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Abstract. By using the notions of exact truth (‘true and not false’) and exact falsity

(‘false and not true’), one can give 16 distinct definitions of classical consequence. This

paper studies the class of relations that results from these definitions in settings that are

paracomplete, paraconsistent or both and that are governed by the (extended) Strong

Kleene schema. Besides familiar logics such as Strong Kleene logic (K3), the Logic of

Paradox (LP) and First Degree Entailment (FDE), the resulting class of all Strong Kleene

generalizations of classical logic also contains a host of unfamiliar logics. We first study the

members of our class semantically, after which we present a uniform sequent calculus (the

SK calculus) that is sound and complete with respect to all of them. Two further sequent

calculi (the SKP and SKN calculus) will be considered, which serve the same purpose

and which are obtained by applying general methods (due to Baaz et al.) to construct

sequent calculi for many-valued logics. Rules and proofs in the SK calculus are much

simpler and shorter than those of the SKP and the SKN calculus, which is one of the

reasons to prefer the SK calculus over the latter two. Besides favourably comparing the

SK calculus to both the SKP and the SKN calculus, we also hint at its philosophical

significance.

Keywords: Classical logic, Strong Kleene Logic (K3), Logic of Paradox (LP), First Degree

Entailment (FDE), Exactly True Logic, Uniform Sequent Calculus.

1. Introduction

1.1. Strong Kleene Generalizations of Classical Logic

According to classical logic, truth and falsity are mutually exclusive and
jointly exhaustive. As a consequence, truth coincides with non-falsity. More-
over, in the classical setting truth coincides with exact truth (which we will
also denote as truth∗), where a sentence is exactly true just in case it is true
and not false. Similarly, falsity coincides with exact falsity (falsity∗), where
a sentence is exactly false just in case it is false and not true, and so truth
not only coincides with truth∗ and non-falsity, but also with non-falsity∗.
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To sum up:

Classical setting: truth = truth∗ = non-falsity = non-falsity∗ (1)

A typical way to characterize a logical consequence relation is in terms of the
preservation of truth over a class of valuations V. According to this General
Schema (GS) a premise set Γ is said to entail a conclusion ϕ just in case, in
passing from Γ to ϕ, truth is preserved for each valuation V ∈ V, i.e.

V (γ) is true for all γ ∈ Γ =⇒ V (ϕ) is true, for all V ∈ V (GS)

When we quantify, in (GS), over the class of all classical valuations, we
obtain a characterization of the classical consequence relation. However,
(1) testifies that, when quantifying over all classical valuations, substitut-
ing ‘true∗’, ‘non-false’ or ‘non-false∗’ for any of the occurrences of ‘true’
in (GS) delivers another characterization of classical consequence. Indeed,
with x, y ∈ {true, true∗, non-false, non-false∗}, the schema GS(x, y) that
results when we substitute x for the occurrence of ‘true’ on the left side of
the implication of (GS) and y for the occurrence of ‘true’ on its right side,
also defines—when we let V be the class of all classical valuations—classical
consequence.

In this paper, we will study the relations that are defined by our 16
schemas GS(x, y) in settings that are paracomplete, paraconsistent or both.
A setting that is both paracomplete and paraconsistent acknowledges the
possibility that a sentence is neither true nor false (hence the setting is
paracomplete) as well as the possibility that a sentence is both true and
false (hence the setting is paraconsistent). It readily follows that in such
a setting, truth, truth∗, non-falsity and non-falsity∗ are all distinct from
one another and hence, that our 16 schemas potentially define 16 distinct
relations. Of course, whether they actually do so depends on the class of
valuations V with respect to which the schemas are evaluated, to which we
now turn.

In this paper, we will be concerned with valuations for a propositional
language L whose BNF form is as follows (where p comes from a countably
infinite set of propositional atoms)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

The valuations of L that we will consider are those associated with the
extended Strong Kleene schema (cf. Belnap [12,13] and Dunn [16]) as defined
below.
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Definition 1. An (extended) Strong Kleene valuation is any function from
Sen(L ) to 4 := {T,B,N,F} that respects the following truth tables for ∧,
∨ and ¬.

∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

∨ T B N F
T T T T T
B T B T B
N T T N N
F T B N F

¬
T F
B B
N N
F T

We write V4 to denote the set of all (extended) Strong Kleene valuations.
We use V3n to denote the set of all valuations in V4 whose range is a
subset of 3n := {T,N,F}, V3b to denote the set of all valuations in V4

whose range is a subset of 3b := {T,B,F}, and V2 to denote the set of all
(classical) valuations in V4 whose range is 2 := {T,F}.

The canonical interpretation of the elements of 4 is an epistemological one:
according to Belnap’s ([12]) told-interpretation, a sentence is valuated as B
just in case one is told both that the sentence is true and that it is false.
In this paper however, the elements of 4 will, for sake of simplicity (and as
nothing hinges on it), be interpreted ontologically; a sentence is either T
(exactly true), F (exactly false), B (both true and false) or N (neither true
nor false). Hence, the valuations of V4 are associated with a setting that is
both paracomplete and paraconsistent. Likewise, the valuations of V3n are
associated with a setting that is (only) paracomplete and the valuations of
V3b with a setting that is (only) paraconsistent. Finally, the valuations of
V2 are associated with the classical setting that is neither paracomplete nor
paraconsistent.

It will be convenient to introduce a uniform notation for the Strong Kleene
Generalizations (of classical logic), i.e. for the relations1 that are obtained
when our 16 schemas are instantiated with V2, V3n, V3b and V4 respec-
tively.2 To do so, we first introduce the following notation for subsets of 4:

1 := {T,B} 0 := {F,B} t := {T} f := {F}
1̂ := {F,N} 0̂ := {T,N} t̂ := {F,N,B} f̂ := {T,N,B} (2)

1As will become apparent, some Strong Kleene Generalizations will equal the empty
set (and one of the relations thus obtained will be non-transitive). It is awkward to call
the empty set a consequence relation, and hence we will not refer to the class of all Strong
Kleene Generalizations as a class of consequence relations.

2Note that the restrictions of (the truth functions denoted by) ¬, ∧ and ∨ to 2 (3b, 3n)
are truth functions on 2 (3b, 3n). Indeed, this ensures that we can approach the Strong
Kleene Generalizations in a uniform and concise manner.
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Thus, 1 codes for truth, t codes for truth∗, 0̂ codes for non-falsity and f̂ for
non-falsity∗. Our uniform notation for the Strong Kleene Generalizations (of
classical logic) is provided by the following definition.

Definition 2. Let x, y ∈ {1, 0̂, t, f̂} and let z ∈ {2,3n,3b,4}. The relation
xy

z

between sets of sentences and sentences of L is defined as follows:

Γ xy

z

ϕ ⇐⇒ if V (γ) ∈ x ∩ z for all γ∈Γ then V (ϕ)∈y∩z for all V ∈Vz

(3)
A relation xy

z

as defined by (3) is called a Strong Kleene Generalization
(of classical logic). When x, y ∈ {t, f̂}, we say that xy

z

is exact . When
x, y ∈ {1, 0̂}, we say that xy

z

is regular. When xy

z

is neither exact nor regular,
it is mixed.

Quite some of the Strong Kleene Generalizations are well-known. To be sure,
for the classical setting (z = 2) all 16 instantiations of (3) define the classical
consequence relation. But also for the considered paracomplete (z = 3n) and
paraconsistent setting (z = 3b) all instantiations of (3) are well-known. It
turns out that for z ∈ {3n,3b}, the consequence relation xy

z

is either equal
to

–
K3 , the consequence relation of strong Kleene Logic K3 (cf. Kleene [19]).

–
LP

, the consequence relation of the Logic of Paradox LP (cf. Priest
[24]).

–
CL

, the consequence relation of classical logic CL.

– ∅, the empty set.

In particular, each of these 4 relations can be represented as an exact Strong
Kleene Generalization, as for z ∈ {3n,3b}, we have3

tt

z

=
K3 f̂ f̂

z

=
LP tf̂

z

=
CL f̂ t

z

= ∅ (4)

Our presentation of K3, LP, CL as in (4) naturally raises the question what
the “4 equivalents” of these familiar consequence relations look like. More
concretely, which logics are defined by

tt

4

,
f̂ f̂

4

and
tf̂

4

? To the best of our
knowledge, of these three relations only

tt

4

has been considered before in
the literature. Per definition, we have

3Except for
tf̂

z
=

CL
, which we prove in Sect. 2, all equalities mentioned by (4) are

immediate consequences of the involved definitions.
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–
tt

4

=
ET L

, the consequence relation of Exactly True Logic ETL which
was studied by Pietz and Rivieccio in [23].

In [23], Pietz and Rivieccio compare ETL with the logic of First Degree
Entailment (FDE), a well-known logic that is studied in [12] and [13] and
that is defined in terms of the preservation of truth or—what turns out to
be equivalent—non-falsity over V4 valuations:

–
11

4

=
0̂0̂

4

=
F DE

, the consequence relation of FDE.

Pietz and Rivieccio motivate their study of ETL by observing that in a 4-
valued setting, it seems natural to define one’s consequence relation in terms
of the preservation of T:

A curious feature of [. . . ] FDE is that the overdetermined value B
(both true and false) is treated as a designated value. Although there
are good theoretical reasons for this, it seems prima facie more plau-
sible to have only one of the four values designated, namely T. [23,
p. 125]

Our motivation to study ETL in this paper is rather different. The main pur-
pose of this paper is to study the Strong Kleene Generalizations in a uniform
way. As ETL is a Strong Kleene Generalization, it belongs a fortiori, to the
object of our study. Moreover, there is some interest in the relations

tt

4

(i.e.
ETL),

f̂ f̂

4

and
tf̂

4

, as in light of (4), these relations are the natural general-
izations of respectively K3, LP and CL to a 4-valued setting. We will study
the Strong Kleene Generalizations both semantically and syntactically—we
will advocate one and present three uniform sequent calculi to capture the
xy

z

relations—as explained in more detail below.

1.2. Structure of the Paper

In Sect. 2, we study the Strong Kleene Generalizations semantically. It turns
out that the different instantiations of (3) define 8 distinct non-empty Strong
Kleene Generalizations: CL, K3, LP, FDE, ETL,

f̂ f̂

4

,
tf̂

4

(which were already
mentioned) and

1f̂

4

. Of the 8 relations just mentioned, FDE turns out to
be the weakest, and CL the strongest one: whenever an argument is FDE
valid, it is valid according to each of the 8 relations and when an argument
is valid according to any of the 8 relations, it is CL valid. In Sect. 2.5
we present an exhaustive comparison of the strengths of all 8 relations.
However, we first show, in Sect. 2.1, that for z ∈ {2,3b,3n}, (3) either
defines ∅, CL, K3, or LP. Then we study the exact, regular and mixed
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Strong Kleene Generalizations associated with z = 4 in Sects. 2.2, 2.3 and
2.4 respectively. We will see that although quite some of the interrelations
between K3, LP and CL carry over to their 4-valued counterparts, these
counterparts have rather unusual properties at the level of meta-inferences.
For instance,

1f̂

4

turns out to be a non-transitive relation and according to

f̂ f̂

4

, a premise γ may entail both α and β without entailing α ∧ β. In Sect.
2.6, we observe that none of the Strong Kleene Generalizations contains an
appropriate implication connective in the sense of Arieli and Avron [2] and
we show that and how such connectives can be added to our language.

In Sects. 3 and 4, we study the Strong Kleene Generalizations syntacti-
cally. In Sect. 3 we present the SK calculus (Strong Kleene calculus), which
is a uniform sequent calculus that is sound and complete with respect to
all the Strong Kleene Generalizations. The SK calculus recognizes four dis-
tinct notions of provability: showing that an argument is xy

z

valid comes
down to showing that an appropriate sequent is z-provable. The notions of
z-provability differ only in the initial sequent rules that are allowed to occur
in a proof and in particular the operational sequent rules that can be used
in a z-proof are the same for each value of z. Although the SK calculus is a
cut-free calculus, admissible cut rules for the calculus are readily available,
as we discus in Sect. 3.4. In Sect. 3.5, we illustrate a convenient property
of the tableau calculus that is associated with the SK calculus: to check
whether an argument is valid according to, respectively, CL, K3, LP or FDE
requires the inspection of the z-closure of a single tableau.

