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Abstract
Frequent shift work causes disruption of the circadian rhythm and might on the long-term

result in increased health risk. Current biomarkers evaluating the presence of circadian

rhythm disturbance (CRD), including melatonin, cortisol and body temperature, require 24-

hr (“around the clock”) measurements, which is tedious. Therefore, these markers are not

eligible to be used in large-scale (human) studies. The aim of the present study was to

identify universal biomarkers for CRD independent of time of day using a transcriptomics

approach. Female FVB mice were exposed to six shifts in a clockwise (CW) and counter-

clockwise (CCW) CRD protocol and sacrificed at baseline and after 1 shift, 6 shifts, 5 days

recovery and 14 days recovery, respectively. At six time-points during the day, livers were

collected for mRNA microarray analysis. Using a classification approach, we identified a set

of biomarkers able to classify samples into either CRD or non-disrupted based on the hepat-

ic gene expression. Furthermore, we identified differentially expressed genes 14 days after

the last shift compared to baseline for both CRD protocols. Non-circadian genes differential-

ly expressed upon both CW and CCW protocol were considered useful, universal markers

for CRD. One candidate marker i.e. CD36 was evaluated in serum samples of the CRD ani-

mals versus controls. These biomarkers might be useful to measure CRD and can be used

later on for monitoring the effectiveness of intervention strategies aiming to prevent or mini-

mize chronic adverse health effects.

Introduction
Human behavior, physiology and metabolism are subject to daily rhythms, which are con-
trolled by the circadian clock. This endogenous time keeping system provides a temporal orga-
nization of our body functions in relation to environmental time and allows us to anticipate to
daily recurring events [1]. Chronic circadian rhythm disruption (CRD), as encountered by fre-
quent night shift work or multi time zone travelling might result in an increased risk for long-
term health effects. Indeed, epidemiological studies among shift workers and flight personnel
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have associated frequent shift work and jet lag with an increased incidence of breast cancer,
obesity and metabolic syndrome [2–4]. These adverse health effects occur after many years of
shift work, and at present it is unclear what mechanism is causing adverse health effects and
how these effects of shift work can be minimized. The ability to measure chronic CRD associat-
ed with shift work would allow measuring effects of interventions on chronic CRD and moni-
toring adversity in shift workers and ultimately will help to design intervention strategies.

Studies on the beneficial effects of interventions to prevent shift work-driven adverse health
outcomes assess effects on CRD using classical circadian markers, including melatonin, cortisol
and body temperature [5]. These markers allow monitoring circadian rhythm and acute CRD
using multiple measurements around the clock before health effects occur. In addition to classi-
cal circadian markers, recent research on circadian clock controlled output genes has shown
that up to 10% of the transcribed genes is under circadian control, providing additional rhyth-
mic markers to estimate body time in blood and tissues [6, 7]. However, both the classical cir-
cadian markers and cycling clock and clock-controlled gene markers are non-eligible as CRD
markers in large-scale human cohort studies due to two important pitfalls. Firstly, circadian
markers require around the clock measurements, resulting in higher costs and larger impact on
participating subjects compared to single measurements. Secondly, classical biomarkers are
useful for demonstrating acute CRD, but provide no or only limited information on long-term
CRD and accumulation of adversity over time. To acquire information on biological adversity
of CRD and to explore the effectiveness of CRD preventive measures, new biomarkers are
needed to evaluate the presence of chronic CRD in a time of day independent manner.

Shift work involves a multitude of aspects, including phase desynchronization, light at
night, sleep disruption and lifestyle disturbances, all of which potentially play a role in causing
CRD and associated adverse health effects [8]. Many different shift work schedules are in use,
varying in rotation speed and direction, including forward (counterclockwise) or backward
(clockwise) rotating shift schedules. Experimental studies in which mice were subjected to
(chronic) shifts in the light-dark cycle (as such resembling jet lag), have shown that both coun-
terclockwise (CCW) and clockwise (CW) schedules cause CRD [9]. Additionally, several
human studies have shown disturbed circadian rhythms by both CCW and CW work sched-
ules, without major differences between the schedules [10–12]. However, in aged mice CCW
shifts appeared more disruptive than CW shifts, as evident from the increased mortality [13].

