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SUMMARY
Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epige-

netic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an un-

methylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter

region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the

increasedH3 acetylation andH3K4methylation in combinationwith a reducedH3K9methylation. After reprogramming, the FMR1 pro-

moter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas

the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that

the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.
INTRODUCTION

Themost common inherited form of intellectual disability,

fragile X syndrome (FXS), is caused by the absence of

the FMR1 gene product, the fragile X mental retardation

protein (FMRP). In the majority of FXS patients, the tran-

scriptional silencing of the FMR1 gene is initiated by an

expansion of a naturally occurring CGG repeat in the 50

UTR of the FMR1 gene, to more than 200 units (Verkerk

et al., 1991; Pearson et al., 2005). This so-called full muta-

tion results in hypermethylation of the cytosines in the

repeat region and the FMR1 promoter region during early

human embryonic development (Sutcliffe et al., 1992;Wil-

lemsen et al., 2002). This results in a lack of FMR1 transcrip-

tion and consequently an absence of FMRP. Along with hy-

permethylation, the FMR1 promoter in FXS is characterized

by additional epigenetic marks specific for transcription-

ally repressed chromatin including reduced histone H3

and H4 acetylation, reduced histone H3K4 methylation,

and increased histone H3K9 methylation (Coffee et al.,

1999, 2002; Pietrobono et al., 2005; Tabolacci et al.,

2005). However, the timing and molecular mechanisms

involved in the CGG expansion, the concomitant DNA

methylation, and the additional epigenetic changes that

occur during embryonic development are not yet fully un-
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derstood. Insights into these processes may lead to a more

complete understanding of the developmental processes

underlying fragile X syndrome, which, in turn, could lead

to new therapeutic strategies.

Becausemurine fragile Xmodels cannot be used to inves-

tigate epigenetic FMR1 inactivation as methylation of the

full mutations does not occur, human FXS embryonic

stem cells have been studied. These studies showed that

FMRP is expressed during early embryonic development,

but that epigenetic silencing of FMR1 occurs upon differen-

tiation (Eiges et al., 2007; Gerhardt et al., 2013). A further

attempt to study the epigenetic changes over time made

use of induced pluripotent stem cells (iPSCs) generated

from human FXS fibroblasts. In contrast to human embry-

onic FX stem cells, these pluripotent cells were shown to

already carry a fully methylated FMR1 promoter and addi-

tional heterochromatin marks, so the epigenetic silencing

mechanisms in time could not be studied (Urbach et al.,

2010; Sheridan et al., 2011; Bar-Nur et al., 2012).

In 1991, a familial case was reported in which two

brothers with normal intelligence were shown to have a

full FMR1mutationwithout the concomitant hypermethy-

lation of the CGG repeat and the promoter region (Smeets

et al., 1995). In order to unravel themolecular mechanisms

behind the epigenetic silencing in fragile X syndrome, we
uthors
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Figure 1. Methylation Status and FMR1 Expression Levels in the
Fibroblast Cell Lines
(A) Methylation status of a region of the FMR1 promoter in fibro-
blasts of the male control line, fragile X line (FXS), and the un-
methylated full mutation line (uFM). Values were normalized to
CLK2 promoter activity first. The normalized exponential values
were then presented as a percentage relative to the female fibro-
blast control line, for which the normalized exponential values were
set to 50% for each primer set (n = 2–3 separate measurements).
(B) Real-time quantitative PCR data showing FMR1 transcript levels
in fibroblasts of the male control line, fragile X line (FXS), and the
unmethylated full mutation line (uFM) normalized to CLK2
expression. Values are means ± SEM relative to appropriate male
control line (n = 2–3 separate measurements).
(C) The percentage of methylated CpGs in the FMR1 promoter and as
a control the OCT4 promoter, in 13 and ten clones, respectively,
after Sanger sequencing of bisulfite converted DNA of the uFM
fibroblast line. Each line represents a clone, and each circle rep-
resents a CpG site, which is methylated (closed circle) or un-
methylated (open circle).
See also Figures S1 and S2.
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derived iPSCs from these human fibroblasts, to analyze the