In Sect. 4, we consider two other uniform sequent calculi for the xy

z

relations—the SKP and SKN calculus which are based on the notions of
P(ositive) and N (egative) validity respectively—that can be obtained by
applying the general methods of Baaz et al. [6]. Although sequents in all
three calculi are sets of signed sentences, in the SKP and SKN calculus
signs are members of {t,b,n, f} that code for the corresponding elements
of 4, whereas in the SK calculus signs are elements of {1, 0, 1̂, 0̂} and code
for subsets of 4: the SK calculus reflects the fact that T, B, N, and F
are best thought of as combinations of (regular) truth values and its signs
capture the “underlying” values of (non-)truth and (non-)falsity. Doing so
has advantageous consequences as compared to the other two calculi, the
sequent rules and proofs of the SK calculus are much simpler and shorter.

In Sect. 5 we reflect on the results that were achieved in earlier sections.
In Sect. 5.1 we favourably compare the SK calculus to both the SKP and
SKN calculus. In Sect. 5.2 we confront the SK calculus with the fact that
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“more standard” 2-sided sequent calculi for some of the Strong Kleene Gen-
eralizations exist. Doesn’t this deprive the SK calculus of its interest? No.
Sect. 5.3 hints at the significance of the SK calculus for (i) (a generaliza-
tion of) the bilaterlalistic account of meaning as developed by Restall [26]
and (ii) the account of logical pluralism—called intra-theoretic pluralism—as
developed by Hjortland [18].

Section 6 concludes.

2. A Taxonomy of the Strong Kleene Generalizations

2.1. Familiar Strong Kleene Generalizations: z ∈ {2, 3n, 3b}
For sake of completeness, the following proposition recalls that for z = 2,
all instantiations of (3) define classical logic.

Proposition 1. xy

2

=
CL

for any x, y ∈ {1, 0̂, t, f̂}
The next proposition will show that the relations xy

z

that are induced by
letting z ∈ {3b,3n} are either equal to K3, LP, CL or ∅. In order to prove
it, we will need the following lemma.

Lemma 1. Let Σ be a set of sentences of L and let V ∈ V3n be such that
V (σ) ∈ {T,F} for all σ ∈ Σ. Then there is a V ′ ∈ V2 which coincides with
V on Σ.

Proof. The partial (information) order ≤ on 3n is defined by stipulating
that N ≤ T and N ≤ F. This order on 3n induces a partial order on V3n,
where V ≤ V ′ ⇐⇒ V (σ) ≤ V ′(σ) for all sentences σ. Let V be as indicated
above. Let atomic valuation v be the restriction of V to the propositional
atoms, define atomic valuation v′ by stipulating that v′(p) = T if v(p) = N
and that v′(p) = v(p) otherwise, and let V ′ be the unique element of V2

whose restriction to the propositional atoms is v′. Observe that v(p) ≤ v′(p)
for each propositional atom p and that, as the connectives of L define truth
functions on 3n that are monotonic with respect to ≤, this implies that
V ≤ V ′, which establishes the lemma.

Proposition 2. The following relations hold.

1a. xy

3n

=
K3 for x, y ∈ {1, t} 1b. xy

3b

=
K3 for x, y ∈ {0̂, t}

2a. xy

3n

=
LP

for x, y ∈ {0̂, f̂} 2b. xy

3b

=
LP

for x, y ∈ {1, f̂}
3a. xy

3n

=
CL

for 〈x, y〉 ∈ {1, t} × {0̂, f̂} 3b. xy

3b

=
CL

for 〈x, y〉 ∈ {0̂, t} × {1, f̂}
4a. xy

3n

= ∅ for 〈x, y〉 ∈ {0̂, f̂} × {1, t} 4b. xy

3b

= ∅ for 〈x, y〉 ∈ {1, f̂} × {0̂, t}
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Proof. 1a, 1b, 2a and 2b all follow immediately from an inspection of the
definitions (we suppose familiarity with the definition of the consequence
relations of K3 and LP). It is easily seen that 4a and 4b hold by observing
that the valuation which assigns N to each sentence and the valuation which
assigns B to each sentence are elements of V3n and V3b respectively. In
order to prove 3a note that, as V2 ⊆ V3n, it easily follows that

tf̂

3n ⊆
CL

.
For suppose that an argument is not classically valid. Then there is a V ∈ V2

that is a counter model to the classical validity of the argument: V valuates
all premisses of the argument as T and the conclusion as F. But then, as V is
also an element of V3n, V is also a counter model to the

tf̂

3n −validity of the
argument. It thus suffices to show that

CL
⊆

tf̂

3n

. To do so, we reason again
by contraposition. If an argument is not

tf̂

3n −valid, there is a counter model
V ∈ V3n such that V valuates all premisses of the argument as T and the
conclusion as F. According to Lemma 1, there is a V ′ ∈ V2 which valuates
the premisses and conclusion of the argument just as V does. Hence, this V ′

is a counter model to the classical validity of the argument, which completes
our proof of 3a. The proof of 3b is completely similar to the proof of 3a.

Propositions 1 and 2 jointly testify that for z ∈ {2,3n,3b} the relations
xy

z

are all well-known. In the remainder of Sect. 2 we will study the Strong
Kleene Generalizations that are associated with z = 4, and the next section
starts by considering the exact ones (cf. Definition 2) amongst them.

2.2. The Exact Strong Kleene Generalizations for z = 4

This section studies the exact Strong Kleene Generalizations. These relations
are particularly interesting as in virtue of (4),

tt

4

,
f̂ f̂

4

and
tf̂

4

may be called
‘the 4-equivalents of K3, LP and CL’. In particular, this section investigates
to what extent this classification is justified. In order to do so, it is convenient
to have the following definition of familiar notions.

Definition 3. Let xy

z

be a Strong Kleene Generalization. We say that ϕ is
a tautology of xy

z

just in case, for all V ∈ Vz, V (ϕ) ∈ y. We say that ϕ is
an anti-tautology of xy

z

just in case, for all V ∈ Vz, V (ϕ) �∈ x. We will write
Tau( xy

z

) to denote the set of all tautologies of xy

z

and ATau( xy

z

) to denote
its set of anti-tautologies.

Thus, a tautology follows from any set of premisses whereas an anti-
tautology implies any conclusion. K3 has no tautologies and its anti-
tautologies coincide with those of classical logic. For LP the situation is
completely reversed: LP has no anti-tautologies and its tautologies coincide
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with those of classical logic. Moreover a sentence is an LP tautology just
in case its negation is an anti-tautology of K3. The following proposition
attests that these well-known interrelations between K3, LP and CL carry
over to the 4-valued case.

Proposition 3. Let z ∈ {3b,3n,4}. The following holds.

1a. Tau(
tt

z

) = ∅ 1b. ATau(
tt

z

) = ATau(
tf̂

z

)

2a. Tau(
f̂ f̂

z

) = Tau(
tf̂

z

) 2b. ATau(
f̂ f̂

z

) = ∅
3. ϕ ∈ Tau(

f̂ f̂

z

) ⇐⇒ ¬ϕ ∈ ATau(
tt

z

)

Proof. 1a and 2b follow from the observation that the valuation which
assigns N to each sentence and the valuation which assigns B to each sen-
tence are elements of V3n ⊆ V4 and V3b ⊆ V4 respectively. 1b, 2a and 3
follow immediately from the definitions.

Another well-known relation between K3 and LP is that ψ implies ϕ accord-
ing to K3 just in case the negation of ϕ implies the negation of ψ according
to LP. The following proposition attests that this relation also carries over
to the 4-valued case.

Proposition 4. Let z ∈ {3b,3n,4}. The following holds.

¬ϕ
tt

z ¬ψ ⇐⇒ ψ
f̂ f̂

z

ϕ

Proof. By inspection of definitions. Left to the reader.

The following observation is an immediate corollary of Proposition 3.

Corollary 1. Let z ∈ {3b,3n,4}. The following holds.

Tau(
tt

z

) ∪ Tau(
f̂ f̂

z

) = Tau(
tf̂

z

) ATau(
tt

z

) ∪ ATau(
f̂ f̂

z

) = ATau(
tf̂

z

)

In particular, corollary 1 implies that the union of the tautologies, respec-
tively anti-tautologies, of K3 and LP gives us the tautologies, respectively
anti-tautologies, of classical logic. This observation suggests that the union
of K3 and LP just is classical logic. This suggestion however is mistaken,4

as with α := (p ∧ ¬p) ∨ q and β := (r ∨ ¬r) ∧ q, we have

For z ∈ {3n,3b}: α
tf̂

z

β, α �
tt

z

β, α �
f̂ f̂

z

β (5)

Observe that (5) does not hold for z = 4, as we do not have that

(p ∧ ¬p) ∨ q
tf̂

4

(r ∨ ¬r) ∧ q, (6)

4However, the mistake is not uncommon. In a recent AJP paper, P. Allo explicitly
asserts that CL is the union of K3 and LP (cf. [1, pp. 80, 83]).
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as revealed by a valuation V such that V (p) = V (r) = B and V (q) = N.
However, there are

tf̂

4

-valid arguments that are neither
tt

4

- nor
f̂ f̂

4

-valid:
with γ := (p ∧ ¬p) ∨ (q ∧ ¬q), we have

γ
tf̂

4

q γ �
tt

4

q γ �
f̂ f̂

4

q (7)

The following proposition summarizes the previous observations and states
that classical logic is a proper extension of the union of K3 and LP and that
this relation carries over to the 4-valued case.

Proposition 5. For z ∈ {3b,3n,4}:
tt

z ∪
f̂ f̂

z ⊂
tf̂

z

Proof. Observe that any counter model V to the
tf̂

z

-validity of an argument
is both a counter model to its

tt

z

-validity as well as to its
f̂ f̂

z

-validity. Hence

tt

z ∪
f̂ f̂

z ⊆
tf̂

z

for any z ∈ {3b,3n,4}. That the inclusion is proper follows
for z ∈ {3b,3n} from observation (5) and for z = 4 from (7).

Remember that
tt

4

is called Exactly True Logic (ETL) by Pietz and Riv-
ieccio [23]. ETL is explosive in the sense that a contradiction, i.e. a sentence
of form ϕ∧¬ϕ, implies any sentence whatsoever. Indeed, it is easily verified
that a contradiction is never valuated as T which is to say that ETL has
the contradictions amongst its anti-tautologies. As every ETL anti-tautology
clearly is a classical anti-tautology and as contradictions are classical anti-
tautologies, one wonders whether the anti-tautologies of ETL coincide with
those of classical logic. They do not and in particular the disjunction of two
distinct contradictions such as (p ∧ ¬p) ∨ (q ∧ ¬q) is not an anti-tautology
of ETL, as a valuation according to which V (p) = B and V (q) = N testi-
fies. It is interesting to note that these observations imply that the conse-
quence relation of ETL has certain unusual properties on the level of meta-
inferences. In particular the following meta-inference is not valid according
to ETL.

α |= γ, β |= γ =⇒ α ∨ β |= γ (8)
Indeed, taking α = p∧¬p, β = q∧¬q and γ = r testifies that meta-inference
(8) fails for ETL. And although (8) is valid according to

f̂ f̂

4

, Proposition 4
readily implies that a dual meta-inference must fail for

f̂ f̂

4

:

γ |= α, γ |= β =⇒ γ |= α ∧ β (9)

Taking α = p∨¬p, β = q∨¬q and γ = r shows that (9) fails for
f̂ f̂

4

. Moreover,

f̂ f̂

4

does not only have unusual properties at the level of meta-inferences but
also at the level of inferences, as for instance it does not validate (10)

p, q |= p ∧ q (10)
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In a multiple conclusion setting,5 we see that the failure of (10) for
f̂ f̂

4

is
mirrored by the failure of (11) for ETL:

p ∨ q |= p, q (11)

Interestingly,
tf̂

4

satisfies both (10) and (in a multiple conclusion setting)
(11) as is easily verified. On the other hand, it violates both (8) and (9),
which is testified by the same examples that were considered above. In addi-
tion,

tf̂

4

is non-transitive. That is, it invalidates the following structural
meta-inference (a meta-inference is structural when it is expressible without
referring to logical connectives):

α |= β, β |= γ =⇒ α |= γ (12)

To see that
tf̂

4

is non-transitive, one takes α = (p∧¬p)∨(q∧¬q), β = q∧¬q
and γ = r. Together with reflexivity and monotonicity, transitivity is often
taken to be an essential property of logical consequence. For a proponent
of this view,

tf̂

4

does not define a “genuine” consequence relation. Such a
proponent may hold that although

tf̂

4

results from a certain generalization
of classical logic, its non-transitivity testifies that it does not result from a
proper such generalization. Proper generalizations of classical logic, one may
hold, are defined in terms of the Preservation of Designated Value, i.e. they
are instantiations of the (PDV) schema for some set of designated values D
and class of valuations V

Γ |= ϕ ⇔ V (γ) ∈ D for all γ ∈ Γ =⇒ V (ϕ) ∈ D , for all V ∈ V
(PDV)

It readily follows that any relation that is defined in terms of the preserva-
tion of designated values is transitive. However, not the other way around:

tf̂

3n

is not defined in terms of the preservation of designated value but coin-
cides with the (transitive) consequence relation of classical logic. This paper
is not the place to argue that transitivity is / is not central to logical conse-
quence. It should be noted though that recently, non-transitive consequence
relations have attracted quite some attention. Although their motivations
differ widely, Weir [33], Zardini [35], Cobreros et al. [14] and Ripley [27] all
advocate a non-transitive consequence relation.

