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Abstract
Acute kidney injury (AKI) is strongly associated with increased morbidity and mortality in critically ill
patients. Efforts to change its clinical course have failed because clinically available therapeutic
measures are currently lacking, and early detection is impossible with serum creatinine (SCr). The
demand for earlier markers has prompted the discovery of several candidates to serve this purpose.
In this paper, we review available biomarker studies on the early predictive performance in devel-
oping AKI in adult critically ill patients. We make an effort to present the results from the perspec-
tive of possible clinical utility.
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Introduction

Acute kidney injury (AKI) represents an acute decline in
renal function that leads to structural changes. AKI is as-
sociated with increased mortality, length of hospital stay
and costs [1]. This unfavourable outcome might be tied to
the late detection of AKI when the elevation of serum
creatinine (SCr) is used. Many genes are up-regulated
in the damaged kidney with the corresponding protein
products appearing in plasma and urine. Some of these
are candidate markers for more timely diagnosis of AKI.
The purpose of this paper is to review the current state of
epidemiological data concerning AKI, to evaluate avail-
able biomarkers for the prediction of AKI and to describe
several potential therapeutic options.

Epidemiology of AKI in critically ill patients

The Beginning and Ending supportive therapy for the Kidney
investigators study (BEST Kidney study) has provided recent
global insight as to the prevalence of patients with AKI. The
reported mortality rate is 60.3%, with sepsis and pre-morbid
renal dysfunction being dominant causes. In this observa-
tion, 13.8% of the patients with acute renal failure (ARF)
surviving until hospital discharge required chronic renal
replacement therapy (RRT) [2]. AKI and AKI requiring RRT
display increasing incidence due to the rising degree of
comorbid conditions, increasing age and severity of illness
in critically ill patients [3]. However, there seems to be a
steady-state decline in annual in-hospital mortality (from
41.3% in 1988 to 28.1% in 2002). Despite the observed
reduction in mortality rates, the rising incidence of AKI

comes at a price. Patients tend to survive the intensive
care unit (ICU) but will be discharged with various degrees
of chronic kidney disease (CKD), which will increasingly
strain the health care system [4]. These data are supported
by observations from Australia, where the 10-year trend in
the incidence of AKI and the crude hospital mortality rates
adjusted for illness severity were likewise investigated. In
this study, 5.2% of the patients have AKI with an increased
incidence over the past decade; however, the multivariate
adjusted odds of death associated with AKI show a declin-
ing trend. The increased risk of death associated with AKI
persisted with the adjustment for several relevant covari-
ates. ARF exerts an independent, profound and specific
effect on morbidity and mortality in critically ill patients
[5]. Furthermore, outcomes are directly related to the se-
verity of AKI: even small changes in SCr have a detrimental
impact on patient long-term survival [1, 6].

Biomarkers for the prediction of AKI

The ability of biomarkers to predict AKI has been studied
intensely in several different clinical settings. For a sound
interpretation of the reported results, it is important to
realize that the studies present a mixture of ‘AKI diagnosis
confirmation’ in patients with established AKI and ‘AKI early
prediction’ in patients with developing AKI. Obviously, these
are two different entities with different clinical impacts. For
the clinical application of a new biomarker, it should prove
to be more accurate with earlier detectability than the
current gold standard SCr, which implies ‘early prediction’
only. Therefore, this review focuses on the prediction of
developing AKI in adult critically ill patients. There are four
major categories of biomarkers (Table 1).
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Functional markers

Serum creatinine (SCr). Serum creatinine (SCr) is a degrada-
tion product of muscle cells and represents a surrogate for
the efficiency of glomerular filtration. It has poor predictive
accuracy for renal injury, particularly, in the early stages of
AKI [7]. In the case of critical illness, SCr concentrations are
subject to large fluctuations due to a patient’s induced dilu-
tional volume status, the catabolic effects of critical illness,
the likelihood of concentration decreases in septic conditions
and the increased tubular excretion with diminishing renal
function. Furthermore, after an injurious event, the rise in SCr
is slow. Therefore, detection of the earliest evidence of AKI
necessitates the use of other plasma or urinary biomarkers.