epigenetic characteristics of the FMR1 promoter after re-

programming and during differentiation. Here, we report

the characterization of these iPSCs and show, unexpect-

edly, that the FMR1 promoter of the unmethylated full mu-

tation cell line becomesmethylated during reprogramming

and stays methylated after differentiation into neural pro-

genitor cells.
RESULTS

Fibroblast Characterization

Fibroblasts from a normal male carrying an unmethylated

full mutation first described by Smeets et al. (1995) (uFM)

and fibroblasts from a clinically diagnosed male fragile X

syndrome patient (14 years old, FXS) and an unrelated un-

affected male control line (3 years old, control) were

analyzed for FMR1 50 UTR CGG repeat length, methylation

status, FMR1 expression, and the histone marks associated

with the FMR1 promoter. As expected, the control line

showed a CGG repeat length within the normal range

(<55), whereas the uFM and the FXS line showed CGG

repeat lengths in the full mutation range (approximately

233 and 380 repeats, respectively) (Figure S1 available on-

line). Also, as expected, the part of the FMR1 promoter

analyzed after bisulfite conversion was not methylated in

the control and the uFM cell lines, whereas in the FXS

cell line the FMR1 promoter was methylated (Figures 1A

and S2 for location of the primers). Because the methyl-

ation status is predictive of FMR1 expression, indeed the

control line showed normal expression levels and the

uFM line showed normal to slightly increased FMR1

expression, whereas the FXS cell line did not express

FMR1 transcripts (Figure 1B). Additionally, bisulfite Sanger

sequencing of a region of the FMR1 promoter containing

22 CpGs was carried out, which confirmed the absence of

methylation of the FMR1 promoter in the uFM fibroblast

line (Figure 1C).
Fibroblast Reprogramming and iPSC Characterization

The fibroblasts were reprogrammed to iPSC lines according

to established protocols (Takahashi et al., 2007; Warlich

et al., 2011). First, four iPSC clones were generated that

showed typical characteristics of pluripotent stem cells:

morphology similar to that of embryonic stem cells (data

not shown), expression of alkaline phosphatase (data not

shown), silencing of the multicistronic lentiviral transgene

(data not shown), reactivation of genes indicative of plurip-

otency (data not shown), immunoreactivity for OCT4,

NANOG, TRA-1-60, TRA-1-81, and SSEA4 (Figure S3), prop-

agation for a long time in culture (up to passage 30), and

maintenance of a normal diploid karyotype (data not
Reports j Vol. 3 j 548–555 j October 14, 2014 j ª2014 The Authors 549
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Figure 2. Methylation Status and FMR1
Expression Levels in the Induced Pluripo-
tent Stem Cells
(A) Real-time quantitative PCR data
showing FMR1 transcript levels in
induced pluripotent stem cells (iPSCs) of
the male control line, fragile X line
(FXS), and the unmethylated full muta-
tion clones (uFM clone 1 and clone 2)
normalized to CLK2 expression. Values are
mean ± SEM relative to appropriate male
control line (n = 2–3 separate measure-
ments).
(B) Methylation status of a region of
the FMR1 promoter in iPSCs of the
male control line, fragile X line (FXS),
and the unmethylated full mutation
clones (uFM clone 1 and clone 2). Values
were normalized to CLK2 promoter
activity first. The normalized exponential
values were then presented as a percent-
age relative to the female fibroblast
control line, for which the normalized
exponential values were set to 50% for
each primer set (n = 2–3 separate mea-
surements).
(C) The percentage of methylated CpGs in
the FMR1 promoter and as a control the
OCT4 promoter, after Sanger sequencing of
bisulfite converted DNA of the uFM iPSC
clones. Each line represents a clone, and
each circle represents a CpG site, which is
methylated (closed circle) or unmethylated
(open circle).
(D) Methylation status of a region of the
FMR1 promoter in additionally generated
iPSC clones of the unmethylated full mu-
tation fibroblast line in naive human stem
cell medium. Values were normalized to
CLK2 promoter activity first. The normal-

ized exponential values were then presented as a percentage relative to the female fibroblast control line, for which the normalized
exponential values were set to 50% for each primer set (n = 2 separate measurements).
See also Figures S1–S3.
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shown). All four cell lines generated embryonic bodies that,

after differentiation in vitro, expressed markers of endo-

derm,mesoderm and ectoderm (Figure S3). These four lines

were extensively characterized and the results are described

below. Second, we generated eight additional iPSC clones

from the uFM fibroblast line solely in order to confirm

the methylation status of the FMR1 promoter by quantita-

tive PCR (Figure 2D). These additional iPSC clones were

generated from the uFM fibroblast line by the same

methods as described, except this time we used naive hu-

man stem cell medium (WIS-NHSM) as defined by Gafni

et al. (2013). Thismedium facilitates the derivation of naive
550 Stem Cell Reports j Vol. 3 j 548–555 j October 14, 2014 j ª2014 The A
pluripotent iPSCs with properties highly similar to mouse

naive ES cells.