Let us now turn to the regular Strong Kleene Generalizations associated
with z = 4.

5In Sect. 2.5 we discuss the consequence of going multiple conclusion in some more
detail.
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2.3. The Regular Strong Kleene Generalizations for z = 4

As the next proposition attests, the regular Strong Kleene Generalizations
are also familiar. To establish the proposition, we first have the following
lemma.

Lemma 2. Let V ∈ V4. Then there is a V ′ ∈ V4, called the BN-swap of
V , such that

V ′(ϕ) = T ⇔ V (ϕ) = T V ′(ϕ) = F ⇔ V (ϕ) = F

V ′(ϕ) = B ⇔ V (ϕ) = N V ′(ϕ) = N ⇔ V (ϕ) = B

Proof. Define the atomic valuation v′ by letting v′(p) = B if V (p) =
N, v′(p) = N if V (p) = B and v′(p) = V (p) otherwise.6 Let V ′ be the
recursive extension of v′ in accordance with the truth tables of Definition
1. By induction on sentential complexity one shows that V ′ has the desired
properties. This can safely be left to the reader.

Proposition 6. The following relations hold.

1a.
11

4

=
F DE

1b.
0̂0̂

4

=
F DE

2a.
10̂

4

= ∅ 2b.
0̂1

4

= ∅
Proof. 1a. is just the definition of FDE. 1b immediately follows from
Lemma 2. 2a and 2b follow from the observations that the valuations which
assign respectively B to each sentence and N to each sentence are elements
of V4.

The study of the mixed Strong Kleene Generalizations is taken up in the
next section.

2.4. The Mixed Strong Kleene Generalizations for z = 4

Quite some of the mixed Strong Kleene Generalizations equal the empty set,
as shown by the following proposition.

Proposition 7. We have:
f̂1

4

=
f̂ 0̂

4

=
1t

4

=
0̂t

4

= ∅
Proof. From the observation that the valuations which assign, respectively,
N to each sentence and B to each sentence, are elements of V4.

Besides contributing to our taxonomy of the mixed Strong Kleene Gen-
eralizations, the following proposition is interesting as it provides two alter-
native characterizations of ETL.

6Using Fitting’s [17] conflation operator −, this can be expressed more concisely as
v′(p) = − V (p).
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Proposition 8. We have:
ET L

=
tt

4

=
t1

4

=
t0̂

4

Proof. Per definition, we have
tt

4 ⊆
t1

4

. To show the reverse inclusion,
suppose that an argument is not valid according to

tt

4

. Then there is a
counter model V according to which all premisses are valuated as T and
according to which the conclusion ϕ is valuated either as B, N or F. If
V (ϕ) = N or if V (ϕ) = F, then V is also a counter model to the

t1

4

validity
of the argument. If V (ϕ) = B, then the BN-swap of V (cf. Lemma 2) is
a counter model to the

t1

4

validity of the argument. Hence
t1

4 ⊆
tt

4

and so

t1

4

=
tt

4

. Similarly, one shows that
tt

4

=
t0̂

4

.

In light of Proposition 8 it is natural to hypothesize that the remaining
two mixed consequence relations coincide with (one another and with)

f̂ f̂

4

.
That hypothesis is almost correct, as the following proposition attests.

Proposition 9. The following relations hold.

1.
1f̂

4

=
0̂f̂

4

2. ϕ
f̂ f̂

4

ψ ⇐⇒ ϕ
1f̂

4

ψ 3.
f̂ f̂

4 ⊆
1f̂

4

Proof. Both 1 and 2 follow by a by now familiar recipe: consider counter
models and BN-swaps. 3 follows per definition.

Thus, for single premise arguments,
1f̂

4

and
0̂f̂

4

coincide with (one another
and with)

f̂ f̂

4

. This result cannot be strengthened to cover arbitrary argu-
ments, as:

p, q
1f̂

4

p ∧ q p, q �
f̂ f̂

4

p ∧ q

Dually, Proposition 8 crucially relies on the fact that we are working in a
single conclusion setting, as p ∨ q |= p, q is valid according to (the multi-
ple conclusion version of)

t1

4

but not according to (the multiple conclusion
version of) ETL.

The next section exploits the results obtained in Sects. 2.1, 2.2, 2.3 and
2.4 to exhaustively compare the strength of all the Strong Kleene General-
izations.

2.5. Comparing the Strength of All Strong Kleene Generalizations

In this section, we compare the strength of all the Strong Kleene General-
izations. For sake of completeness, we will also compare the single premise
and multiple conclusion versions of these relations, for which we introduce
the following notation.
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FDE

−

ETL

−
f̂f̂

4−

K3

−
tf̂

4−
LP

−

CL

−

FDE

ETL f̂f̂

4

1f̂

4

K3 tf̂

4

LP

CL

FDE

+

ETL

+

f̂f̂

4+

1f̂

4+

t1

4+

K3

+

tf̂

4+

LP

+

CL

+

Figure 1. Comparing the Strong Kleene Generalizations in three set-

tings: single premise, normal and multiple conclusion

Definition 4. Let x, y ∈ {1, 0̂, t, f̂} and let z ∈ {2,3n,3b,4}. The single
premise relation xy

z−
is the restriction of xy

z

to singleton premise sets. The
multiple conclusion relation xy

z+
between sets of sentences of L and sets of

sentences of L is defined as follows:

Γ xy

z+
Δ ⇐⇒ if V (γ) ∈ x for all γ ∈ Γ then V (δ) ∈ y

for some δ ∈ Δ for all V ∈ Vz

We will also write
ET L

−
for the single premise version of ETL,

F DE

+
for the

multiple conclusion version of FDE etc. Figure 1 contains Hasse diagrams of
the partial orders on the three types (single premise, normal, multiple con-
clusion) of Strong Kleene Generalizations that are induced by ⊆. For sake of
brevity, Figure 1 picks a single representative definition for each consequence
relation that is involved in the comparison. How the other definitions map
onto the ones used in Figure 1 is, for z = 4 displayed by Table 1 below.7

Figure 1 and Table 1 jointly deliver an exhaustive comparison of all the
Strong Kleene Generalizations. Besides the results that were established in
earlier parts of Sect. 2, Figure 1 also exploits the following, easily established,
proposition.

Proposition 10. Let x, y ∈ {1, 0̂, t, f̂} and z ∈ {3b,3n}. The following
holds.

xy

4− ⊆ xy

z− ⊆ xy

2−
xy

4 ⊆ xy

z ⊆ xy

2

xy

4+ ⊆ xy

z+ ⊆ xy

2+

7For z ∈ {2,3b,3n} this information is provided by propositions 1 and 2.
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Table 1. The 4-valued Strong Kleene Generalizations and their name in Figure 1

Single premise Normal Multiple conclusion

Fig. 1 Equals Fig. 1 Equals Fig. 1 Equals

F DE

−
11

4−
,

0̂0̂

4−
F DE 11

4
,

0̂0̂

4

F DE

+

11

4+
,

0̂0̂

4+

ET L

−
tt

4−
,

t1

4−
,

t0̂

4−
ET L tt

4
,

t1

4
,

t0̂

4

ET L

+

tt

4+

f̂ f̂

4−

f̂ f̂

4−
,

1f̂

4−
,

0̂f̂

4−

f̂ f̂

4

f̂ f̂

4

f̂ f̂

4+

f̂ f̂

4+

tf̂

4−

tf̂

4−

tf̂

4

tf̂

4

tf̂

4+

tf̂

4+

1f̂

4

1f̂

4
,

0̂f̂

4

1f̂

4+

1f̂

4+
,

0̂f̂

4+

t1

4+

t1

4+
,

t0̂

4+

∅ the 7 other xy

4− ∅ the 7 other xy

4 ∅ the 7 other xy

4+

Proof. We show that xy

4 ⊆ xy

3b

. All other cases are similar and are left
to the reader. Suppose that it is not the case that Γ xy

3b

ϕ. Then, there is
a valuation V ∈ V3b such that V (γ) ∈ x ∩ z for all γ ∈ Γ and such that
V (ϕ) �∈ y ∩ z. Note that V ∈ V4 as V3b ⊆ V4 and hence it is not the case
that Γ xy

4

ϕ.

This ends our taxonomy of the Strong Kleene Generalizations as they are
defined over the (classical propositional) language L . In the next subsec-
tion, we briefly consider what becomes of the Strong Kleene Generalizations
when they are defined over a propositional language that has more (truth-
functional) expressive power than L .

2.6. Implication Connectives, Expressivity and Functional Completeness

The vocabulary of our language L is quite restricted as it does not contain
an implication connective. With respect to classical logic CL, this is not
a genuine restriction: the implication →, defined by stipulating that ϕ →
ψ := ¬ϕ ∨ ψ, is what Arieli and Avron [2] call an appropriate implication
connective for CL as it corresponds to CL entailment in the sense of (13).

Γ, ϕ
CL

ψ ⇐⇒ Γ
CL

ϕ → ψ (13)

The definition of → in terms of ¬ and ∨ determines its truth-functional
behaviour with respect to each V ∈ V4 and hence, one may study the infer-
ential behaviour of → with respect to all Strong Kleene Generalizations.
By doing so, one readily observes that → fails to be an appropriate impli-
cation connective for any (non-empty) Strong Kleene Generalization other
than CL. For some Strong Kleene Generalizations, such as K3, only the left-
to-right direction (expressing a deduction theorem) of the definition of an
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appropriate implication connective fails:

Γ, ϕ
K3 ψ �⇒ Γ

K3 ϕ → ψ Γ, ϕ
K3 ψ ⇐ Γ

K3 ϕ → ψ

For other Strong Kleene Generalizations, such as LP, only the right-to-left
direction (expressing a resolution theorem) fails:

Γ, ϕ
LP

ψ ⇒ Γ
LP

ϕ → ψ Γ, ϕ
LP

ψ �⇐ Γ
LP

ϕ → ψ

And yet other Strong Kleene Generalizations such as FDE neither enjoy
a deduction nor a resolution theorem (in terms of → or any L definable
connective whatsoever).

The fact that L does not allow the Strong Kleene Generalizations to
enjoy appropriate implication connectives provides a motivation to consider
extensions of L . Extensions of L with appropriate implication connectives
for K3, LP and FDE haven been considered at various places in the literature
(for example in Avron [4], Batens and de Clerq [8] or in Arieli and Avron
[3]). It is in the spirit of this paper to consider appropriate implication
connectives for all the Strong Kleene Generalizations and to add them to
our language in one fell swoop. In order to do so, we will extend L with four
implication connectives ⊃x, where x ∈ {1, 0̂, t, f̂}, and consider language L �

whose BNF form is as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃1 ϕ | ϕ ⊃0̂ ϕ | ϕ ⊃t ϕ | ϕ ⊃f̂ ϕ

The semantics of the connectives, as well as the notion of an L � valuation
and that of a Strong Kleene� Generalization, are given by the following
definition.

Definition 5. An L � valuation is a function V from the sentences of L �

to 4 that respects the truth tables for ∧, ∨ and ¬ as given by Definition 1
and which is such that, for each x ∈ {1, 0̂, t, f̂}:

V (ϕ ⊃x ψ)

{
V (ψ) if V (ϕ) ∈ x

T if V (ϕ) �∈ x

We will use V�
4 to denote the set of all L � valuations and we will use V�

2,
V�

3b andV�
3n to denote the sets of L � valuations whose range is, respectively,

a subset of 2, 3b and 3n. With x ∈ {1, 0̂, t, f̂} and z ∈ {2,3n,3b,4}, the
relation xy

z�

is defined as expected:

Γ xy

z�

ϕ ⇐⇒ if V (γ)∈x ∩ z for all γ∈Γ then V (ϕ)∈y ∩ z for all V ∈V�
z

(14)
The relations xy

z�

as defined by (14) we call Strong Kleene� Generalizations.
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With z ∈ {2,3b,3n,4} we will write ⊃z
x to denote the restriction of ⊃x

to z. As is readily verified, ⊃z
x defines a truth function on z. The following

proposition explains how the restricted implications are related.

