cases not detected. Using only the original CTA

image, a good correlation for calcification was found, although the

volumes were overestimated. Differentiation between fibrous tissue

and LRNC was not possible. Adding distance features, however,

showed a great improvement. Using the distance features only

yielded plausible volume estimates for fibrous tissue and LRNC,

however, adding MRI features improved the results even more.

Examples of slices segmented using either MRI or CTA and

distance features are shown in Figure 6. These show indeed that

calcification spots are not accurately detected in MRI (in 1, 3 and

6–8), and that LRNC areas are better segmented when MRI is

used (The relative volume is more accurate in 1–3, 5 and 6).

Relevance of features
To give an indication of the most relevant features, the first five

features selected by forward feature selection with LDC are

provided in Table 5. It is clear that CTA intensity was the most

important feature to segment calcification, and that distances and

the combination of pre- and postcontrast images performed best to

segment fibrous and lipid-rich necrotic tissue. Also first and second

order derivatives showed to be relevant. This does not mean that

these are the individually best performing features. For example,

to differentiate fibrous tissue and LRNC, the individual features at

position 2–6 (2DT1w blurred, lumen distance, PDw blurred,

3DT1w postcontrast GM and 2DT1w precontrast) that gave

individually the highest LDC accuracy, were not found in the top

5 with forward feature selection.

Discussion

We segmented different components of atherosclerotic plaques

using both in vivo MRI and CTA images, by training a voxelwise

classifier on labels obtained from registered histology and mCT

and taking into account the presence of misregistrations. Three

different approaches (blurring and weighting by Dice overlap,

weighting by contour distance, and Gaussian outlier rejection)

showed that taking registration errors into account can improve

component volume estimations in certain situations. In addition,

we showed that combining MRI and CTA images results in better

segmentations than when only MRI or only CTA is used.

For LDC no change was observed when sample weights were

based on the local contour distances compared to the hard labels,

but the bias for fibrous tissue and LRNC became smaller after

blurring and weighting by the Dice overlap, and both the bias and

absolute error decreased using Gaussian outlier detection. For

SVM all three approaches improved the error and correlation for

fibrous tissue and LRNC, but decreased classification accuracy for

calcification. Weighting by the Dice overlap has a relatively large

effect on the class priors (5% (Calcification), 56% (Fibrous) and

38% (LRNC) for hard labels, and 5%, 49% and 46% for

weighting with Dice24), in contrast to weighting by contour

distance and outlier rejection. This may have caused the change in

bias of LRNC and fibrous tissue for LDC. Gaussian outlier

rejection and LDC are both based on estimation of mean and

covariance of Gaussian distributions, which may explain why the

combination performs well. The advantage of outlier rejection was

especially present in slices with a larger lipid content, which are the

slices with more challenging composition that are more difficult to

segment. For SVM, samples on the decision boundary determine

the final segmentation result, which can be a reason why changing

the weights based on local contour distance works better in this

situation. LDC has been used previously for plaque component

segmentation [20,36], and performed better than SVM in our

experiments. This indicates it is indeed a suitable classifier for this

problem.

Figure 3. Two registered image slices. Examples are presented before and after applying the final deformation step as depicted in the right
column of Figure 1. In yellow the deformed histology vessel wall is shown, in red the in vivo vessel wall overlaid on the postcontrast MRI scan. In the
orange regions they overlap. The Dice overlap for the top image increases from 0.59 to 0.86, for the bottom image from 0.28 to 0.44.
doi:10.1371/journal.pone.0094840.g003
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To compare our results with previous studies Table 6 can be

used. Two previous studies automatically segmented plaque

components in in vivo MRI and compared their results with

histology [18,19]. These show Pearson correlation values (R2) of

0.83 for calcifications, 0.78 for necrotic tissue, 0.41 for loose

matrix and 0.82 for fibrous tissue [18], and (R) 0.41 for

calcifications, 0.75 for lipid, 0.61 for hemorrhage and 0.67 for

fibrous tissue [19], compared to our values (R, see Table 6) of 0.92

(calcification), 0.78 (fibrous) and 0.79 (LRNC) using both MRI and

CTA. In [20] plaque component segmentation results were

compared with manual annotations of the in vivo data, which

gave correlation values (R) of 0.88 for lipids, 0.80 for hemorrhage

and for fibrous tissue and 0.10 for calcification. Although results

are difficult to compare, our results are in a similar range. Hofman

et al. [19] obtained less accurate classification results, but this study

did not use any spatial information such as distance to the vessel

wall. The method by Liu et al. [18] yielded high accuracies and is

available within a commercial software package for plaque analysis

[54]. This method is also based on voxel classification, and is

followed by a level-set segmentation, resulting in more smoothly

segmented regions. Spatial regularization is in our case achieved

by using Gaussian features and distances and we found this leads

to spatially coherent segmentations. The higher accuracies by [18]

can be caused by the use of histology-guided manual contours.