The aim of the present study was to identify universal biomarkers for CRD independent of
rotation direction and time of day. Two different rotations of chronic jet lag were used to in-
duce CRD. Since blood biomarker discovery is technically challenging, we selected the liver to
identify biomarkers, as the target tissue of metabolic effects of CRD and as previously used for
circadian transcriptomics studies [7]. By comparing the liver transcriptome of animals under
normal, CW rotating and CCW rotating light schedules, we identified a set of hepatic gene ex-
pression markers that report on the presence of CRD. Additionally, we identified non-circadi-
an, age-independent genes differentially expressed after CRD compared to baseline that are
potentially blood detectable. One candidate biomarker i.e. CD36 was validated in blood, allow-
ing future use in large-scale human studies.

Methods

Study design
Animal studies were performed in compliance with national legislation, including the 1997
Dutch Act on Animal Experimentation, and experiments were approved by the Animal Experi-
mentation Ethical Committee of the National Institute for Public Health and the Environment

Biomarkers for CRD

PLOSONE | DOI:10.1371/journal.pone.0127075 May 18, 2015 2 / 14



in Bilthoven. All surgery was performed under isoflurane anesthesia and appropriate analgesics
were used to minimize suffering.

Female FVB mice, 8 to 12 weeks of age, were kept under a normal 12:12 hour light-dark
(LD) cycle for approximately three weeks, with Zeitgeber Time 0 (ZT0) corresponding to lights
on. Animals were group-housed and food and water were provided ad libitum. Prior to the
first shift, animals (n = 24) were sacrificed around the clock at four hour intervals (n = 4 at
each time point). Subsequently, the remaining group of animals underwent six shifts in either a
clockwise (CW) or counterclockwise (CCW) rotating light schedule. Specifically, mice were ex-
posed to a phase delay or phase advance of eight hours every five days, respectively (S1 Fig).
Hereafter, mice were again kept under LD, referred to as recovery. After one shift, six shifts,
five days recovery and fourteen days recovery n = 30 animals per group were sacrificed around
the clock with four hour intervals (n = 5 per time point) by orbital bleeding under Ketamine/
Xylazine anesthesia. Liver and blood were collected for transcriptomics and serum analyses, re-
spectively. A detailed overview of the experimental design is depicted in S1 Fig.

Four additional mice per group received a radio transmitter (Physio Tel, TA11 TA-F10;
Data Sciences, St. Paul, MN) in the peritoneal cavity to record core body temperature every ten
minutes. Body temperature was recorded throughout the experiment. Cosine curves were fitted
using the R statistical software environment (www.r-project.org) to determine the phase (i.e.,
peak time) of activity and body temperature rhythms.

Microarray analysis
RNA was extracted from livers (n = 4 per time point at baseline and n = 2 per time point for
the CCW and CW groups) using the miRNeasy Mini Kit (Qiagen Benelux, Venlo, The Nether-
lands). RNA concentrations were measured using a NanoDrop ND-1000 Spectrophotometer
(Nanodrop Technologies, Wilmington, DE, USA), and RNA quality was assessed with an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Amstelveen, the Netherlands).

RNA was processed for gene expression analysis at the Microarray Department of the Uni-
versity of Amsterdam, the Netherlands, using methods described in Pennings et al [14]. Experi-
mental samples (each corresponding to RNA from one individual mouse) were labelled with
Cy3 and the common reference sample (made by pooling equimolar amounts of RNA from ex-
perimental samples) was labelled with Cy5. Samples were hybridized to Nimblegen Mus mus-
culus 12 x 135 k microarrays (Roche NimbleGen, Germany). This type of microarray contains
44,170 gene probes with three spots per probe. Slides were scanned with an Agilent G2565CA
DNAmicroarray scanner. Feature extraction was performed with NimbleScan v2.5 (Roche
NimbleGen), resulting in a table containing individual probe signal intensities for both dyes.