Proposition 11. The following relations hold.

– ⊃2
1 = ⊃2

0̂
= ⊃2

t = ⊃2
f̂

(the material conditional of classical logic)

– ⊃3b
1 = ⊃3b

f̂
, ⊃3b

t = ⊃3b
0̂

, ⊃3n
1 = ⊃3n

t , ⊃3n
f̂

= ⊃3n
0̂

Proof. It readily follows from the definition of the implication connectives
that whenever x ∩ z = y ∩ z we have that ⊃z

x = ⊃z
y.

In Avron [4], the extension of K3 to the language L augmented with appro-
priate implication connective ⊃3n

t is studied. Likewise, [4], studies the exten-
sion of LP to the language L augmented with ⊃3b

1 and the same logic
is also studied by, for instance Batens [7] and Batens and de Clerq [8].
Finally, the extension of FDE to the language L augmented with ⊃4

1 is
studied in, amongst others, Arieli and Avron [3]. In our uniform framework
all these logics are available as Strong Kleene� Generalizations (restricted
to the appropriate fragment of L �). The following proposition attest that
the introduction of the four connectives ⊃x ensures that in fact all Strong
Kleene� Generalizations have an appropriate implication connective.

Proposition 12. For all x, y ∈ {1, 0̂, t, f̂}: Γ, ϕ xy

z�

ψ ⇐⇒ Γ xy

z�

ϕ ⊃x ψ

Proof. ⇒ Assume that Γ, ϕ xy

z�

ψ. Let V ∈ V�
z and suppose that V (γ) ∈ x

for all γ ∈ Γ . We need to show that V (ϕ ⊃x ψ) ∈ x. When V (ϕ) ∈ x,
it follows that V (ϕ ⊃x ψ) = V (ψ) ∈ y as Γ, ϕ xy

z�

ψ. When V (ϕ) �∈ x, it
follows that V (ϕ ⊃x ψ) = T ∈ y as y ∈ {1, 0̂, t, f̂}.

⇐ Reason by contraposition and assume that Γ, ϕ � xy

z�

ψ. Thus, for some
V ∈ V�

z, we have that V (γ) ∈ x for all γ ∈ Γ , V (ϕ) ∈ x and V (ψ) �∈ y. It
thus follows that V (ϕ ⊃x ψ) = V (ψ) �∈ y and that Γ � xy

z�

ϕ ⊃x ψ.

Thus, it is relatively straightforward to extend our basic language L
with appropriate implication connectives, and to do so in a uniform way.
It should be noted though, that most of the results that we established in
Sect. 2 for the Strong Kleene Generalizations do not carry over to the Strong
Kleene� Generalizations. As an example, whereas we have that

10̂

3n

=
10̂

2

(cf.
3a of Proposition 2) we do not have that

10̂

3n�

=
10̂

2�

as, for instance we have

10̂

2�

p ⊃1 q ∨ ¬q but not
10̂

3n�

p ⊃1 q ∨ ¬q. More generally, the reader may
observe that Lemma 2 is no longer valid when V4 is replaced with V�

4 and
that this lemma is used in the proof of Propositions 8 and 9. Likewise, the
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valuations which assign B, respectively N to every sentence are elements
of V4 but not of V�

4 and this fact ensures that (the counterparts of) some
propositions of Sect. 2 do not hold for the Strong Kleene� Generalizations. To
provide a detailed taxonomy of the Strong Kleene� Generalizations, however,
is far beyond the scope of this paper.

Although the (extended) language L � contains appropriate implication
connectives, it lacks, for instance, a connective expressing strong negation
and so one may also consider adding such a connective, together with var-
ious others. Or, in order to ensure that all possible truth functions on 4
are expressible in one’s language, one may consider a language that is func-
tionally complete with respect to 4. In the literature, various authors have
studied the relation of FDE consequence on functional complete extensions
of L (see e.g. Muskens [20], Arieli and Avron [3], Ruet [29], Pynko [25],
or Omori and Sano [22]). In this paper, we will not consider functionally
complete extensions of L . The reason we do not, however, has not only to
do with restrictions of scope and length. For, as the reader will have already
observed (see also footnote 2) our uniform treatment of the Strong Kleene
(and Strong Kleene�) Generalizations relies on the fact that the restric-
tions of the (truth functions denoted by the) connectives of L � and L
to z ∈ {2,3b,3n} are truth functions on z. When we consider a language
that is functionally complete with respect to 4, all truth functions on 4 are
expressible and so in particular those whose restriction to z ∈ {2,3b,3n}
is not a truth function on z. As a consequence, there are no valuations of
a functionally complete language whose range is a proper subset of 4 and
hence, to study the “Strong Kleene Generalizations” for z ∈ {2,3b,3n} is
nonsensical in this case.

3. A Uniform Sequent Calculus for the Strong Kleene
Generalizations

3.1. Sequent Calculi for Many-Valued Logics

The main goal of Sect. 3 is to present a uniform signed sequent calculus
(which we call the SK calculus) for all the Strong Kleene Generalizations:
a calculus that can be used to characterize each and every Strong Kleene
Generalization. In Sect. 4, we then present two other such calculi (the SKP

and SKN calculus) than can be obtained by applying the general methods of
Baaz et al. [6] to construct sequent calculi for many-valued logics. We think
that it is instructive to first briefly sketch the rationale of these general
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methods and to indicate in which sense our SK calculus differs from the
calculi obtained by these general methods.

In a standard sequent calculus for classical logic, sequents are 2-sided
objects of form Γ ⇒ Δ, where Γ and Δ can be taken to be sets of sentences.
Equivalently though, a 2-sided sequent Γ ⇒ Δ can be presented as a set
{l : γ | γ ∈ Γ} ∪ {r : δ | δ ∈ Δ} consisting of signed sentences, where the
sign of a sentence indicates whether it occurs on the left side or on the right
side of ⇒. But one may also choose other signs than l and r that are more
informative in the sense that they hint at the semantic interpretation of a
provable sequent. Interestingly, there are two (equivalent but) distinct ways
to interpret provable sequents, associated with the following two translations
of a 2-sided sequent to a 2-signed one:

i Translate Γ ⇒ Δ as {F : γ | γ ∈ Γ}∪{T : δ | δ ∈ Δ}. Provable sequents
correspond to P(ostive) valid ones: when {F : γ | γ ∈ Γ} ∪ {T : δ | δ ∈
Δ} is provable, in every V ∈ V2, V (γ) = F for some γ ∈ Γ or V (δ) = T
for some δ ∈ Δ.

ii Translate Γ ⇒ Δ as {T : γ | γ ∈ Γ}∪{F : δ | δ ∈ Δ}. Provable sequents
correspond to N (egative) valid ones: when {T : γ | γ ∈ Γ} ∪ {F : δ |
δ ∈ Δ} is provable, in every V ∈ V2, V (γ) �= T for some γ ∈ Γ or
V (δ) �= F for some δ ∈ Δ.

Of course, the proof systems for classical logic that result from transla-
tion i and ii are, modulo an insignificant difference in signs, exactly alike.
Interestingly though, Baaz et al [6] show how, for any n-valued logic, two
dual n-signed sequent calculi can be given that correspond to the (general-
ized) notions of P- validity and N -validity respectively. The dual calculi
that are obtained as such may differ substantially when n > 2 (as then not
being valuated as T is not the same as being valuated as F) which is vividly
illustrated by the SKP and SKN calculus that we obtain by applying those
methods in Sect. 4.

The signs exploited by the SKP and SKN calculus are members of
{t,b,n, f} and code for the corresponding elements of 4. In contrast, the
signs of the SK calculus are elements of {1, 0, 1̂, 0̂} and code for the corre-
sponding subsets of 4 as indicated by (2). The SK calculus (which is based
on a generalized notion of N -(in)validity as will become apparent) reflects
the fact that T, B, N, and F are best thought of as combinations of (reg-
ular) truth values and its signs capture the “underlying” values of (non-)
truth and (non-) falsity. Doing so has formal and philosophical advantageous
consequences as we point out in Sect. 5.
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3.2. The SK Calculus

First some notational conventions. We introduce the complement operation
com on the set {1, 1̂, 0, 0̂} of signs of the SK calculus by stipulating that
com(1) = 1̂, com(1̂) = 1, com(0) = 0̂ and com(0̂) = 0. Further, with x
a sign and, with Γ a set of sentences, we write x : Γ as shorthand for
{x : γ | γ ∈ Γ}. Finally, it will be convenient to let Z := {2,3b,3n,4}.

Sequents of the SK calculus will be sets of signed sentences of L , as
indicated above. Provable sequents of our calculus will correspond to unsat-
isfiable sets of signed sentences. In fact, we will distinguish four kinds of
unsatisfiability, as explained by the following definition.

Definition 6. Let Θ be a sequent let V ∈ V4 be a valuation. We say that
V satisfies Θ iff every x : ϕ ∈ Θ is such that:

x = 1 =⇒ V (ϕ) ∈ {T,B} x = 0 =⇒ V (ϕ) ∈ {F,B}
x = 1̂ =⇒ V (ϕ) ∈ {F,N} x = 0̂ =⇒ V (ϕ) ∈ {T,N}

With z ∈ Z, we say that Θ is z-unsatisfiable just in case no V ∈ Vz satisfies
Θ.

Observe that all regular Strong Kleene Generalizations have a natural
alternative definition in terms of z-unsatisfiability. For, if x, y ∈ {1, 0̂} we
have that

Γ xy

z

ϕ ⇐⇒ x : Γ ∪ {com(y) : ϕ} is z-unsatisfiable (15)

Corresponding to the four notions of z-unsatisfiability, the SK calculus will
distinguish four notions of z-provability. The latter notions will differ only
with respect to the initial sequent rules (or axioms) that may be used in
a proof. To define the four sets of initial sequent rules associated with the
notions of z-provability, we consider the (initial) sequent rules of form (Rxy),

(Rxy)
x : ϕ, y : ϕ

in terms of which we define four sets of initial sequent rules. 4-provability
will only allow initial sequent rules that occur in R4:

R4 = {(Rxy) | 〈x, y〉 ∈ {〈1, 1̂〉, 〈0, 0̂〉}}
More generally, z-provability will only allow initial sequent rules that occur
in Rz, where:

R3b = R4 ∪ {(R1̂0̂)} R3n = R4 ∪ {(R10)} R2 = R3b ∪ R3n
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Indeed, for all z ∈ Z, we have that Rz ⊆ R2. The structural rules of the SK
calculus will consist of the initial sequent rules that are contained in R2,
together with (W )eakening:

Σ
(W )

Σ′ where Σ ⊆ Σ′

The SK calculus augments these structural rules with operational rules for
the logical connectives of L that are provided by the following definition.

Definition 7. (The SK calculus) The structural rules of the SK calculus
are the initial sequent rules of R2, together with (W ). The operational rules
of the SK calculus are as follows:

Σ, y : ϕ
(¬x)

Σ, x : ¬ϕ

if 〈x, y〉 ∈ {〈1, 0〉, 〈1̂, 0̂〉, 〈0, 1〉, 〈0̂, 1̂〉}

Σ, x : ϕ, x : ψ
(∧x)

Σ, x : ϕ ∧ ψ

Σ, x : ϕ Σ, x : ψ
(∧x)

Σ, x : ϕ ∧ ψ

if x ∈ {1, 0̂} if x ∈ {1̂, 0}

Σ, x : ϕ Σ, x : ψ
(∨x)

Σ, x : ϕ ∨ ψ

Σ, x : ϕ, x : ψ
(∨x)

Σ, x : ϕ ∨ ψ

if x ∈ {1, 0̂} if x ∈ {1̂, 0}
With z ∈ Z, the rules of the SKz calculus are (W ), the initial sequent rules of
Rz and all operational sequent rules. A sequent Θ is said to be z-provable if
some finite Θ0 ⊆ Θ has a proof tree respecting the rules of the SKz calculus.

It will turn out to be convenient to introduce a general form for our
sequent rules. For this, we pick T1, . . . , Tn/B, where each Ti is a set of
signed sentences, called a top set of the rule and where B is a set of signed
sentences called the bottom set of the rule. For instance one instantiation of
(R10) could formally be written as ∅/Σ ∪{1 : ϕ, 0 : ϕ} and one instantiation
of (∧0) as Σ ∪{0 : ϕ}, Σ ∪{0 : ψ}/Σ ∪{0 : ϕ∧ψ}. The following proposition
exploits the general form a sequent rule and explains how the rules of the
SK calculus can be interpreted in terms of satisfaction.