These are based both on histology and on known MRI intensities,

which may bias the segmentations towards intensity (gradients)

seen in the MRI. A recent study [24] has shown that the LRNC

appears smaller on MRI images than in histology, which is in

correspondence with our segmentation results.

Similar to our experiments in which we only used MRI,

previous studies that used MRI for segmentation, found low

correlations for calcification [19,20], except for the paper by Liu et

al. [18]. Although calcification is difficult to detect in MRI, in

Figure 6 dark spots can be seen at calcified locations. Reasons for

poor detection in our study are low visibility in other slices, noise,

dark-appearing artefacts that do not represent calcifications, and

small misregistrations in the training data. The study of Liu et al.

[18] obtained their ground truth by histology-guided manual

annotation which eliminates the effect of misregistration. MRI

sequences that are more specifically aimed at visualizing calcium,

could also improve its detection [55].

Two previous studies compared automatic segmentation results

in CTA with histology [15,16], based on a fixed intensity threshold

on the CTA to separate LRNC from fibrous tissue and fibrous

tissue from calcification. Both these studies accurately segmented

calcifications, but obtained lower accuracies for LRNC. Although

de Weert et al. [15] found a significant difference between

Hounsfield units for lipid (25+19) and fibrous tissue (88+18), the

correlation for lipid volume is low (R2 = 0.24, fibrous 0.76 and

calcification 0.74). In mildly calcified (v10%) plaques the

correlation for LRNC increased (R2 = 0.77), which they relate to

the blooming effect of calcification which may overshadow parts of

soft plaque. Wintermark et al. [16] found overlapping Hounsfield

units for lipid (32.6+20.0) and connective (fibrous) tissue

(46.4+19.9). Concordance between CTA and histology in the

detection of lipid tissue was therefore low (k = 0.495), but

increased when only large lipid cores were included (k = 0.796).

The difficulty they encountered to accurately segment lipid

volumes was also observed in our study, which showed large

errors when only CTA was used. In our experiments, the

reasonable correlation with the ground truth for fibrous and

lipid-rich necrotic tissue seems to be mostly based on the distances

to the lumen and outer vessel wall, which on itself already yield

plausible segmentations. Blooming artefacts in CTA have prob-
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ably caused the overestimation of calcification when only CTA

intensity was used. Blooming in the mCT did not affect the ground

truth due to the relatively high resolution compared to the in vivo

resolution.

Scanning patients with both MRI and CTA puts a higher

burden on both patients and healthcare costs and therefore the

combination may not seem relevant in practice. However, in most

cases patients that enter the hospital with symptomatic carotid

Figure 4. Correlation of plaque components in the ground truth and the classification result in 13 subjects. Here LDC and Gaussian
outlier rejection were used. Top row: relative volumes per subject. Bottom row: relative volumes per slice.
doi:10.1371/journal.pone.0094840.g004

Figure 5. Segmentation results for one patient, using LDC and Gaussian outlier rejection. White = LRNC, light gray = fibrous tissue and
dark gray = calcification. Segmentation results of all 13 patients can be found in the online movie S1.
doi:10.1371/journal.pone.0094840.g005
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artery disease are already scanned with CTA [56,57]. MRI has no

ionizing radiation, so is relatively safe for patients and can better

determine the extent of non-calcified components of vulnerable or

complicated plaques [58,59]. Clinical studies showed that MRI

and CTA have different advantages and that combining them may

allow for more accurate decision on plaque vulnerability and

treatment planning [21,22]. Recently, clinical studies are emerging

that perform both CTA and MRI imaging, showing the clinical

possibility and relevance [60–62]. Ultrasound is another imaging

modality that is feasible for imaging the carotid artery, due to its

low cost and wide availability. Therefore ultrasound seems

especially useful for screening. It can be used to study plaque

vulnerability [63], but accurate quantification of plaque compo-

nents is not possible due to the limited contrast [64]. For an

accurate study of the vessel wall in high-risk patients MRI and

CTA are recommended.

When the proposed segmentation framework is to be used for

analysis of a new patient several steps need to be taken. These

steps with their computation time on a desktop computer

(2.26 GHz, 12.0 GB RAM) are: registration of MRI and CTA

data (5 registrations, *0.5 minute per registration) within a mask

(*1–2 minutes for annotation on the CTA and T1w postcontrast

MRI each), manual lumen and outer wall segmentation

(*10 minutes, but this can be automated [65,66]), inhomogeneity

correction (*10–15 seconds per MR image), feature computation

(*4–5 seconds), applying the classifier and obtaining segmenta-

tions (*1 second).