Reprogramming Effects on CGG Repeat Length, FMR1

Expression, and Methylation

Analysis of the CGG repeat in the 50 UTR of the FMR1 pro-

moter indicated that the repeat length in the cell lines car-

rying a full mutation did not contract to levels below 200

CGGs during reprogramming (Figure S1). The iPSC clone

of the control cell line contained aCGG length under 55 re-

peats. Nonetheless, the CGG repeat length contracted

slightly in the FXS iPSC line after reprogramming, from
uthors
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380 repeats to approximately 290 repeats. In contrast, the

repeatwas expanded in the two uFM iPSC clones to approx-

imately 330 and 380 repeats (Figure S1). As expected, the

iPSC clone of the control cell line showed FMR1 expression,

in contrast to the FXS iPSC clone that did not show FMR1

expression. Unexpectedly, the two uFM iPSC clones did

not express FMR1 either (Figure 2A). Further analysis

showed that the bisulfite converted FMR1 promoter region

was methylated in the FXS iPSC clone as well as in both

uFM iPSC clones, whereas the control iPSC cell line did

not show any methylation (Figure 2B). Bisulfite Sanger

sequencing confirmed the methylation status of the two

uFM iPS clones (Figure 2C). The additional eight iPS clones

generated from the uFM fibroblast line in WIS-NSHM me-

dium also showed complete methylation of the bisulfite

converted FMR1 region (Figure 2D). Thus, the originally

unmethylated extended CGG repeat found in the uFM

fibroblasts becamemethylated at some point during the re-

programming process.

Chromatin immunoprecipitation (ChIP) experiments

with the fibroblast lines showed that the FMR1 promoter

of the control line carried active histonemarks, H3 acetyla-

tion and H3K4 dimethylation with values similar to the

positive control, namely, the active gene APRT, and values

much higher than the negative control CRYAA (crystal-

line), which only serves as a positive control for repressed

genes. The inactive mark H3K9 trimethylation was not en-

riched in the control fibroblasts (Figures 3A–3C). The uFM

fibroblast line carried histone marks representative of an

actively transcribed gene, namely, H3 acetylation and

H3K4 methylation at similar levels as the control line.

The inactivemarkH3K9methylation could not be detected

in the uFM fibroblast line (Figures 3A–3C). The FMR1 pro-

moter of the FXS cell line only showed enrichment of the

repressive mark H3K9 methylation (Figures 3A–3C). ChIP

analysis of the FMR1 promoter in iPSCs showed enrich-

ment of the active marks H3 acetylation and H3K4methyl-

ation in the control iPSC clone, to levels higher than the

positive control APRT. The FXS iPSCs and clone 1 of the

uFM iPSCs showed an increase of the repressive mark

H3K9 methylation to values above the repressive control

CRYAA, whereas enrichment of the active marks could

not be detected in FXS iPSCs and uFM iPSC clones 1 and

2 (Figures 3D–3F).

Next, we investigated the effects of differentiation

into neural progenitor cells (NPCs) on FMR1 expression

and methylation (see Figure S4 for staining with marker

SOX2). NPCs derived from the FXS and uFM iPSCs

lacked FMR1 expression and carried a methylated FMR1

promoter. The NPCs derived from the control iPSC

clone showed clear FMR1 expression and an unmethylated

promoter region (Figures 4A and 4B). These findings indi-

cate that the reprogramming process leads to methylation
Stem Cell
of the expanded FMR1CGG repeat sequence, which results

in a stable shut down of FMR1 gene expression.
DISCUSSION

We undertook this study in an attempt to unravel the

epigenetic mechanisms involved in the silencing of the

FMR1 gene in fragile X syndrome by the use of a fibroblast

line carrying an unmethylated full mutation. There have

been several attempts to study epigenetic silencing in frag-

ile X syndrome. Eiges et al. (2007) have shown that FXS

human embryonic stem cells (hESCs) still express FMRP

at a level similar to that in unaffected hESCs, whereas the

FMRP level decreases as the hESCs were differentiated.