Proposition 13. The following claims hold.

1. The bottom set of each initial sequent rule in Rz is z-unsatisfiable.
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2. A valuation V ∈ V4 satisfies the bottom set of an operational rule of the
SK calculus iff it satisfies some top set of that rule.

3. A valuation V ∈ V4 dissatisfies (i.e. does not satisfy) the bottom set of
an operational rule of the SK calculus iff it dissatisfies all top sets of
that rule.

Proof. By inspection.

Claims 1 and 3 of Proposition 13 hint at Theorem 1, which states that the
SK calculus is sound and complete with respect to z-unsatisfiability.

Theorem 1. With z ∈ Z, a sequent Θ is z-provable if and only if Θ is
z-unsatisfiable.

Proof. First, it should be noted that it follows from the general results
on the compactness of propositional (finitely) many-valued logics due to
Woodruff [34] that a sequent Θ is z-unsatisfiable iff some finite Θ0 ⊆ Θ is
z-unsatisfiable. This, together with the definition of z-provability, ensures
that it suffices to establish the theorem for finite sequents.

Let z = 4. The ⇒ direction follows easily by an induction on proof depth
(of 4-proofs) plus observation 3 of Proposition 13. For the ⇐ direction, let
Θ be a finite sequent that is not 4-provable. We use induction on the total
number n of connectives occurring in Θ. If n = 0, Θ is a set of signed
propositional constants that is not a conclusion of the 2 rules in R4. This
means that Θ does not contain a pair 1 : p, 1̂ : p, or a pair 0 : p, 0̂ : p.
Consider the valuation V ∈ V4 which valuates the propositional atoms of
L as follows:

V (p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T 1 : p ∈ Θ, 0 : p �∈ Θ

B 1 : p ∈ Θ, 0 : p ∈ Θ

N 1 : p �∈ Θ, 0 : p �∈ Θ

F 1 : p �∈ Θ, 0 : p ∈ Θ

Observe that this definition of V , together with the fact that Θ is 4-provable
implies that if Θ contains 1 : p then V (p) ∈ {T,B} ; if Θ contains 0 : p
then V (p) ∈ {F,B}; if Θ contains 1̂ : p then Θ does not contain 1 : p and
so V (p) ∈ {F,N}; and if Θ contains 0̂ : p then Θ does not contain 0 : p and
so V (p) ∈ {T,N}. Indeed, we just established that V satisfies Θ.

If n > 0, Θ can be written as a sequent Σ, θ, where θ is some signed
sentence containing at least one connective and θ /∈ Σ. Inspection of the
rules shows that in this case Θ follows from a sequent Θ1 or from a pair of
sequents Θ1 and Θ2, each containing fewer than n connectives. One of these
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top sequents must be 4-unprovable and hence, by induction, satisfied by
some valuation V . Observation 2 of Proposition 13 gives that Θ is satisfied
by the same V . Thus, from the fact that Θ is not 4-provable, it follows that
there is a V ∈ V4 which satisfies Θ.

For z ∈ {2,3b,3n} the proof is entirely similar, albeit that the definition
of the valuation V ∈ Vz that is needed to establish the induction base is
slightly different.

3.3. Capturing the Strong Kleene Generalizations Via the SK Calculus

With Theorem 1 at our disposal, we can now explain how the SK calculus
captures the Strong Kleene Generalizations. In light of observation (15),
our calculus straightforwardly captures the regular consequence relations,
as attested by the following proposition.

Proposition 14. Let z ∈ Z and let x, y ∈ {1, 0̂}. We have:

Γ xy

z

ϕ ⇐⇒ x : Γ ∪ {com(y) : ϕ} is z-provable

Proof. Immediate from Theorem 1 and observation (15).

According to Propositions 1, 2 and 6 the (non-empty) regular Strong Kleene
Generalizations are either equal to CL, K3, LP, or FDE and so Proposition
14 attests that the SK calculus is tailor made to capture these four familiar
consequence relations.

Indeed, the very signs of the SK calculus reflect that it is tailor made
to capture the regular Strong Kleene Generalizations. As for any z �= 4,
every (exact or mixed) relation xy

z

can (in virtue of propositions 1 and 2)
be expressed as a regular consequence relation, our calculus can capture all
these relations. However, as not all of the considered 4-valued consequence
relations can be expressed as regular consequence relations, the question
arises whether our calculus can also be invoked to capture those. More con-
cretely, this question comes down (cf. Table 1) to asking whether the SK
calculus can capture

ET L
,

f̂ f̂

4

,
tf̂

4

and
1f̂

4

. Let us first consider
ET L

in terms
of its canonical definition

tt

4

and observe that

Γ
tt

4

ϕ ⇐⇒
{
1 : Γ ∪ 0̂ : Γ ∪ {0 : ϕ} is 4-unsatisfiable and
1 : Γ ∪ 0̂ : Γ ∪ {1̂ : ϕ} is 4-unsatisfiable

This observation naturally suggests to define the syntactic correlate of
ET L

in terms of two provable sequents of our calculus. However, as
ET L

can also
be defined as

t1

4

(cf. Proposition 8), the following proposition attests that a
single proof tree suffices to establish

ET L
consequence.
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Proposition 15. The following relations hold.

Γ
t1

4

ϕ ⇐⇒ 1 : Γ ∪ 0̂ : Γ ∪ {1̂ : ϕ} is 4-provable

Γ
tf̂

4

ϕ ⇐⇒ 1 : Γ ∪ 0̂ : Γ ∪ {1̂ : ϕ, 0 : ϕ } is 4-provable

Γ
1f̂

4

ϕ ⇐⇒ 1 : Γ ∪ {1̂ : ϕ, 0 : ϕ } is 4-provable

Proof. By inspection of definitions, using Theorem 1.

The remaining relation on our list,
f̂ f̂

4

, can also be captured by the SK
calculus, albeit in the rather artificial manner of the following proposition.

Proposition 16. The following relation holds.

Γ
f̂ f̂

4

ϕ ⇐⇒ ∀f ∈ {1, 0̂}Γ {f(γ) : γ | γ ∈ Γ} ∪ {0 : ϕ, 1̂ : ϕ} is 4-provable,

where {1, 0̂}Γ is the set of all functions from Γ to {1, 0̂}.
Proof. In light of Theorem 1, it suffices to show that Γ

f̂ f̂

4

ϕ iff for every
f ∈ {1, 0̂}Γ the sequent Θf := {f(γ) : γ | γ ∈ Γ} ∪ {0 : ϕ, 1̂ : ϕ} is
unsatisfiable. For the left-to-right direction, suppose that for some f , some
V ∈ V4 satisfies Θf . Then V is such that V (γ) ∈ {T,B,N} for all γ ∈ Γ

while V (ϕ) = F. Hence it is not the case that Γ
f̂ f̂

4

ϕ. For the right-to-left
direction, suppose that there is a V ∈ V4 such that V (γ) ∈ {T,B,N} for
all γ ∈ Γ and V (ϕ) = F. Let Γ1 := {γ ∈ Γ | V (γ) ∈ {T,B}} and let
f ∈ {1, 0̂}Γ be such that f(γ) = 1 iff γ ∈ Γ1. Then V satisifies Θf and hence
Θf is not unsatisfiable.

And so although the SK calculus captures the
f̂ f̂

4

relation, the way it
does so is rather cumbersome: when Γ is a finite set of premises, a proof of
Γ

f̂ f̂

4

ϕ consists of 2|Γ | distinct proof trees.
Together, Propositions 14, 15 and 16 testify that the SK calculus allows

us to capture all the Strong Kleene Generalizations. The SK calculus is a
cut-free calculus; in the next section we explain that and which cut rules
can be added to the SK calculus.

3.4. A Note on Adding Cut-Rules to the SK Calculus

Although the structural rules of the SK calculus merely consist of Weaken-
ing and the initial sequent rules of R2, the usual structural rules of Contrac-
tion and Permutation are implicitly built into our calculus as our sequents
are sets of signed sentences. Further, although SK is a cut-free sequent cal-
culus, several (admissible) cut rules are readily available. To introduce them
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in a convenient manner, we introduce the following four auxiliary sets of
signed sentences.

Sϕ
T = {1 : ϕ, 0̂ : ϕ}, Sϕ

B = {1 : ϕ, 0 : ϕ}, Sϕ
N = {1̂ : ϕ, 0̂ : ϕ},

Sϕ
F = {1̂ : ϕ, 0 : ϕ}

An auxiliary set Sϕ
x is satisfied by a valuation V iff V (ϕ) = x. With z ∈ Z,

the rule (Cutz) has, as its top sets, the sets Σ ∪ Sϕ
x for x ∈ z and has, as its

bottom set, Σ. As an example, consider the rule (Cut4):

Σ, 1 : ϕ, 0̂ : ϕ Σ, 1 : ϕ, 0 : ϕ Σ, 1̂ : ϕ, 0̂ : ϕ Σ, 1̂ : ϕ, 0 : ϕ
(Cut4)

Σ

The following proposition explain the sense in which adding a (Cutz) rule
to the SK calculus is admissible.

Proposition 17. A sequent Θ is z-provable if and only if it is provable
according to the rules of the SKz calculus with (Cutz) added to it.

Proof. A valuation V ∈ Vz dissatisfies (cf. Proposition 13.3) all top sets of
(Cutz) just in case V dissatisfies its bottom set. And so, as the SKz calculus
is complete with respect to z-unsatisfiable sets (cf. Theorem 1), the result
follows.

Although adding the (Cutz) rules to the SK calculus is admissible in the
sense of Proposition 17, adding those cut rules is unnatural in the following
sense. Basically, (Cutz) states that a sentence always takes one of the truth
values in z. This insistence on values is in conflict with the spirit of the SK
calculus, whose four signs code for sets of values rather than for values as
such. More natural cut rules are available though. To define them, we first
consider all cut rules of form (Cutxy),

Σ, x : ϕ Σ, y : ϕ
(Cutxy)

Σ

in terms of which we define, for each z ∈ Z, the set of cut rules CUTz, where:

CUT4 = {(Cut11̂), (Cut0̂0)} CUT3b = CUT4 ∪ {(Cut10)}
CUT3n = CUT4 ∪ {(Cut1̂0̂)} CUT2 = CUT3b ∪ CUT3n

Observe that, when (Cutxy) ∈ CUTz, a valuation V ∈ Vz dissatisfies the two
top sets of (Cutxy) just in case it dissatisfies its bottom set. Intuitively then,
(Cutxy) ∈ CUTz may be interpreted as specifying that, for each valuation
V ∈ Vz and sentence ϕ, we have that V (ϕ) ∈ x or V (ϕ) ∈ y. Although we
feel that it is more natural to add the rules of CUTz to the SK calculus
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rather than (Cutz), the rules in CUTz turn out to be interderivable with
(Cutz), as follows from the following proposition.

Proposition 18. Let z ∈ Z. In the presence of (W )eakening, the (Cutz)
rule can be derived from the rules in CUTz and conversely, each rule in
CUTz can be derived from the (Cutz) rule.

Proof. We will first consider z = 3b.
⇒ We show that the (Cut3b) rule can be derived from the rules in CUT3b.
So suppose that we can derive the three top sets of the (Cut3b) rule, i.e.
suppose that we can derive, for each for x ∈ 3b, the set Σ ∪ Sϕ

x . Given
a derivation of Σ ∪ Sϕ

T and a derivation of Σ ∪ Sϕ
B we may derive, via

(Cut0̂0) ∈ CUT3b, the sequent Σ, 1 : ϕ. Given a derivation of Σ ∪ Sϕ
B and

a derivation of Σ ∪ Sϕ
F we may derive, via (Cut11̂) ∈ CUT3b the sequent

Σ, 0 : ϕ. From the thus derived sequents Σ, 1 : ϕ and Σ, 0 : ϕ we may derive,
via (Cut10) ∈ CUT3b the sequent Σ, i.e. the bottom set of (Cut3b), which
is what we had to show.
⇐ Consider (Cut10) ∈ CUT3b and suppose that we have derived the two
top sets Σ, 1 : ϕ and Σ, 0 : ϕ of this rule. Applying (W ) to Σ, 1 : ϕ delivers
Σ ∪ Sϕ

T and Σ ∪ Sϕ
B and applying (W ) to Σ, 0 : ϕ yields Σ ∪ Sϕ

F. We have
thus obtained the three top sets of (Cut3b) and so we may derive Σ, i.e. the
bottom set of (Cut10), which is what we had to show. Likewise one obtains
(Cut11̂) and (Cut0̂0) from (Cut3b) and (W ).