The raw data were subjected to a set of quality control checks to ensure comparable signal
average and distribution. Raw microarray data for gene-coding probes were normalized in R
(www.r-project.org) using a four step approach [14]: (1) natural log-transformation, (2) quan-
tile normalization of all scans, (3) correcting the sample spot signal for the corresponding refer-
ence spot signal and (4) averaging data from replicate probe spots. The normalized data of
44,170 probes were further analysed in R and Excel (Microsoft Corporation, USA). Probe to
gene annotation data was downloaded from NCBI. Classification and statistical analysis was
performed on the probe level. Significantly predictive or regulated probe sets were annotated to
the corresponding genes for further biological interpretation. To this end, when multiple
probes corresponding to the same gene were significant, they were counted as one gene in fur-
ther analysis; probes that did not correspond to genes according to the current NCBI database
were excluded from further analysis.
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Complete raw and normalized microarray data and their MIAME compliant metadata have
been deposited at GEO (www.ncbi.nlm.nih.gov/geo) under accession number GSE65346.

Classification approach
After normalization, a classification approach was applied to identify a set of genes able to clas-
sify samples into either circadian rhythm disrupted (CRD) or non-disrupted (ND) 14 days
after the last shift. Three different algorithms were used: Random forests (RF) [15], Support
vector machine (SVM) [16] and Prediction analysis for Microarrays in R (PAM-R) [17] (R sta-
tistical software). To ensure time-of-day independence of the classifier, for each classification
algorithm, a ‘leave-one-time point-out’ cross-validation approach was used for the classifica-
tion. Here, time point refers to ZT time point. To this end, the data were repeatedly split into a
training set and a test set, in which the training set comprised the data for all-but-one time
point, and the test set the data for the remaining time point. The prediction model obtained for
the training set was used to predict the test set data. This approach keeps replicate (time point)
samples together and therefore gives a more reliable estimation of the prediction accuracy than
cross-validation with random sample selection. The prediction accuracy was calculated as the
average over all the test set predictions. As each classifier builds a different prediction model
(potentially using different genes) for each training set, genes included in the majority of the
models for each classifier were taken as consensus gene set for each type of classifier.

As we aim to find biomarkers which applicability does not depend on a specific choice of al-
gorithm, only genes present in all three classifiers consensus sets were considered potentially
valuable biomarkers to classify CRD versus non-disrupted [18, 19]. To validate prediction ac-
curacy of the consensus gene set after one shift, six shifts and after 5 days recovery, the 14 days
recovery dataset was used as the training set to build the prediction model.

Sequential approach
To identify differentially expressed genes (as compared to baseline) after 14 days recovery for
the CCW and CW protocol separately, we performed a one-way ANOVA with Qlucore Omics
Explorer (Qlucore AB, Lund, Sweden) in which p<0.001 was considered statistically signifi-
cant. CircWave Batch v5.0 software (Hut, R., www.euclock.org/results/item/circ-wave-batch.
html) was used to analyze circadian rhythmicity of gene expression. P-Values were false discov-
ery rate (FDR) corrected [20]; genes with an FDR<0.05 were considered rhythmically express-
ed. Genes that were rhythmically expressed at any time point during the experiment (baseline,
1 shift, 6 shifts 5 or 14 days recovery) were excluded as potential biomarker. The GenAge Data-
base of ageing-related genes (www.genomics.senescence.info) was used to identify (human)
age-dependent genes, which were excluded also.