Our current results show a good Spearman rank correlation for

the amount of LRNC, which is an indication of plaque

vulnerability [67]. Whether this can reliably be used to select

high-risk patients for treatment can, however, not be determined

in this study. This has to be determined in a large group of patients

that are followed for clinical events, followed by a clinical trial

where the advantage of using plaque composition for treatment

selection is evaluated. In our results the stroke patients had a

LRNC of 44% (range 10–71), and the patients who had a TIA had

a LRNC of 27% (22–46). The amount of calcification was 3% (0–

6) after stroke, and 7% (1–11) after TIA. The automated results

yielded similar results: a LRNC of 46% (1–64) and 23% (5–29),

and calcifications of 3% (0–6) and 5% (1–13) for stroke and TIA

patients respectively. This corresponds to the idea that a LRNC

characterizes more vulnerable plaques and calcifications charac-

terize more stable plaques [6,7]. The asymptomatic patient in this

study had a LRNC of 20% and 1% of calcification.

This work has several limitations. There was a considerable

time interval between the MRI and CTA scan (38+26 days), but

we do not expect noticeable changes in plaque composition and

volume to occur in this period. Previous studies did not find

changes in wall and component volumes or presence in a mean of

12–15 days [68,69] or a year [70].

For this study no histology sections were stained to specifically

detect intraplaque hemorrhage (IPH), and hemorrhage was

therefore not included as a separate component. In addition, the

used T1w MRI sequences are not the most suitable for imaging of

IPH [71]. Still, based on hyperintensity in the precontrast 2D- and

3D-T1w MR images, we found a suggestion of IPH presence in 5

vessels (4 with stroke, 1 with TIA). For all these vessels this area

was included in the LRNC segmentation. The error for LRNC

was on average not larger in those 5 vessels than in the other 8 for

the experiments including MRI and/or CTA and distance

features. When only CTA intensity was considered no LRNC

was segmented, both when all patients were included and when

only the patients without possible IPH presence were included in

training and evaluation. This suggests that IPH presence is not
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causing large errors, nor explains the poor performance of CTA in

this study. Using the presented approach, hemorrhage can be

easily added separately to the framework when a ground truth is

available, and its inclusion would be highly valuable in future

studies [7]. We also did not differentiate between fibrous and loose

connective tissue as was done in [18], as these are difficult to

distinguish in histology and both are stable plaque components.

Before histology sectioning the specimens were decalcified, and

during sectioning areas of lipid tissue may be disrupted, which

could cause mixing up the two tissues. However, in the empty

regions in the histology sections we could distinguish calcium from

lipid by using the mCT as a reference.

In this work we evaluated our results based on relative plaque

component volumes. Ideally, the classification accuracy would be

evaluated in a voxelwise manner. We could not do this because no

accurate voxelwise correspondence could be established between

in vivo data and histology, even with substantial manual interaction.

As a surrogate measure, we chose relative plaque component

volumes as they provide a clinically relevant biomarker for

prediction of plaque vulnerability [67,72–74]. Additionally, there

were only 13 subjects included in this study. However, due to the

challenges involved in plaque excision, sectioning and staining, it

was not possible to add more vessels.

Lastly, in this work we use manual annotations of the vessel wall

in in vivo images. Several automated vessel wall segmentation

methods are available [54,65,66,75]. The combination of auto-

mated wall segmentation with component segmentation would

yield a highly automated plaque analysis tool. As long as an

automatic wall segmentation is accurate, and possibly manually

adjusted in case of errors, we expect using an automatic

Figure 6. Segmentation results when only MRI, or only CTA, and distance features are used. Results are obtained including outlier
rejection. White = LRNC, light gray = fibrous tissue and dark gray = calcification.
doi:10.1371/journal.pone.0094840.g006

Table 5. Feature selection.

Calcification-Fibrous Calcification-LRNC Fibrous-LRNC

CTA intensity CTA intensity Distances multiplied

Distance to lumen Distances multiplied TOF Gradient Magnitude

3DT1w pre-contrast Laplacian 3DT1w pre-contrast Laplacian 3DT1w post-contrast Blurred

TOF Gradient Magnitude Distance to lumen 3DT1w pre-contrast Blurred

PDw blurred 3DT1w post-contrast Blurred 3DT1w post-contrast Laplacian

This table gives the first five features selected by forward selection using LDC accuracy as evaluation criterion, for the separation of each combination of two classes.
doi:10.1371/journal.pone.0094840.t005
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segmentation method has no influence on the results described in

this paper.

Conclusion

The volume of atherosclerotic plaque components can be well

estimated using a classifier trained on histology. Different

approaches to account for mismatch between the imaging data

and the ground truth from histology can slightly improve

segmentation. While MRI can better differentiate between fibrous

and lipid-rich necrotic tissue, and CTA can better segment

calcification, the combination leads to good results for all three

components. This can facilitate the use of quantitative plaque

composition in large clinical studies and possibly future patient risk

assessment.

Supporting Information

Movie S1 This supporting information movie displays segmen-

tation results for all 13 vessels, in addition to the segmentation of

one vessel that is provided in Figure 5.
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