For z = 3n and z = 4 the proof is entirely similar. For z = 2, suppose
that we can derive Σ ∪ Sϕ

T and Σ ∪ Sϕ
F, i.e. the two top sets of the (Cut2)

rule. By applying (W ) we obtain Σ∪Sϕ
T, 0 : ϕ and Σ∪Sϕ

F, 1 : ϕ and when we
apply (Cut1̂0̂) ∈ CUT2 to these two sequents we obtain Σ ∪ Sϕ

B. Hence, we
can derive the three top sets of the (Cut3b) rule and so, as CUT3b ⊆ CUT2,
we may derive Σ just as above. The proof of the converse direction is entirely
similar to the proof for z = 3b and is left to the reader.

3.5. Capturing K3, LP, FDE and CL Via a single SK Tableau

By turning the SK calculus upside-down, a tableau calculus is obtained, as
explained in some more detail in Definition 8 below. Tableaux of the SKtab

calculus that is thus obtained are sets of sets of signed sentences or, as we
will also put it, sets of branches. The calculus recognizes four distinct closure
conditions corresponding to the four notions of z-provability, as explained
by the following definition.

Definition 8. (The SKtab calculus) The tableau rules of the SKtab calcu-
lus are the bottom-up versions of the operational sequent rules of the SK
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calculus. With z ∈ Z, a branch B of a tableau is z-closed if the bottom set of
some initial sequent rule (Rxy) ∈ Rz is a subset of B. A tableau is z-closed
if all its branches are z-closed and a set of signed sentences Θ is said have a
z-closed tableau just in case some finite Θ0 ⊆ Θ has a z-closed tableau.

The SK calculus and the SKtab calculus are really two sides of the same
coin, as the following proposition attests.

Proposition 19. A set of signed sentences is z-provable iff it has a z-closed
tableau.

Proof. Note that it suffices to consider finite sets of signed sentences. So let
Θ be a finite set of signed sentences. We use induction on the total number
n of connectives occurring in Θ.

⇒ Let n = 0 and suppose that Θ is z-provable. Then Θ is a set of
signed propositional atoms which is the conclusion of some rule in Rz. As
Θ only contains propositional atoms, the unique tableau of Θ has Θ as its
sole branch and this tableau is z-closed as Θ is z-closed. Let n > 0 and
suppose that Θ is z-provable. As n > 0, Θ can be written as Σ, θ where θ
is some signed sentence containing at least one connective and θ �∈ Σ. We
illustrate how it can be shown that Θ has a z-closed tableau by considering
two representative cases. (i) Suppose that Θ = Σ, 1 : ϕ ∧ ψ. Note that the
z-provability of Θ implies that Σ, 1 : ϕ, 1 : ψ is z-provable and so, in virtue
of the induction hypothesis, Σ, 1 : ϕ, 1 : ψ has a z-closed tableau T . Define
T ′ = {B ∪ {1 : ϕ ∧ ψ} | B ∈ T } and observe that T ′ is a z-closed tableau
of Θ. (ii) Suppose that Θ = Σ, 0 : ϕ ∧ ψ. Then, by the same argument as
above, Σ, 0 : ϕ and Σ, 0 : ψ have z-closed tableaux T and U respectively.
Observe that V = {B ∪ {0 : ϕ ∧ ψ} | B ∈ T ∪ U } is a z-closed tableau of
Θ.

⇐ Let n = 0 and suppose that Θ has a z-closed tableau T . As Θ only
contains propositional atoms, we have that T = {Θ} and so, as T is z-
closed, so is Θ. As Θ is z-closed, it is the conclusion of some rule in Rz

and hence, Θ is z-provable. Let n > 0 and suppose that Θ has a z-closed
tableau. As n > 0, Θ can be written as Σ, θ where θ is some signed sentence
containing at least one connective and θ �∈ Σ. We illustrate how it can
be shown that Θ is z-provable by considering two representative cases. (i)
Suppose that Θ = Σ, 1 : ϕ∧ψ. From the fact that Θ has a z-closed tableau,
it readily follows that Θ′ := Σ, 1 : ϕ, 1 : ψ has a z-closed tableau. As Θ′

contains fewer than n connectives, it follows from the induction hypothesis
that Θ′ is z-provable and as by applying rule (∧1) to Θ′ we obtain Θ, it
follows that Θ is z-provable. (ii) Suppose that Θ = Σ, 0 : ϕ ∧ ψ. From the
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fact that Θ has a z-closed tableau, it readily follows that both Θ′ := Σ, 0 : ϕ
and Θ′′ := Σ, 0 : ψ have z-closed tableaux. It follows from the induction
hypothesis that Θ′ and Θ′′ are z-provable and as by applying rule (∧0) to
Θ′ and Θ′′ we obtain Θ, it follows that Θ is z-provable.

A convenient property of the SKtab calculus is that, in order to check
whether an argument is, respectively, K3, LP, FDE or CL valid, it suffices
to check whether a single tableau is z-closed (for variable z). To see this,
first observe that each of these familiar four consequence relations can be
expressed as a regular Strong Kleene Generalization:

11

2

=
CL 11

3b

=
LP 11

3n

=
K3 11

4

=
F DE

And so, it follows from Propositions 14 and 19 that in order to check, say,
whether the argument ¬p, p ∨ q |= ¬r ∨ (r ∧ q) is valid according to one of
the familiar four logics, it suffices to check whether {1 : ¬p, 1 : p ∨ q, 1̂ :
¬r ∨ (r ∧ q)} has a z-closed tableau for the appropriate value of z. Consider
Figure 2 below.

The reader may care to verify that the z-closure of the four branches of
the tableau of Figure 2 is as indicated in Table 2 below.

1 : ¬p
1 : p∨q

1̂ : ¬r∨ (r∧q)
0 : p

1 : p
1̂ : ¬r
1̂ : r∧q
0̂ : r

1̂ : r

B1

1̂ : q

B2

1 : q
1̂ : ¬r
1̂ : r∧q
0̂ : r

1̂ : r

B3

1̂ : q

B4

Figure 2. (Completed) tableau of {1 : ¬p, 1 : p ∨ q, 1̂ : ¬r ∨ (r ∧ q)}

Table 2. z-closure of the four branches of the tableau of Figure 2

B1 B2 B3 B4

z = 2 Closed Closed Closed Closed

z = 3n Closed Closed Open Closed

z = 3b Closed Open Closed Closed

z = 4 Open Open Open Closed
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Indeed, as {1 : ¬p, 1 : p ∨ q, 1̂ : ¬r ∨ (r ∧ q)} only has a z-closed tableau for
z = 2, the argument ¬p, p ∨ q |= ¬r ∨ (r ∧ q) is classically valid but neither
valid according to K3, LP or FDE.

4. Two Other Sequent Calculi for the Strong Kleene
Generalizations

In this section we will construct two other uniform sequent calculi for the
xy

z

relations by applying the general methods of Baaz et al. [6] to construct
sequent calculi for a many-valued logic. Sequents of the calculi that are
obtained by these methods are sets of signed sentences of form x : ϕ, where
a sign x is an element of [4] := {t,b,n, f} that codes for the corresponding
value of 4. More generally, when S ⊆ 4, we will use [S] ⊆ [4] to denote the
set of signs that code for the values of S.

4.1. Constructing Two Sequent Calculi by the Method of Baaz et al.

In [6], Baaz et al. show that for each m-valued logic, two dual sequent calculi
can be given that are associated with two different notions of validity (and
satisfaction); P(ositive) and N (egative) validity. The notions generalize the
two ways (sketched in Sect. 3.1) in which the validity of a classical provable
sequent can be interpreted, to many-valued logics. The species of P- and
N -satisfaction relevant for this paper are defined below.

Definition 9. We say that V ∈ V4 P-satisfies a sequent Θ just in case
some x : ϕ ∈ Θ fulfils condition (16).

x = t =⇒ V (ϕ) = T, x = f =⇒ V (ϕ) = F

x = b =⇒ V (ϕ) = B, x = n =⇒ V (ϕ) = N
(16)

And we say that V N -satisfies Θ just in case some x : ϕ ∈ Θ does not fulfil
condition (16). Further, with z ∈ Z, Θ is said to be Pz-valid (Nz-valid) just
in case every V ∈ Vz P-satisfies (N -satisfies) Θ.

And so, when a valuation V N -dissatisfies Θ, i.e. when V does not
N -satisfy Θ, every x : ϕ in Θ fulfils condition (16). Hence, the notion of
satisfaction that is at stake in the SK calculus (cf. Definition 6) may be
described as a generalization of the notion of N -dissatisfaction to a set-up
where signs are allowed to code for sets of truth values rather than for values
as such. Despite the similarity in their underlying notions of satisfaction,
however, the SK calculus and the calculus associated with the notion of
N -(dis)satisfaction differ widely from one another, as we will see below.
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In general, a P-calculus (N -calculus) for a many-valued logic is a sequent
calculus that is sound and complete with respect to P-validity (N -validity).
Baaz et al. show that for each many-valued logic, P-and N -calculi can be
given. Their argument crucially relies on the notion of a P-admissible (N -
admissible) rule for a logical connective at a (sign for a) truth value. In our
case,8 these notions are defined as follows.

Definition 10. With ⊕ an n-ary connective of L (so n = 1 or n = 2), a
sequent rule of the following form:
Σ,Δ1 . . . Σ, Δi . . . Σ,Δm

where y : σ ∈ Δj ⇒ σ ∈ {ϕ1, . . . ϕn},
Σ, x : ⊕(ϕ1, . . . ϕn)

is called a rule for ⊕ at x. Such a rule is P-admissible (N -admissible) if,
for every V ∈ V4, V P-satisfies (N -satisfies) all top sets of the rule if and
only if V P-satisfies (N -satisfies) the bottom set of the rule.

As Baaz et al. show, P-admissible (N -admissible) rules for a connective
at a truth value exist for each many-valued logic—they present a construc-
tion of such a rule in terms of the truth tables of a many-valued logic—but
they are far from unique. Moreover, the authors show that, for X ∈ {P,N },
when a complete set of X-admissible rules—i.e. the set contains one X-
admissible rule for each connective at each truth value—is augmented with
a Weakening rule and with X-initial sequent rules, the resulting set of rules
constitutes a cut-free X-calculus. The Weakening rule that is relevant for
our purposes will be denoted by (W ):9

Σ
(W ) where Σ ⊆ Σ′

Σ′

The P-initial sequent rule of a many-valued logic basically states that
a sentence always has to take one of the truth values of the logic under

8The P-calculi and N -calculi that are considered by Baaz et al. have what Negri
and von Plato ([21]) call independent contexts whereas the P-calculi and N -calculi as
presented in this paper have what they call shared contexts. For instance, the P-admissible
rule for ∧ at t of this paper’s SKP calculus (in the appendix denoted as (∧P

t )) allows us

to infer Σ, t : ϕ ∧ ψ from Σ, t : ϕ and Σ, t : ψ. The sequents involved in the (∧P
t ) rule

have the shared context Σ. When reformulated as a rule with independent contexts, the
rule allows us to infer Σ1, Σ2, t : ϕ ∧ ψ from Σ1, t : ϕ and Σ2, t : ψ. Induction on proof
complexity readily reveals that the P-calculi (N -calculi) with independent contexts as
considered by Baaz et al. prove the same sequents as the P-calculi (N -calculi) with shared
contexts as presented in this paper.

9Indeed, the only difference between (W ) and (W ) is the kind of sets of signed sentences
that they manipulate.
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consideration. The P- initial sequent rules relevant for our purposes will be
denoted as (RP

z ), where for each z ∈ Z:10

(RP
z ){x : ϕ | x ∈ [z]}

Indeed, the bottom set of each rule (RP
z ) is Pz-valid and basically states

that according to a valuation in Vz, a sentence always has to take some
value in z.

Whereas a P-initial sequent rule roughly states that a sentence has to
take some truth value, the N -initial sequent rules of a many-valued logic
(jointly) state that a sentence cannot take two distinct ones. The sets of
N -initial sequent rules that are relevant for our purposes will contain rules
of form (RN

xy):

(RN
xy)

x : ϕ, y : ϕ

The first set of N -initial sequent rules that we define is RN
4 :

RN
4 = {(RN

xy) | x, y ∈ [4], x �= y}
The other three sets are then defined as follows:

RN
3b =RN

4 ∪ {(RN
nn)} RN

3n =RN
4 ∪ {(RN

bb)} RN
2 =RN

3b ∪ RN
3n

With (W )eakening and the initial sequent rules in place, what remains to
be done—in order to apply the results of Baaz et al. to the case at hand—is
the specification of P- and N -admissible rules11 for each L connective at
each sign x ∈ [4].