To determine which candidate biomarker genes are potentially detectable in human serum
or plasma, we determined which genes code for proteins that are annotated in Gene Ontology
as extracellular or in UniProt as secreted. Additionally, we determined which genes have
human equivalents that have been experimentally detected with high confidence in plasma or
serum [21] or as part of the Human Plasma Proteome Project [22].

Biomarker serum levels
Corticosterone serum levels were determined using ELISA assays (Yanaihara Institute Inc. Shi-
zuaka, Japan) and subsequently visualized and analysed using GraphPad Prism software ver-
sion 6.04 for Windows (GraphPad Software, San Diego California USA). Five outliers (out of
251 samples) were excluded based on Grubbs analysis (alpha 0.1). Phase and circadian rhythm
were analysed using CircWave Batch v5.0 software. CD36 was determined in serum with a
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dedicated ELISA assay (Abcam, Cambridge, United Kingdom). Differences between CRD ex-
posed groups and baseline were statistically tested using a two-sided student’s t test. P-values
<0.05 were considered statistically significant.

Results

Classical circadian markers
First, we evaluated whether the two different schedules, counterclockwise (CCW) and clock-
wise (CW), affected circadian rhythm by analyzing classical circadian markers: core body
temperature and corticosterone rhythms. At baseline, animals showed regular daily body tem-
perature rhythms, with peaks at approximately ZT12. Core body temperature rhythms re-
entrain to the new light-dark cycle after the first shift and following shifts, for both CCW and
CW groups (Fig 1, panels A & B, respectively).

As expected, corticosterone serum levels at baseline showed a major peak at ZT12. Addi-
tionally, a minor peak at ZT0 was also observed, corresponding with a small increase in activity
at this time point specific for FVB mice (CircWave tau = 12, p = 0.0003). Differential effects be-
tween the two schedules could be observed after peak phase analysis of corticosterone rhythms
(Fig 2). After the first shift, the corticosterone rhythm shows peak levels at ZT16 for the CW
group, representing an incomplete shift (p = 0.005). In the CCW group peak time was at ZT20,
indicative of a lack of phase shift at this time point (p = 0.052). Although there is a tendency to-
ward circadian rhythm, no significant circadian corticosterone rhythm could be detected in ei-
ther group upon six shifts (CCW: p = 0.369, CW: p = 0.700). At 5 days and 14 days after the
last shift, rhythms were detected in both groups. After 14 days recovery these rhythms were

Fig 1. Double plots of peak phase of core body temperature rhythms. A. the counterclockwise schedule andB. the clockwise schedule. A cosine
function was fitted to determine peak phase (n = 4 mice per group). Data are presented as mean peak phase ± sd. Grey areas indicate periods of darkness.

doi:10.1371/journal.pone.0127075.g001
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Fig 2. Corticosterone serum levels for the counterclockwise (CCW) and clockwise (CW) jet lag protocols. Serum levels were determined at baseline,
after 1 shift, 6 shifts, 5 days recovery and 14 days recovery. Data are presented as mean ± SD. For the first shift, the light dark schedule before the shift is
depicted in grey. At baseline a significant 12-hr rhythm was detected, due to the major peak at ZT12 and another peak at ZT0. CircWave peak phases were

Biomarkers for CRD
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less robust for CCW and CW (p = 0.093 and p = 0.105, respectively) compared to 5 days after
the last shift (CCW: p = 0.007, CW: p = 0.003). Overall, these results show that circadian
rhythms of corticosterone levels heavily disturbed upon prolonged exposure to CRD, but reap-
pear when animals are back under normal LD conditions.

In summary, both experimental jet lag schedules, CCW and CW rotation affected the classi-
cal circadian markers, indicating CRD. Minor differences in classical circadian markers were
found between the two schedules directly after a shift. However, for both schedules the effects
were transient, largely recovering within 14 days after the last shift.