Plasma/serum cystatin C (CyC). Cystatin C (CyC) is a 13-kDa
non-glycosylated cysteine protease inhibitor produced by
all nucleated cells at a constant rate. In healthy subjects,
plasma CyC (pCyC) is excreted through glomerular filtration
and metabolized completely by the proximal tubules. Fur-
thermore, there is no evident tubular secretion. Several
studies claim the superiority of pCyC against SCr to detect
minor reductions in glomerular filtration rate (GFR) [8].
However, the interpretation of pCyC levels is biased by older
age, gender, weight, height, cigarette smoking and high lev-
els of C-reactive protein (CRP) [9, 10]. In addition, CyC levels
are supposedly influenced by abnormal thyroid function
[11, 12], the use of immunosuppressive therapy [13] and
malignancies [14, 15]. In 318 patients included at ICU ad-
mission, pCyC predicted developing sustained AKI (n ¼ 19)
very modestly {area under the curve [AUC] ¼ 0.65 [95%
confidence interval (CI) 0.58–0.71]} in univariate analysis
[16]. Herget-Rosenthal [17] described a cohort in whom
sCyC was measured at admission in 85 patients with nor-
mal GFR. The reported AUC was 0.82 (CI 0.71–0.92) for
acute renal failure 2 days prior to the event. A recent multi-
centre study in 151 subjects in a comparative setting found
a poorer performance (AUC ¼ 0.72 no CI provided) [18].
Metzger et al. [19] compared the classification perform-
ance of a set of urinary proteome analyses with sCyC in
20 general ICU patients, retrospectively, and found low
classification accuracy (AUC ¼ 0.67 CI not provided).

In cardio pulmonary bypass (CPB) cohorts, several stud-
ies explored the use of CyC for AKI prediction. Haase-Fielitz
et al. [20] described 100 cardiac surgical patients among
whom 23 subjects were classified as patients without pre-
operative renal impairment. Their samples were measured
at ICU arrival, and the reported AUC ¼ 0.78 (CI 0.58–0.99)
did not improve after 24 h. Koyner et al. reported on 72 pa-
tients who were admitted following CPB with 34 subjects
developing AKI, which was defined as a 25% increase in
pCr or the need for RRT (n ¼ 7) within 3 days after surgery.
PCyC measured at the time of ICU arrival was not a useful
early predictor for the composite outcome AUC ¼ 0.62
(0.49–0.75) [21]. A likely explanation is the applied unusual
definition of AKI, which indicates less severe grades of AKI
among the event group.