Based on these results, it was expected that by reprogram-

ming FXS fibroblasts into pluripotent stem cells, the hyper-

methylated state of the FMR1 promoter region would be

reversed. However, by now several research groups have

shown that iPSCs derived from FXS patients show epige-

netic marks characteristic for heterochromatin similar to

the full mutation fibroblasts they originated from (Urbach

et al., 2010; Sheridan et al., 2011; Bar-Nur et al., 2012).

These observations could be explained by the fact that

the FXS iPSCs may not have all the characteristics of early

pluripotency, but that they represent a later stage of human

development (Urbach et al., 2010; Sheridan et al., 2011;

Bar-Nur et al., 2012; Gafni et al., 2013).

Another approach was used in studies with human frag-

ile X lymphoblastic cells; here, a fully mutated and hyper-

methylated FMR1 gene was reactivated by treatment with

5-azadeoxycytidine, a hypomethylating agent. Although

such treatment significantly reduced DNA methylation in

some cells, it could not restore all remaining epigenetic

marks to control levels (Chiurazzi et al., 1998, 1999; Coffee

et al., 1999, 2002). Drugs such as 4-phenylbutyrate, sodium

butyrate or trichostatin A, which block the activity of his-

tone deacetylases, did not restore FMR1 expression to

normal levels (Chiurazzi et al., 1999; Coffee et al., 1999,

2002; Tabolacci et al., 2005). In addition, treatment with

a compound that reduces the in vitro expression of the

FRAXA fragile site, acetyl-l-carnitine, did not restore the

FMR1 expression either (Tabolacci et al., 2005). Recently,

5-azadeoxycytidine treatment was also tested on fragile X

iPSCs, and it appeared to restore FMR1 expression in both

iPSCs and differentiated neurons, which offers possibilities

to use these cells as an epigenetic model (Bar-Nur et al.,

2012).

The availability of a fibroblast cell line carrying an unme-

thylated full mutation (uFM) provided a new opportunity

to study the epigenetic silencing mechanisms in time. We

first characterized the uFM fibroblast cell line together

with a normal male fibroblast control line and a FXS
Reports j Vol. 3 j 548–555 j October 14, 2014 j ª2014 The Authors 551



A B

C D

E F

Figure 3. Chromatin Immunoprecipitation Analysis of H3 Acetylation, H3K4 Methylation, and H3K9 Methylation in the FMR1
Promoter of Fibroblasts and iPSCs
Chromatin immunoprecipitation analysis of H3 acetylation, H3K4 methylation, and H3K9 methylation in the FMR1 promoter of fibroblasts
(A–C) and iPSCs (D–F), respectively. Results were normalized to the appropriate positive control (APRT or CRYAA), averaged from at least
two different experiments and shown with their respective SEs.
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fibroblast cell line carrying a fully methylated FMR1 pro-

moter. Although increased FMR1 mRNA levels (up to five

times) were reported in lymphoblastoid cells of premuta-
552 Stem Cell Reports j Vol. 3 j 548–555 j October 14, 2014 j ª2014 The A
tion carriers (55�200 unmethylated CGGs), our findings

of normal to slightly increased FMR1 mRNA levels in the

uFM fibroblasts are similar to the findings of Pietrobono
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Figure 4. Methylation Status and FMR1 Expression Levels in
Neural Progenitor Cells
(A) Real-time quantitative PCR data showing FMR1 transcript levels
in neural progenitor cells (NPCs) of the male control line, fragile X
line (FXS), and the unmethylated full mutation clones (uFM clone 1
and clone 2) normalized to CLK2 expression. Values are mean ± SEM
relative to appropriate male control line (n = 2 separate measure-
ments).
(B) Methylation status of a region of the FMR1 promoter in NPCs of
the male control line, fragile X line (FXS), and the unmethylated full
mutation clones (uFM clone 1 and clone 2). Values were normalized
to CLK2 promoter activity first. The normalized exponential values
were then presented as a percentage relative to the female fibro-
blast control line, for which the normalized exponential values were
set to 50% for each primer set (n = 2–3 separate measurements).
See also Figures S2 and S4.