Predictive set of hepatic transcriptome markers
Since liver is the target tissue of metabolic effects and can be used for future studies, we per-
formed an around the clock analysis of the liver transcriptome at baseline and after 14 days re-
covery. To identify a predictive set of hepatic transcriptome markers for chronic CRD with
time of day-independent expression levels, we applied a classification approach. Three different
classification algorithms were used: RF, SVM and PAM-R (complete overview in Fig 3a).
Using a ‘leave-one-time point-out’ cross-validation approach, we identified one consensus set
of genes per algorithm optimally classifying samples as CRD versus non-disrupted, after 14
days recovery independent of time of day. The SVM approach resulted in a consensus set of
226 probes, RF in 42 and PAM-R in 46. Only the 18 probes, corresponding to 15 individual
genes, present in all three classifiers were considered potentially robust biomarkers to classify
CRD versus non-disrupted [18, 19] (Table 1, S2 Fig). Based on this consensus gene set predic-
tion accuracy was achieved ranging from 90% to 98% (S1 Table) showing that the set of 15
genes could distinguish CRD-exposed animals from non-disrupted controls with high accuracy
independent of sampling time.

Subsequently, the ability of the consensus gene set to detect CRD after one shift, 6 shifts and
5 days recovery was determined. Detection of acute CRD was limited, as after the first shift
only 29% to 33% of the samples of phase shifted animals were correctly classified as CRD sam-
ples, depending on classification method. Accumulation of CRD was detected in the samples
taken after six shifts, here, 92% to 88% of the samples were correctly classified as CRD exposed.
Samples taken five days after the last shift were also well classified by the gene set, 75% to 88%
depending on the algorithm (S2 Table). Overall, this hepatic transcriptome marker set is well
able to detect chronic CRD independent of the time point the sample is collected within 14
days recovery.

Non-invasive biomarkers for CRD
Although predictive of CRD, use of hepatic gene expression markers is still invasive, where
non-invasive methods are preferable. However, direct biomarker discovery in blood is techni-
cally challenging. To find non-invasive biomarkers eligible to monitor CRD, we aimed to iden-
tify potential blood markers for CRD from the gene expression dataset. Therefore, we selected
genes of which expression (i) increased or decreased with accumulating CRD exposure and (ii)
remained deregulated after 14 days recovery. Furthermore, we excluded genes with circadian
expression levels as these have drawbacks earlier described. Compared to control animals, 339
genes were differentially expressed in mice exposed to the CCW schedule. For mice in the
CW rotation schedule (p<0.001) 129 were differentially expressed, of which 42 genes were

indicated with ($). Note: as circadian rhythmicity of serum corticosterone levels was lost after 6 shifts, peak phases at the 6th shift are just indicative of the
best cosine fit.

doi:10.1371/journal.pone.0127075.g002
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significantly expressed in both groups. Of these 42 genes, only genes with a fold change (FC)
larger than 1.2 or smaller than 0.8 were considered relevant to increase the probability of de-
tectable differences in blood protein levels. This resulted in 17 genes all showing an approxi-
mate pattern of up or down regulation with accumulating shifts and remaining differentially
expressed after 14 days recovery compared to baseline.

Of these 17 genes, 9 genes were found to encode potentially blood-detectable biomarkers ac-
cording to (i) annotation as “secreted” or “extracellular”, and/or (ii) previous proteome-based
experimental detection in human plasma or serum: Cd36, Ntrk2, Igh-VJ558, Srgap3, Tram1,
Snrpn, Rbp1, Cyp2b10 and Cyp2c29 (see Fig 3b and S3 Table for the sequential flow of gene se-
lection). A substantial overlap with the classification consensus gene set was found, 5 genes
were identified by both approaches (Table 1). Four out of the 9 genes showed increasing up

Fig 3. Schematic overview of the microarray analyses. A.Overview of the classification approach, resulting in a set of transcriptomics biomarkers
including 15 individual genes.B.Outline of the sequential approach of the data-analyses from hepatic gene expression profiles to 9 potential blood-
detectable protein biomarkers.

doi:10.1371/journal.pone.0127075.g003
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regulation with number of shifts and remained up-regulated during recovery and five genes
showed a similar pattern in the opposite direction (Fig 4).