Up-regulated proteins

Neutrophil gelatinase-associated lipocalin. Neutrophil
gelatinase-associated lipocalin (NGAL) is a small protein
linked to neutrophil gelatinase in specific leukocyte gran-
ules [22]. It is also expressed in a variety of epithelial tissues
associated with anti-microbial defence [23–26]. In the nor-
mal kidney, only the distal tubules and collecting ducts stain
for NGAL expression. NGAL’s composite molecule binds fer-
ric siderophores, and furthermore, it is a potent epithelial
growth inducer, has protective effects in ischaemia [27, 28]
and is up-regulated by systemic bacterial infections
[24, 29–32]. In the case of AKI, proximal tubule cells also
stain for NGAL proteins, which is explained by megalin–
cubilin-mediated re-uptake of NGAL present in the glomer-
ular filtrate [33, 34]. Urinary NGAL originates from local
production in the distal tubules and collecting ducts. How-
ever, uNGAL excretion is proportional to albumin excretion
in mouse models of diabetic nephropathy and is thus aug-
mented when the proximal transport maximum is exceeded
[33, 35, 36]. Siew et al. [37] enrolled their patients within
24 h after admission and reported a receiver operating
characteristic curve (ROC) AUC ¼ 0.77 (CI 0.64–0.90) for
developing AKI in a subgroup of patients with estimated
glomerular filtration rate (eGFR) at admission >75 mL/
min/1.73 m2 for urine NGAL (n ¼ 18 versus 257). Cruz
et al. reported on the development of AKI within 48 h after
first sampling an AUC ¼ 0.78 (CI 0.65–0.90). However, the
reported positive predictive value was low (24%), and
within 5 days, the AUC was reduced to 0.67 (CI 0.55–
0.79) [38]. The first sampling was performed within 24 h
after ICU admission. De Geus et al. [39] came to roughly
similar reports with samples at ICU admission in patients
with eGFR >60 mL/min/1.73 m2 for both plasma and uN-
GAL {AUC ¼ 0.75 � [standard error (SE)] 0.103} AUC NGAL
¼ 0.79 � (SE) 0.085. It is debatable whether the exclusion
of patients with eGFR’s <75 or 60 mL/min/1.73 m2 applied
by Siew and de Geus et al. is useful in clinical practice
because a biomarker should also be effective in patients
with CKD. In patients with sepsis, the predictive perform-
ance for AKI seemed not to be affected, as reported by
Martensson for both plasma and urine NGAL [respectively,
AUCs ¼ 0.85 (CI 0.67–1.0) and 0.86 (CI 0.68–1.0)] [40].
However, Bagshaw et al. [41] report a distinct influence
on test characteristics in patients with sepsis. Several stud-
ies report results in CPB cohorts: Koyner et al. [21] measured
both pNGAL AUC 0.526 (0.388–0.664) and uNGAL AUC ¼
0.705 (CI 0.581–0.829) at ICU admission. An additional
analysis by the same authors stratified their patients ac-
cording to attained RIFLE stage and reported increased
performances when using the harder end point of failure
AUC ¼ 0.69 (0.57–0.80) and AKIN Stage 3 AUC ¼ 0.79 (0.65–
0.94) [42]. A large study (n ¼ 426) in CPB patients demon-
strated test performance association with the pre-surgery
baseline eGFR. Interestingly, only in patients with an eGFR
above 60 mL/min was NGAL predictive: AUC ¼ 0.68 (CI 0.54–
0.81) [43]. A much smaller study (n ¼ 9 events) reported
values for both pNGAL and uNGAL, corrected for urinary
creatinine: AUC ¼ 0.85 (CI 0.73–0.97) and AUC ¼ 0.96 (CI
0.90–1.0), respectively [44]. Haase-Fielitz [20] compared
the performance of conventional and novel markers for
pNGAL in adult CPB patients, excluding patients with pre-
operative renal impairment NGAL: the results yielded AUC
¼ 0.80 (CI 0.58–0.99). In another large study (n ¼ 879) for
pNGAL measured immediately after CPB with 75 events, the
AUC reported was 0.641 (0.58–0.71) [45]. Wagener et al.
performed a study in adult CPB patients: for urine NGAL,

Table 1. Biomarkers for AKI

Biomarker types Biomarkers

Functional markers SCr and plasma/serum CyC
Up-regulated proteins NGAL, KIM-1, L-FABP and IL-18
Low-molecular weight proteins Urine CyC
Enzymes NAG, a-GST, p-GST, GGT and AP

Biomarkers for AKI: a clinical review 103



the predictive performance was AUC ¼ 0.573 (CI 0.506–
0.640) directly after the operation and the performance
increased until 18 h after ICU admission to a maximum
of 0.611. In a study performed by Liangos et al. [46],
these results were similar in 103 CPB patients 2 h after
surgery: AUC ¼ 0.50 (CI 0.33–0.68) [47]. Among general
adult ICU patients, 82 subjects developed AKI within 48 h
of admission, and the predictive performance for NGAL
corrected for urinary creatinine concentration yielded
AUC ¼ 0.55 (CI 0.48–0.63) [48]. Metzger et al. compared
the classification performance of urinary proteome anal-
ysis with classical markers. For urine NGAL, the ROC anal-
ysis revealed low classification accuracy: AUC ¼ 0.54 CI
(not provided) [19]. The only meta-analysis published to
date assessed pNGAL’s ability to predict across different
settings; when weighted for study sample size, this value
yielded an overall AUC of 0.782 (CI 0.689–0.872) [49].