In order to find a P-admissible rule for ∧ at f , we try to express V (ϕ ∧
ψ) = F as a conjunction of disjunctions of statements of form V (σ) = X,
with σ ∈ {ϕ,ψ} and X ∈ 4. As the reader may care to verify, expression
(17) gives us what we want, as V (ϕ ∧ ψ) = F if and only if

(V (ϕ) = F or V (ψ) = F or V (ϕ) = B or V (ψ) = B) and

(V (ϕ) = F or V (ψ) = F or V (ϕ) = N or V (ψ) = N)
(17)

From (17), it readily follows that (∧P
f ) is a P-admissible rule for ∧ at f .

Σ, f : ϕ, f : ψ,b : ϕ,b : ψ Σ, f : ϕ, f : ψ,n : ϕ,n : ψ
(∧P

f )
Σ, f : ϕ ∧ ψ

10Remember that [z] is the set of signs coding for the values of z.
11Although Baaz et al. show that such rules can always be constructed from the truth-

tables of the many-valued logic under consideration, to actually carry out that construction
typically results in complex and cumbersome sequent rules.
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It is interesting to compare (∧P
f ) with (∧N

f ), an N -admissible rule for
∧ at f that is defined in accordance with the following rationale. First we
seek to express V (ϕ∧ψ) �= F as a conjunction of disjunctions of statements
of form V (σ) �= X, with σ ∈ {ϕ,ψ} and X ∈ 4. Equivalently then, we may
also express V (ϕ ∧ ψ) = F as a disjunction of conjunctions of statements of
form V (σ) = X (with σ and X as before), which is more convenient. As the
reader may care to verify, (18) gives us what we want, as

V (ϕ ∧ ψ) = F ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V (ϕ) = F, or
V (ψ) = F, or
(V (ϕ) = B and V (ψ) = N) , or
(V (ϕ) = B and V (ψ) = N) .

(18)

And so, by negating both sides of the equivalence of (18), we see that (∧N
f )

is an N -admissible rule for ∧ at f .
Σ, f : ϕ, Σ, f : ψ Σ, b : ϕ, n : ψ Σ, n : ϕ, b : ψ

(∧N
f )

Σ, f : ϕ ∧ ψ

According to the same rationale we define, in the appendix, a P-
admissible rule (⊕P

x ) and N -admissible rule (⊕N
x ) for each L connective

⊕ and each x ∈ [4]. We have thus defined a complete set of P-admissible
(N -admissible) rules and so we may apply the results of Baaz et al. to the
case at hand, which we do in Theorem 2 below. But first, we explicitly define
the SKPcalculus and the SKN calculus.

Definition 11. (The SKPand SKN calculus) The rules of the SKPcalculus
are as follows.

– The Weakening rule (W ).

– The initial sequent rules (RP
2 ), (RP

3b), (RP
3n) and (RP

4 ).

– The operational sequent rules (⊕P
x ) as defined in the appendix.

With z ∈ Z, the SKP
z calculus has (W ), the rules (⊕P

x ) and (RP
z ) as its

rules. A sequent Θ is said to be Pz-provable if some finite Θ0 ⊆ Θ has a
proof tree respecting the rules of the SKP

z calculus.
The rules of the SKN calculus are as follows.

– The Weakening rule (W ).

– The initial sequent rules contained in RN
2 .

– The operational sequent rules (⊕N
x ) as defined in the appendix.
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With z ∈ Z, the SKN
z calculus has (W ), the rules (⊕N

x ) and the rules in
RN

z as its rules. A sequent Θ is said to be Nz-provable if some finite Θ0 ⊆ Θ

has a proof tree respecting the rules of the SKN
z calculus.

We have the following soundness and completeness result.

Theorem 2. A sequent Θ is Pz-provable (Nz-provable) iff Θ is Pz-valid
(Nz-valid).

Proof. This follows from the main result of Baaz et al [6].

Although the SKPand SKN calculus are cut-free calculi, it follows from
the result of Baaz et al that admissible (in a sense resembling that of Proposi-
tion 17) cut-rules for both calculi can easily be added.12 Further, the authors
show that tableaux versions of the SKPand SKN calculus can be obtained
by “turning them upside down”.

In light of Theorem 2, to capture the Strong Kleene Generalizations syn-
tactically in terms of the SKP calculus (SKN calculus) we must express
these relations in terms of Pz-validity (Nz-validity). Propositions 20 and 21
show how this works out for the SKP calculus and SKN calculus respec-
tively.

Proposition 20. With x, y ∈ {1, 0̂, t, f̂} and z ∈ Z, Γ xy

z

ϕ iff⋃
s∈[z−x]

s : Γ ∪ {t : ϕ | t ∈ [y ∩ z]} is Pz-provable

Proof. Γ xy

z

ϕ iff, for every V ∈ Vz, V (γ) ∈ z − x for some γ ∈ Γ or
V (ϕ) ∈ y ∩ z. Hence, Γ xy

z

ϕ iff the sequent
⋃

s∈[z−x] s : Γ ∪ {t : ϕ | t ∈
[y ∩ z]} is Pz-valid which according to Theorem 2 holds iff the sequent is
Pz provable.

Proposition 21. With x, y ∈ {1, 0̂, t, f̂} and z ∈ Z, Γ xy

z

ϕ iff

∀f ∈ [x ∩ z]Γ ∀s ∈ [z − y], {f(γ) : γ | γ ∈ Γ} ∪ {s : ϕ} is Nz-provable

Proof. Γ xy

z

ϕ iff, for every V ∈ Vz, V (γ) �∈ x ∩ z for some γ ∈ Γ or
V (ϕ) �∈ z − y. Thus, with f and s as above, Γ xy

z

ϕ iff all sequents of form
{f(γ) : γ | γ ∈ Γ}∪{s : ϕ} are Nz-valid iff (cf. Theorem 2) all these sequents
are Nz-provable.

12In fact, Baaz et al. consider P- and N -calculi with cut rule(s) and then show that
any provable sequent in their calculi has a cut-free proof.
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Proposition 21 tells us that, in the SKN calculus, a proof of Γ xy

z

ϕ may
consist of multiple proof trees. In fact, an immediate corollary of Proposition
21 is that, when Γ is a finite set of premisses, the number of proof trees that
make up a proof of Γ xy

z

ϕ is equal to |z − y| · |x ∩ z||Γ |. For example, an
FDE proof of Γ xy

z

ϕ consists of 2 · 2|Γ | proof trees, an LP proof of 2|Γ |

trees, an ETL proof of 3 trees and a K3 proof of 2 proof trees.13

5. Reflecting on the SK Calculus

In this section we reflect on the results that were achieved in earlier sections.
In Sect. 5.1 we favourably compare the SK calculus to both the SKP and
SKN calculus. In Sect. 5.2 we compare the SK calculus with 2-sided sequent
calculi that have been proposed for some of the more familiar Strong Kleene
Generalizations. In Sect. 5.3 we hint at the philosophical significance of the
SK calculus.

5.1. Comparing the SK Calculus with the SKP and SKN Calculus

A slight advantage of the SKP calculus over the SK calculus is that the
former calculus requires a single proof tree whereas the latter require 2|Γ |

proof trees (cf. Proposition 16) to establish a proof of Γ
f̂ f̂

4

ϕ. However, for
all relations xy

z

other than
f̂ f̂

4

, both calculi requires a single proof tree to
establish a proof of Γ xy

z

ϕ. Moreover, we do not think that the mentioned
advantage of the SKP calculus is a genuine advantage. For the results in
Sect. 2 testify (see e.g. (9) and (10)) that

f̂ f̂

4

is (at least prima facie) a highly
unattractive consequence relation. In fact, we feel that the results in Sect. 2
justify a similar judgement with respect to all “unfamiliar” Strong Kleene
Generalizations, by which we mean all relations other than the Familiar
Four: CL, K3, LP, and FDE. In the literature, none of the unfamiliar rela-
tions has been advocated for—Pietz and Rivieccio [23] investigate but do
not advocate ETL—and the formal properties of these relations as explored
in Sect. 2 strongly suggest that a (philosophical) defence of any of the unfa-
miliar relations is not expected to be forthcoming. On the other hand, CL,

13With Γ = {γ1, . . . , γn} and when {γ1, . . . , γn} xy

z
ϕ ⇐⇒ γ1 ∧ · · · ∧ γn xy

z
ϕ, i.e.

when the Conjunction Equivalence (CE) holds, we may, by proving the sequent associated
with the r.h.s. of CE, reduce the number of proof trees required to establish a proof of

Γ xy

z
ϕ in the SKN calculus to |z − y| · |x ∩ z|. With the exception of

f̂ f̂

4
, CE holds for

all the relations xy

z
.
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K3, LP, and (albeit to a lesser extent) FDE, have been advocated for and
used by various authors in the literature. As Hjortland [18] puts it:

And indeed, classical logic, K3 and LP are systems with interesting
applications in philosophy, e.g. for reasoning with semantic paradoxes,
vagueness, and presuppositions. [18, p. 371]

We concur and submit that both as a relevance logic and as a logic that
tells us ‘how a computer that receives partial and inconsistent information
should think’, FDE also has interesting applications. Given the interest in
the Familiar Four logics and the disinterest in the unfamiliar xy

z

relations, a
relevant comparison of the SK, SKP and SKN calculus can safely neglect
the unfamiliar relations. At any rate, we will compare the three calculi only
with respect to CL, K3, LP, and FDE.

According to Proposition 20, to prove that an argument is valid according
to one of the Familiar Four logics always takes a single proof tree in the SKP

calculus, whereas it follows from Proposition 21 that such a proof typically
consist of multiple proof trees in the SKN calculus. As the complexity of the
rules of the SKP calculus and SKN calculus are by and large comparable,
we take it that the SKP calculus is preferable to the SKN calculus as a
calculus for the Familiar Four logics.

The most important (formal) advantage of the SK calculus over the
SKP calculus is that its rules and accordingly its proof trees are much
simpler. Whereas both calculi require a single proof tree to establish that an
argument is valid according to one of the Familiar Four logics, the height and
the number of branches of the required proof tree in the SK calculus will be
far less than those of the required tree in the SKP calculus, as a comparison
of the rules of the calculi reveals. For instance, in the SKPcalculus the
binary connectives are provided with sequent rules that either involve two
or three distinct top sets whereas in the SK calculus the binary connectives
are provided with sequent rules that either involve one or two distinct top
sets. In this respect, the SK calculus resembles (a signed) sequent calculus
for classical logic as given by e.g. Smullyan [32].

Another (formal) advantage of the SK calculus over the SKP calculus is
best explained in terms of their associated tableau calculi. In Sect. 3.3, we
saw that, in the tableau version of the SK calculus, a single tableau suffices
to assess the validity of an argument in terms of the Familiar Four logics.
As the reader may care to verify,14 to assess the validity of an argument in

14For sake of definiteness, the tableau calculus associated with the SKP calculus, is
given in Appendix.
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terms of the Familiar Four logics via the tableau version of the SKPcalculus
requires the construction of 4 tableaux.

In Sect. 4, we observed that the notion of satisfaction associated with
the SK calculus is a generalization—“from values to sets of values”—of
the notion of N -(dis)satisfaction that is constitutive for the SKN calcu-
lus. Given the sheer reduction in complexity of the calculus that is achieved
by this generalization, a number of interesting question arise. What does a
calculus for the Familiar Four logics that is obtained by a similar generaliza-
tion of the notion of P-satisfaction look like? Can we come up with general
results, comparable to those of Baaz et al., that show that sequent calculi
associated with the two envisaged notions of generalized of P-satisfaction
and N -satisfaction always exist? Exploring such questions is left for further
research.