Stem Cell Reports
Epigenetic Characterization of the FMR1 Promoter
et al. (2005), who examined a lymphoblastic cell line from

the same individual. The lack of DNAmethylation ensures

that the chromatin is less densely packed and more acces-

sible for transcription, which explains the FMR1 expression

in this cell line. Our ChIP results differ from the original

ChIP analysis of the uFM lymphoblastoid cell line (Tabo-

lacci et al., 2005). We found a similar increase in H3K4

methylation; however, we did not find decreased H3 acety-

lation levels or intermediate H3K9 levels in the uFM fibro-

blasts. These differences could be explained by the fact that
Stem Cell
we have analyzed a distinct cell type (fibroblasts versus

lymphoblastoid cells), and by differences in the ChIP pro-

tocol (e.g., quantification methods and reference genes

used). Because the uFM fibroblast line lacked methylation

of the FMR1 promoter site despite the high number of

CGG repeats, we expected to find an unmethylated FMR1

promoter and normal levels of FMR1 mRNA after reprog-

ramming into iPSCs. Surprisingly, we found the promoter

region of FMR1 to be hypermethylated in all iPSC clones.

Other epigenetic chromatin marks also indicated a

repressed FMR1 promoter similar to the marks observed

in the fragile X iPSC line. After differentiation of these

iPSCs into neural progenitor cells, the FMR1 promoter re-

mained methylated and thus silenced.

There are three possible explanations for our findings.

First, it is possible that the reprogramming process re-

sulted in iPSCs that were solely derived from methylated

FM fibroblasts and not of the unmethylated cells. This as-

sumes that methylated FM fibroblasts were present in our

culture, which according to our bisulfite sequencing re-

sults seems highly unlikely. Second, there may be an un-

known genetic factor present in this individual that was

protective against DNA methylation during embryonic

development but which was absent in his fibroblasts or

which was altered or blocked during the reprogramming

process. In our case, the brother of this individual was

also carrier of an unmethylated full mutation. Being a car-

rier of an unmethylated full mutation is already a very rare

phenomenon, but the fact that two children escaped

methylation in one family clearly points toward the

involvement of a maternal-paternal genetic component

or environmental factors. Finally, the reprogramming pro-

cess might activate genes that induce de novo methyl-

ation of the FMR1 promoter. Although the FMR1 gene in

this individual escaped methylation during embryonic

development, the full mutation in his fibroblasts might

be recognized by epigenetic remodelers, e.g., by histone

and/or DNA methyltransferases (DNMTs) that are not

recruited in embryonic development. This would also

explain the unmethylated full mutation observed in hu-

man embryonic FXS stem cells because these cells never

went through this reprogramming process. A strategy to

test this hypothesis would be, for example, to perform

the reprogramming of the uFM fibroblasts as well as FXS

fibroblast lines under conditions that inhibit the func-

tioning of DNMT 3a and 3b.

In conclusion, standard reprogramming of somatic uFM

fibroblasts into pluripotent stem cells by the use of four

transcription factors did not lead to demethylation of the

expanded CGG repeat and even induced methylation of

an unmethylated template. Very recently, Gafni et al.

(2013) suggested that a more naive ground state pluripo-

tent stem cell in which epigenetic memory is completely
Reports j Vol. 3 j 548–555 j October 14, 2014 j ª2014 The Authors 553



Stem Cell Reports
Epigenetic Characterization of the FMR1 Promoter
erased could be obtained by a unique combination of cyto-

kines and small molecule inhibitors (WIS-NHS medium).

Their study also demonstrated the reactivation of the

FMR1 gene in FXS iPSCs after the reprogramming of FXS

fibroblast under naive conditions. However, in contrast to

these findings, the use of this WIS-NHS medium did not

prevent the occurrence of the de novo methylation of the

extended FMR1 repeat in our uFM iPS clones. In conclu-

sion, our results show that although this fibroblast line

may offer a unique system to study the de novo methyl-

ation of an extended FMR1 repeat during reprogramming,

the mechanism behind the silencing of the FMR1 gene in

fragile X syndrome remains elusive.
EXPERIMENTAL PROCEDURES

Cell Culture
The rare fibroblast cell line established from a normal male car-

rying an unmethylated full mutation first described by Smeets

et al. (1995) (uFM) was used. This line has been subcloned, so

that a homogenous population of cells that carry a fully extended

repeat was obtained. Fibroblasts from a clinically diagnosed male

fragile X syndrome patient (14 years, FXS), and an unrelated unaf-

fected male (3 years, control) and female control fibroblast line

(9 years) were all obtained from the cell repository of the depart-

ment of Clinical Genetics, Erasmus MC, Rotterdam. For culture

conditions, see the Supplemental Experimental Procedures.