Kidney injury molecule-1. Kidney injury molecule-1 (KIM-1)
is a Type I transmembrane glycoprotein with a cleavable
ectodomain (90 kDa) which is localized in the apical mem-
brane of dilated tubules in acute and chronic injury [50, 51].
Kim-1 is believed to play a role in regeneration processes
after epithelial injury and in the removal of dead cells in
the tubular lumen through phagocytosis [50, 52]. A reduction
in proteinuria with renine angiotensin aldosteron blockade is
accompanied by a reduction in urinary KIM-1 excretion
[53, 54]. Among general adult ICU patients, 82 subjects
developed AKI within 48 h of admission, and the predictive
performance for KIM-1 corrected for urinary creatinine
concentration yielded AUC ¼ 0.55 (CI 0.47–0.62) in the
study of Endre et al. [48]. Metzger et al. compared the
classification performance of urinary proteome analysis
with classical markers. For urine KIM-1, the ROC analysis
revealed low classification accuracy (AUC ¼ 0.71 CI, not
provided) [19]. Several studies report its diagnostic proper-
ties in adult CPB patients [42, 47, 55–57]. Liang et al. re-
ported an AUC for progressive AKI of 0.69 (CI 0.61–0.78)
after 6 h of inclusion. Notably, adding KIM-1 to interleukin
(IL)-18 [AUC for IL-18 for progressive AKI 6 h after inclu-
sion was 0.87 (CI 0.80–0.93)] in a predictive model im-
proved the model’s accuracy only minimally [AUC 0.88
(CI 0.82–0.93)]. Liangos et al. reported an AUC 2-h post-
CPB surgery of 0.78 (CI 0.64–0.91): however, in multivariate
regression analysis, the association of KIM-1 was attenu-
ated after adjustment. Koyner et al. [42] found an AUC 0.56
(CI 0.45–0.67) as admission value for the entire cohort with
an improvement when predicting AKIN Stage 3 only [AUC
¼ 0.69 (CI 0.44–0.93)].

Liver fatty acid binding protein. Fatty acid binding pro-
teins are small (15 kDa) cytoplasmatic proteins abundantly
expressed in tissues with active fatty acid metabolism.
Their primary function is the facilitation of long-chain fatty
acid transport, the regulation of gene expression and the
reduction of oxidative stress. Urinary liver fatty acid binding
protein (L-FABP) is undetectable in healthy control urine,
which is explained by efficient proximal tubular internal-
ization via megalin-mediated endocytosis [58, 59]. Under
ischaemic conditions, tubular L-FABP gene expression is
induced; in renal disease, the proximal tubular re-absorption
of L-FABP is reduced [59, 60]. To date, there is one small
study reporting on the early diagnostic performance of
L-FABP in adult ICU patients. The reported ROC AUC value
was 0.95, no CI provided. However, several uncertainties
remain after disclosure of the study’s methodology. Firstly,

patient selection (n¼ 25 with 14 AKI and 11 non-AKI) seems
to have been a result of convenient sampling. Secondly, the
‘true early diagnosis’ remains very doubtful as peak SCr and
L-FABP values are reported as having the same median
value; no further clear information concerning timing is pro-
vided [61].

Interleukin-18. In animal models, IL-18 has proven to be
an important mediator in the process of AKI. Therefore, its
urinary release has been anticipated as a possible early
marker: several studies have explored the clinical applica-
tion of this hypothesis.

Among general adult ICU patients, 82 subjects developed
AKI within 48 h of admission, and the predictive perform-
ance for IL-18 corrected for urinary creatinine concentration
was AUC ¼ 0.55 (CI 0.47–0.62) [48]. Metzger et al. compared
the classification performance of urinary proteome analy-
sis with classical markers. For urine IL-18, the ROC analysis
revealed low classification accuracy (AUC ¼ 0.57 CI not
provided) [19]. Nevertheless, in a large cohort of mixed
patients (n ¼ 451), Siew et al. enrolled patients within 24 h
after ICU admission: 86 developed AKI. The overall predic-
tive performance reported was AUC ¼ 0.62 (CI 0.54–0.69);
this value increased slightly in patients with an eGFR above
75 mL/min/1.73 m2 [AUC ¼ 0.67 (CI 0.53–0.81)]. There
seemed to be a strong association with sepsis [62]. In
patients with acute lung injury, uIL-18 predicted progres-
sion to AKI within 24 h with an accuracy of AUC ¼ 0.731
(CI not provided) with substantial overlap between cases
and controls in urine concentrations [63]. In CPB patients,
2 hr after CPB time, the optimal performance was reported
to yield an AUC ¼ 0.66 (CI 0.49–0.83) [47].