Based on expression patterns and the availability of a serum ELISA assay, CD36 was selected
for validation in blood. At 14 days after the last shift, CD36 serum levels showed a significant

Table 1. Potential biomarkers for CRD as identified by classification and sequential approach.

Gene symbol Function Consensus gene set (classification
approach)

Non-invasive blood detectable marker (sequential
approach)

Cyp2c29 Cytochrome P450
epoxygenase

x X

Cyp2b10 Cytochrome P450 X

Rbp1 Vitamin A transport x X

Sult2a1 Sulfotransferase x

Cd36 Scavenger receptor x x

Ntrk2 Kinase signaling x x

Tusc3 Tumor suppression x

Armcx3 Tumor suppression x

Gspt2 Cell cycle progression x

Snrpn Transcription x x

Tceal8 Transcription x

Fkbp11 Protein folding x

Orm2 Acute phase plasma protein x

Gm3787 Unknown x

Gm9299 Unknown x

D630033O11Rik Unknown x

Igh-VJ558 Immune x

Srgap3 GTPase activity x

Tram1 Translocation proteins x

doi:10.1371/journal.pone.0127075.t001

Fig 4. Potentially blood-detectable marker for CRD. Fold ratio of selected differentially expressed genes encoding potentially blood-detectable protein
biomarkers for CRD. Expression of these genes is up-regulated or down-regulated by both the CCW and the CW schedule and remains up or down regulated
during recovery.

doi:10.1371/journal.pone.0127075.g004
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increase of 18% in animals exposed to CCW shifted light schedules independent of time of day,
compared to animals at baseline (Fig 5). For the animals exposed to the CW light schedule, an
11% increase was found. For both shifting schedules, the increase in blood levels was less pro-
nounced than the increase observed in the gene expression data.

Discussion
Frequent shift work results in a disruption of the circadian rhythm (CRD) and might on the
long-term result in increased health risk. Epidemiologic studies among shift workers and flight
personnel have shown increased risk of breast cancer, obesity and metabolic syndrome [2–4].
The growing 24/7 economy will only lead to increase in shift work and consequently will ad-
versely affect health. Ideally, the level of chronic CRD should be detected before the negative
health effects occur. To limit potential health effects, preventive measures to minimize CRD
are an attractive option. For these purposes, measuring the presence of chronic CRD is of im-
portance, however, tools to measure chronic CRD are currently lacking. The present study
aimed to identify universal biomarkers for chronic CRD using a transcriptomics approach.

To date, CRD and the beneficial effects of preventive measures on CRD are mainly deter-
mined using classical circadian markers such as melatonin, cortisol or body temperature [23].
There is a need of markers that show the cumulative effects of CRD, since the effects on avail-
able markers are transient showing only acute effects of CRD. Corticosterone rhythms were
heavily disturbed after six subsequent shifts of the light dark schedule and reappear after 5 days
recovery, whereas body temperature remains rhythmic and was found to re-entrain to the new
light dark schedule within 4–5 days, even after multiple shifts. The present study identified
chronic, non-transient biomarkers for chronic CRD 14 days after the last shift, based on hepat-
ic gene expression. The potentially blood detectable biomarkers report on the presence of
chronic CRD, showing an increase or decrease after multiple shifts and non-reversible deregu-
lation upon recovery. The classification markers (consensus gene set) could be used directly

Fig 5. Serum levels of the CD36 protein. Serum levels were determined at baseline and 14 days after the
last shift for animals subjected to CCW and CW shifted light schedules. Error bars indicate mean ± sd.

doi:10.1371/journal.pone.0127075.g005
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after multiple shifts and 5 or 14 days after the last shift, which makes good candidates to deter-
mine acute shift work related CRD.