iPSC Generation
Reprogramming of human primary skin fibroblasts was performed

as described previously (Warlich et al., 2011). Briefly, fibroblasts

were infected with a single, multicistronic lentiviral vector encod-

ing OCT4, SOX2, KLF4, and MYC and cultured on g-irradiated

mouse embryonic feeder (MEF) cells until iPSC colonies could be

picked (Warlich et al., 2011). The second round of reprogramming

of the uFM fibroblast line was done in naive ES medium (WIS-

NHSM medium) according to Gafni et al. (2013) (see the Supple-

mental Experimental Procedures). These cells were used to affirm

themethylation status of the FMR1 promoter after reprogramming

by methylation specific quantitative PCR. For further details, see

the Supplemental Experimental Procedures.

In Vitro Differentiation of Embryonic Bodies
To form embryonic bodies (EBs), iPSC colonies from two wells per

line were broken up by collagenase IV treatment and transferred to

ultralow attachment 6-well plates (Corning). For the germ layer

differentiation conditions, see the Supplemental Experimental

Procedures. After 2 weeks in culture, the cells were fixed with

formalin and immunostainings were performed (see the Supple-

mental Experimental Procedures).

Neural Differentiation
Human iPSCs were differentiated according to Brennand et al.

(2011), with modifications (see the Supplemental Experimental

Procedures). After 1 week, NPCs were dissociated with collagenase
554 Stem Cell Reports j Vol. 3 j 548–555 j October 14, 2014 j ª2014 The A
(100 U/ml), replated, and used for staining and methylation anal-

ysis after three to five passages.

Karyotype Analysis and Immunocytochemistry
Standard staining procedures were followed; for details, see Supple-

mental Experimental Procedures.

CGG Repeat Length, FMR1 Expression, and

Methylation Analysis
CGG repeat size was determined in a PCR using the primers 50-
CGGAGGCGCCGCTGCCAGG-30 and 50-TGCGGGCGCTCGAG

GCCCAG-30 with the Expand high fidelity PCR kit (Roche) supple-

mented with 2.5 M betaine (see the Supplemental Experimental

Procedures). For details of the FMR1 expression analysis, see the

Supplemental Experimental Procedures. Genomic DNAwas modi-

fied by bisulfite treatment according to the EpiTect Bisulfite Kit.

The diluted converted DNAwas then measured using quantitative

PCRwith two different primer set designed specifically for a region

of FMR1 promoter (see Figure S1 for the locations). One primer set

contained the methylated DNA sequence and the other contained

the unmethylatedDNA sequence of a region of the FMR1 promoter

after bisulfite conversion (see the Supplemental Experimental

Procedures).

Bisulfite Sanger Sequencing
Genomic DNA (1,000 ng) was modified by bisulfite treatment

according to the EpiTect Bisulfite Kit. Then a region of the FMR1

promoter containing 22 CpGs was amplified using PlatinumTaq

(Invitrogen) (see Figure S1 for location of the primers). PCR prod-

ucts were cloned into pGEM-T Easy (Promega), and single clones

were sequenced by Sanger sequencing (see Supplemental Experi-

mental Procedures).

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed according

to the Upstate ChIP protocol with some small modifications (see

Supplemental Experimental Procedures). Eluted DNA fragments

were used for quantitative PCR analysis (see Figure S1 for location

of the primers). The Ct values of the histone modifications were

first normalized for the nonspecific immunoglobulin G antibody

treatment and then for the amount of input DNA. Data were

then presented in relative fold enrichment after further normaliza-

tion to the APRT gene for H3 acetylation and H3K4 methylation

and CRYAA for H3K9 methylation. Data from at least two separate

experiments were averaged, and both reference genes were previ-

ously used by Urbach et al. (2010) and Bar-Nur et al. (2012).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and four figures and can be found with this article

online at http://dx.doi.org/10.1016/j.stemcr.2014.07.013.
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