Low-molecular weight proteins

Urine cystatin C. The urinary excretion of CyC (uCyC) spe-
cifically reflects tubular damage because systemically pro-
duced cystatin C is normally not found in urine [64]. However,
recent insights show that urinary CyC excretion is augmented
by albuminuria [65]. In patients without AKI on ICU entry,
uCyC was not predictive of AKI occurring within 48 h with
AUC ¼ 0.54 (CI 0.46–0.62) [66]. Liangos et al. [47] used uCyC
for this prediction, which resulted in very moderate per-
formances 2-h post-CPB surgery with ROC AUC ¼ 0.50
(CI 0.27–0.72) in a cohort of 103 patients with 13 events
of AKI. In a study in patients undergoing CPB, Koyner et al.
demonstrated that uCyC measured at ICU admission
reached a maximum performance with an AUC of 0.693
(CI 0.567–0.818) [21, 48]. Among general adult ICU pa-
tients, 82 subjects developed AKI within 48 h of admission
and the predictive performance for urine CyC corrected for
urinary creatinine concentration yielded AUC ¼ 0.55
(CI 0.48–0.63). Another study performed by Koyner et al.
demonstrated the predictive value of uCyC at ICU admis-
sion for any stage of AKI with AUC ¼ 0.72 (CI 0.61–0.83).
For the prediction of AKIN Stage 3 versus the rest of the
cohort, the predictive performance increased to AUC ¼ 0.84
(CI 0.68–0.99) [42]. Royakkers et al. [18] regarded uCyC as a
predictor for AKI 2 days prior to the first day of AKI and
found no diagnostic value (AUC ¼ 0.49 no CI provided).

Tubular enzymes

Alpha-glutathione s-transferase and pi-glutathione
s-transferase. Alpha-glutathione s-transferase (a-GST)
and pi-glutathione s-transferase (p-GST) are both members
of a multigene family of detoxification enzymes present in
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many organs including the kidney. Distribution across the
entire nephron of structurally and functionally distinct iso-
forms has been demonstrated. In urine, these enzymes are
normally not present. After injury, a-GST is primarily de-
tected in the proximal cells, whereas p-GST is observed in
the distal parts [67]. Westhuyzen et al. studied the predictive
performance of tubular enzymes and their combination in
adult critically ill patients. Four patients developed AKI de-
fined as a 50% SCr increase or more. At the time of ICU
admission, a-GST and p-GST measured and indexed to urine
creatinine provided AUC’s of 0.893 (CI 0.688–0.975) and
0.929 (0.740–0.990), respectively, [68]. However, the pa-
tients with AKI seemed to have established AKI at study
inclusion with a median creatinine clearance of 38.1 mL/
min. Walshe et al. reported that in patients with developing
AKI and sepsis admitted to the general ICU, both enzymes
were bad predictors. They suggested that sepsis might be
the confounder triggering the production of these enzymes
[69]. Finally, a study by Koyner et al. in 123 adult CPB
patients reported AUC ¼ 0.59 (CI 0.47–0.71) and 0.54
(0.42–0.66) for the prediction of AKI Stage 1 for a-GST
and p-GST measured at ICU unadjusted for urine creatinine
arrival, respectively, with similar test performances when
using the harder end point of AKIN Stage 3 AUC ¼ 0.58
(0.31–0.85) and AUC ¼ 0.70 (0.50–0.90) [42].

Gammaglutanyl transpeptidase and alkaline phospha-
tase. Gammaglutanyl transpeptidase (GGT) and alkaline
phosphatase (AP) both are tubular brush border enzymes
that are released into urine when there has been signifi-
cant damage to the brush border membrane with loss of
the microvillus structures. Few clinical studies are avail-
able, but Westhuyzen et al. [68] report data on four cases
with developing AKI respectively of AUC ¼ 0.950 (CI 0.789–
0.999) and AUC ¼ 0.863 (CI 0.676–0.973). However, these
results should be interpreted with caution because the
cases must be considered as established AKI at study in-
clusion according to their reported creatinine clearance. In
general adult ICU patients, 82 subjects developed AKI
within 48 h of admission and the predictive performance
for urine GGT and urine AP corrected for urinary creatinine
concentration AUC ¼ 0.57 (CI 0.50–0.64) and AUC 0.56 (CI
0.49–0.63), respectively [48].