5.2. Comparing the SK Calculus with 2-Sided Calculi

It is sometimes argued (e.g. Ripley [28] or Restall [26], see also Sect. 5.3)
that the left and right introduction rule of a connective in a 2-sided sequent
calculus for classical logic specify the meaning of that connective. The SK
calculus is a 4-signed (equivalently, 4-sided) sequent calculus, but for K3, LP
and FDE various 2-sided sequent calculi have been proposed in the literature
(see e.g. Avron [4], Arieli and Avron [3] or Beall [10]). Is a characterization
of, say LP, by a more standard 2-sided calculus not to be preferred15 over
a (4-sided) characterization by the SK calculus? Can’t we argue that, just
like in the classical case, the left and right introduction rule of a connective
in a 2-sided sequent calculus for LP specify the meaning of that connec-
tive? No we cannot. At least not without much further argument. For not
any introduction rule for a connective can be taken to bestow that connec-
tive with meaning. How then, do the introduction rules for a connective
in a 2-sided sequent calculus for classical logic manage to do this; what
is so attractive about these rules? Well, the rules (i) have the subformula
property, (ii) they introduce exactly one occurrence of a connective in their
conclusion and (iii) no other connective is mentioned anywhere else in their
formulation. These properties ensure, amongst others, that the meaning of a
connective can be understood independently from the meaning of other con-
nectives which, arguably, is an attractive feature from a meaning-theoretic

15It should be noted that, to the best of my knowledge, none of the 2-sided sequent
calculi that are proposed in the literature for some of the Strong Kleene Generalizations
can be used to characterize them all.
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perspective. However, the rules of none of the 2-sided sequent calculi for LP
have these attractive properties. For instance, the “left introduction rule for
negated conjunctions” of Beall’s [9] 2-sided calculus for LP fails to have any
of these properties:

Γ, ¬A ∧ ¬B � Δ
(¬ ∧ Left)

Γ, ¬(A ∧ B) � Δ

To say the least, it is far from clear that and how the rules of Beall’s cal-
culus specify the meaning of the logical connectives. And so, pending any
further argument, it is not clear why a 2-sided calculus for LP would be
preferable to the (characterization of LP by the) SK calculus.16 Further, a
2-sided Gentzen calculus which has attractive properties (i), (ii) and (iii) is
called a canonical calculus by Avron and Lev [5]. Although canonical calculi
are (philosophically) rather attractive, it is impossible to give a canonical
calculus for any of the non-classical Strong Kleene Generalizations. Such is
an immediate consequence of the following theorem by Avron and Lev:

Theorem 3. Let G be a canonical calculus. Then either G is inconsistent
[i.e. allows one to prove every sequent], or it defines a logic which is a
fragment of classical logic, or it has no finite characteristic matrix.

Proof. See [5].

It is interesting to observe that the (operational) rules of the SK calculus,
albeit in a 4-signed setting, do enjoy properties (i), (ii) and (iii). Moreover,
in the next section I argue that (suitably interpreted) the rules of the SK
calculus may serve as specifying the meaning of the logical connectives.
Hence, although 2-sided sequent calculi are available for some of the Strong
Kleene Generalizations, it is not clear (to say the least) that and in which
sense they are preferable to the SK calculus.

5.3. The Philosophical Significance of the SK Calculus

We put forward two considerations that hint at the potential philosophical
relevance of the SK calculus.

Our first consideration has to do with the justification of a logic from an
inferentialist theory of meaning. In a nutshell, inferentialism is the view that

16For what it’s worth, perhaps one can argue that a 2-sided calculus is preferable to
a many-sided one because the 2 sides correspond to premises and conclusions and hence,
that (only) 2-sided calculi resemble the structure of genuine arguments. Although I am not
entirely sure of the value of such an argument, I should be noted that “genuine” arguments
(arguably) involve a single conclusion.
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meaning (in particular the meaning of the logical connectives) is determined
by correctness of inference. Michael Dummett [15] famously argued that,
when starting from such an inferentialist view on meaning, one can justify
intuitionistic but not classical logic. However, various authors (e.g. Smiley
[31], Rumfitt [30] and Restall [26]) have argued that Dummett’s conclusion
only follows because his inferentialism does not give denial its due. According
to these authors, denial should not, pace Dummett be understood as the
assertion of a negation but rather as a (primitive) speech act on its own, on
the same footing as assertion. When one does so, one arrives at a species
of inferentialism —called bilaterlism— which explains meaning in terms of
constraints on assertion and denial and from which, so it proponents claim,
one can justify classical logic. In particular Restall [26] provides such a
justification by showing that the rules of a sequent calculus for classical logic
can be interpreted in terms of constraints on assertion and denial. On this
interpretation, a sequent Γ ⇒ Δ is read as stating that it is incorrect (“out
of bounds”) to assert all of Γ whilst denying all of Δ and so in particular,
an initial sequent ϕ ⇒ ϕ states that it is incorrect to both assert and deny
the same sentence ϕ. Interestingly, the SK calculus allows us to extends
Restall’s bilateral account of classical logic to a “quadlateral” account of all
the Familiar Four logics as, by acknowledging two kinds of assertion and two
corresponding kinds of denial, we may understand CL, K3, LP, and FDE,
all in terms of (distinct) constraints on our four assertoric notions. To get
an idea of what we have in mind, say that one may assert1 a sentence ϕ if
one knows ϕ to be true whereas one may assert0̂ ϕ if one knows ϕ to be not
false. Dually, one may deny1 ϕ if one knows ϕ to be not true whereas one
may deny0̂ ϕ if one knows ϕ to be false. When we think of the signs 1, 0̂, 1̂,
and 0, as coding for, respectively assertion1, assertion0̂, denial1 and denial0̂,
the rules of the SK calculus can be understood in terms of constraints on
assertion and denial and the SK calculus thus seems to give us the means to
widen the scope of applicability of Restall’s inferentialist account of meaning.
Although clearly lots more need to be said to back up these sketchy remarks
(which we will do in a future paper), we take it that at least the potential
significance of the SK calculus with respect to providing a justification of
the Familiar Four logics is clear.17

17 On Restall’s interpretation, an initial sequent ϕ ⇒ ϕ states that it is incorrect to
assert and deny the same sentence. Note that this is akin to an interpretation of sequents
along the lines of the notion of N -satisfaction. On the corresponding interpretation along
the lines of P-satisfaction, an initial sequent would state that it is always correct to assert
or correct to deny a sentence. Interestingly, cases of potential ignorance suggest that the
latter interpretation is problematic. Thus, the fact that the notion of satisfaction associated
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Finally, we want to point out the potential significance of the SK cal-
culus for the now in vogue position of logical pluralism by which, following
Hjortland [18], we mean the view that there are at least two admissible
all-purpose logics, i.e. at least two logics that are applicable to reasoning in
all discourse domains and which are both correct18 (or equally good with
no better option). Beall and Restall [11] advocate a well-known version of
logical pluralism which, so they claim, is independent of meaning-variance:
distinct admissible all-purpose logics can assign the same meaning to the
logical connectives (and differ only in the meaning they assign to ‘valid’). In
[18], Hjortland criticizes Beall and Restall’s account of pluralism by claiming
that its alleged independence of meaning-variance fails, after which he puts
forward an account of logical pluralism that does not fall prey to meaning-
variance:

The main part of the paper develops a new notion of logical plu-
ralism with the aim of showing [that there is a notion of logical
pluralism that is independent of meaning-variance]. The overarch-
ing idea is to think of logical pluralism not as a plurality of logical
theories, but as a plurality of consequence relations (and derivability
relations) within one and the same logical theory. I call this intra-
theoretic pluralism. I give an example of how such a theory can be
formally achieved using a generalization of sequent calculus with n-
sided sequents. [18, p. 356]

The “generalization of sequent calculus with n-sided sequents” that Hjort-
land is referring to is a three-sided P-calculus (obtained by the methods of
Baaz et al.) for CL, K3, and LP. The importance of the calculus for Hjort-
land’s position is that it is a single logical theory (in our words: a uniform
calculus) that can be used to characterize CL, K3, and LP by relying on the
same operational sequent rules which means, so it is argued, that the three
logics assign the same meaning to the logical connectives. As the SK calcu-
lus (or its SK3b or SK3n sub calculus) has these same properties however,
it should be clear that this paper’s formal work on the SK calculus, together
with the observations in Sect. 5), is highly relevant for a proper assessment

Footnote 17 continued
with the SK calculus is a generalization of the notion of N -(dis)satisfaction may turn out
to be philosophically relevant.

18As Hjortland explains on page 357, correctness may either be understood according
to a descriptive or to a normative standard.
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of Hjortland’s intra-theoretic pluralism. To provide this assessment in full
detail is the topic of further work.

6. Conclusion

By using the notions of exact truth and exact (non)-falsity we defined the
class of all Strong Kleene Generalizations (of classical logic). Amongst the
Strong Kleene Generalizations are the Familiar Four logics of CL, K3, LP
and FDE, but also a host of unfamiliar ones. The unfamiliar Strong Kleene
Generalizations turn out to have quite some counter intuitive properties,
especially at the level of meta-inferences, which makes it hard to imagine
that they will be advocated for. However, studying the class of all Strong
Kleene Generalizations (is not only interesting of itself but also) sheds novel
light on the interrelations between the Familiar Four logics. We developed a
uniform sequent calculus, the SK calculus, that is sound and complete with
respect to all Strong Kleene Generalizations. Although sequent calculi that
serve the same purpose can be obtained by applying the general methods of
Baaz et al., we showed that the SK calculus is preferable to these calculi,
as its rules are simpler, its proofs are shorter and as it is better suited to
study the interrelation between the Familiar Four logics. Finally, we hinted
at the philosophical significance of the SK calculus by indicating the role
that it can play in debates on bilateralism and on logical pluralism.

Appendix: The SKP , the SKN , and the SKP
tab Calculus

The operational sequent rules of the SKPcalculus are defined as follows.
P-admissible rules for ∧:
Σ, t : ϕ Σ, t : ψ

(∧P
t )

Σ, t : ϕ ∧ ψ

Σ, f : ϕ, f : ψ,b : ϕ,b : ψ Σ, f : ϕ, f : ψ,n : ϕ,n : ψ
(∧P

f )
Σ, f : ϕ ∧ ψ

Σ, x : ϕ, x : ψ Σ, x : ϕ, t : ϕ Σ, x : ψ, t : ψ
(∧P

x )
Σ, x : ϕ ∧ ψ

if x ∈ {b,n}

P-admissible rules for ∨:
Σ, t : ϕ, t : ψ,b : ϕ,b : ψ Σ, t : ϕ, t : ψ,n : ϕ,n : ψ

(∨P
t )

Σ, t : ϕ ∨ ψ

Σ, f : ϕ Σ, f : ψ
(∨P

f )
Σ, f : ϕ ∨ ψ

Σ, x : ϕ, x : ψ Σ, x : ϕ, f : ϕ Σ, x : ψ, f : ψ
(∨P

x )
Σ, x : ϕ ∨ ψ

if x ∈ {b,n}
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P-admissible rules for ¬:
Σ, y : ϕ

(¬P
x )

Σ, x : ¬ϕ
if 〈x, y〉 ∈ {〈t, f〉, 〈f , t〉, 〈b,b〉, 〈n,n〉}

The operational sequent rules of the SKN calculus are defined as follows.
N -admissible rules for ∧:
Σ, t : ϕ, t : ψ

(∧N
t )

Σ, t : ϕ ∧ ψ

Σ, f : ϕ Σ, f : ψ Σ, b : ϕ, n : ψ Σ, n : ϕ, b : ψ
(∧N

f )
Σ, f : ϕ ∧ ψ

Σ, x : ϕ, x : ψ Σ, x : ϕ, t : ψ Σ, t : ϕ, x : ψ
(∧N

x )
Σ, x : ϕ ∧ ψ

if x ∈ {b,n}

N -admissible rules for ∨:
Σ, t : ϕ Σ, t : ψ Σ, b : ϕ, n : ψ Σ, n : ϕ, b : ψ

(∨N
t )

Σ, t : ϕ ∨ ψ

Σ, f : ϕ, f : ψ
(∨N

f )
Σ, f : ϕ ∨ ψ

Σ, x : ϕ, x : ψ Σ, x : ϕ, f : ψ Σ, f : ϕ, x : ψ
(∨N

x )
Σ, x : ϕ ∨ ψ

if x ∈ {b,n}

N -admissible rules for ¬:
Σ, y : ϕ

(¬N
x )

Σ, x : ¬ϕ
if 〈x, y〉 ∈ {〈t, f〉, 〈f , t〉, 〈b,b〉, 〈n,n〉}

The tableau calculus associated with the SKP calculus is defined as follows.

Definition 12. (The SKP
tab calculus) The tableau rules of the SKP

tab calcu-
lus are the bottom-up versions of the operational sequent rules of the SKP

calculus. With z ∈ Z, a branch B of a tableau is Pz-closed if the bottom
set of (RP

z ) is a subset of B. A tableau is Pz-closed if all its branches are
Pz-closed and a set of signed sentences Θ is said have a Pz-closed tableau
just in case some finite Θ0 ⊆ Θ has a Pz-closed tableau.

The following proposition will not come as a surprise.

Proposition 22. A sequent Θ has a Pz-closed tableau if and only if Θ is
Pz-provable.

Proof. See [6].
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