Ideally, for large-scale molecular epidemiology and experimental studies biomarkers of
CRD are time-independent. The current available circadian markers require 24-hr measure-
ments, which is challenging in both experimental and field studies. Recent attempts have been
made to identify transcriptomics- and metabolomics-based time of day independent biomark-
ers. In these studies, jet lag and clock mutant mice were used [7, 24], allowing detection of
acute and transient effects of jet lag but not chronic effects. It is challenging to model human
shift work since it involves a multitude of aspects, including phase desynchronisation, changed
social patterns, activity, sleep, nutrition light exposure and sun exposure. Using a chronic jet
lag model in mice, and as such mainly mimicking phase desynchronisation, we were able to
identify biomarkers detecting chronic CRD that can be studied in a single sample, collection of
which is independent of time of day. Further studies should point out whether other aspects of
shift work (e.g. changes in activity, light-at-night, altered nutritional timing) will affect the
same genes.

The set of liver-transcriptome based biomarkers includes genes with a variety of functions.
The current study suggests that CD36 could potentially be a blood-detectable biomarker for
CRD. CD36 is a scavenger receptor present on many mammalian cell types with a broad range
of cellular functions [25]. It has been suggested that CD36 in plasma might represent a marker
of the metabolic syndrome [26], a condition that was found associated with frequent shift work
[27]. Furthermore, CD36 was shown to play an important role in breast tumorigenesis [28, 29]
potentially associated with the observed increase in breast cancer risk found in shift workers
[30]. Although CD36 is interesting as CRD biomarker, other potentially blood-detectable bio-
markers should not be neglected. Especially, the genes that were found upregulated upon CRD
are of interest for further investigation. For example, Ntrk2 shows a similar induction pattern
as CD36 and has also been shown to play a role in breast cancer cell survival and obesity [31,
32]. In depth analysis of biological relevant data in this study is limited due to our aim to select
non-circadian biomarkers, for which circadian genes were excluded. Full analysis of biological
processes affected by CRD requires inclusion of these circadian genes and is subject for further
studies.

Our study represents two approaches to identify the most valuable CRD markers based on
hepatic gene expression; firstly, an optimal CRD classification set and secondly, a selection of
potentially blood detectable biomarkers. An important step that needs to be taken before the
identified biomarkers can be applied in experimental and large-scale cohort studies is valida-
tion for CRD in humans. For blood-detectable markers, the challenge of the transcriptomics
approach is the translation of hepatic gene expression to protein levels in blood. We found that
in our homogenous mouse model, CD36 serum levels were also increased in animals exposed
to CCW and CW shifted light schedules; however, the increase was smaller compared to gene
expression. Potentially, serum CD36 originates from other sources than liver alone, since
CD36 is present in many mammalian cell types [25]. Another part of the validation process is
the exclusion of post-translational rhythmicity, which is not precluded by the lack of a tran-
scriptional rhythm. In human samples, heterogeneity and variation between samples is much
larger and small increases in biomarker blood levels may remain undetected in cross-sectional
studies. Preferably, to obtain less inter-individual variation one would opt for longitudinal
measurements including baseline measurements per individual before commencing shift work
rotations. Furthermore, anchoring with phenotypic endpoint is required to use the selected
biomarkers for intervention studies without the need for long-term end-point studies. For this,
it should be noted that previous studies have shown that comparable chronic CRD protocols
increased negative health effects in mice [13, 33].
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In conclusion, our study identified a chronic CRD gene-set, comprising 15 genes, potentially
useful to study CRD induction by different aspects of shift work and reduction by interven-
tions. Furthermore, we identified 9 candidate genes for blood-detectable biomarkers of CRD,
including CD36. Upon validation, these biomarkers provide valuable tools for evaluating CRD
in both experimental animal and human studies set up to identify preventive measures for ad-
verse health effects.
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