N-acetyl-b-D-glucosaminidase. N-acetyl-b-D-glucosamini-
dase (NAG) is a lysosomal enzyme (>130 kDa) that is local-
ized in the renal tubules. Due to its large molecular weight,
it precludes glomerular filtration, implying that urinary el-
evations have a tubular origin. Increased activity suggests
injury to its cells but may also reflect increased lysosomal
activity without cell disruption. NAG catalyses the hydroly-
sis of terminal glucose residues in glycoproteins.

Westhuyzen [68] reported on the ability to predict devel-
oping AKI in four cases in general ICU patients with AUC ¼
0.845 (CI 0.639–0.955): however, these patients seem to
have established AKI with reduced creatinine clearance at
the time of study inclusion. In adult CPB patients, 13 cases
of developing AKI were reported: and the 2-hr post-operative
prediction for NAG was very moderate: AUC ¼ 0.62 (CI 0.41–
0.83) [47] (See Table 3 for a summary of all cited studies).

Treatment of AKI

The pathogenesis of AKI is very complex with multiple
mechanisms underlying its course. Furthermore, critically

ill patients do not generally die from AKI as such but more
from the multiple organ dysfunction syndrome (MODS) as-
sociated with it. Given the multiple interactive pathways
underlying AKI, it might be a mistake to concentrate thera-
peutic effects on one single part of the interrelated cascades.
Therapies may need to target multiple sites in the pathophy-
siological pathways of AKI and MODS in order to be of any
benefit for patients. Such combination therapies must in-
volve agents with potential beneficial effects on vascular
tone, tubular obstruction and inflammation. Furthermore,
it is unlikely that targeting events that occur late in AKI will
be effective. Pharmacological therapy in the prevention
and treatment of AKI has been largely unsuccessful despite
proven benefits as seen in pre-clinical studies. A number of
drugs and investigational compounds seem promising in
pre-clinical studies. There are six major categories of treat-
ment strategies: anti-inflammatory agents, anti-apoptotic
agents, iron scavengers, anti-oxidants, vasodilators and
growth factors (Table 2).

Conclusions

In the quest for earlier markers for the recognition of AKI,
several biomarkers have been investigated. The reported
AUCs are disappointing ranging from 0.50 to 0.84, with one
or two exceptions, which can be explained by statistical or
methodological differences in study design. The discrimi-
natory function in heterogeneous populations is poor and
influenced by pre-existing renal function and time of sam-
ple collection with respect to the renal insult [48]. Clinical
appraisal of a patient using standard parameters such as
SCr and diuresis remains the cornerstone for now [70].
Therefore, it seems reasonable to perhaps shift our views
and using biomarkers together with other parameters
such as traditional clinical characteristics to optimize the
accuracy of prediction of developing AKI might be an in-
teresting option. Ultimately, the potential of new thera-
peutic agents can be tested and their use evaluated.

Table 2. Therapeutic agents for the treatment of AKI

Therapeutic agents
category Agents

Anti-inflammatory
agents

b1 Integrin antagonist, adenosine receptor
antagonist, mesenchymal stem cells, C5a
receptor antagonist, IL-10, IL-6 antagonist,
statins, erythropoietin, a melanocyte stimulating
hormone, haeme oxygenase-1 inducers
(rapamycin), activated protein C, toll like receptor
(TLR) blockers (Eritoran), sphingosine 2A agonist,
fibrates, statins, peroxisome proliferator
activared receptor (PPAR)-c agonist, minocycline,
inducable nitric oxide (iNOS) inhibitor, insulin,
ethyl pyruvate, C5-antagonists,
alkaline phosphatase

Anti-apoptotic agents NGAL, adenosine receptor antagonist,
mesenchymal stem cells, erythropoietin,
a-melanocyte stimulating hormone, caspase
inhibitors, minocycline, guanosine, pifithrin-a,
poly ADP ribose polymerase (PARP) inhibitor

Iron scavengers NGAL, apotransferrin, deferoxamine
Reactive oxygen
species scavengers

Anti-oxidants Edavarone, stobadine, deferoxamine
Vasodilators Endothelin receptor antagonist, CO-releasing

compounds, fenoldopam, anti natriuretic peptide
Growth factors Erytropoetin, hepatocyte growth factor
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