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Abstract

In recent years fractionally differenced processes have received a great deal of attention
due to its flexibility in financial applications with long memory. This paper considers a
class of models generated by Gegenbauer polynomials, incorporating the long memory in
stochastic volatility (SV) components in order to develop the General Long Memory SV
(GLMSV) model. We examine the statistical properties of the new model, suggest using the
spectral likelihood estimation for long memory processes, and investigate the finite sample
properties via Monte Carlo experiments. We apply the model to three exchange rate return
series. Overall, the results of the out-of-sample forecasts show the adequacy of the new
GLMSV model.

Keywords: Stochastic volatility, GARCH models, Gegenbauer Polynomial, Long Memory,
Spectral Likelihood, Estimation, Forecasting.
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1 Introduction

Consider the well known ARFIMA(p, d, q) model given by:

φ(B)Yt = θ(B)εt, (1.1)

where Yt = (1−B)dXt, d ∈ (−1, 0.5), {εt} is a sequence of uncorrelated (but not necessarily

independent) random variables, such that V ar(εt) = σ2, and φ(B) and θ(B) are stationary

AR(p) and invertible MA(q) polynomials, respectively.

This standard case of constant variance innovations has been considered in many tra-

ditional time series analyses and applications. However, in recent years, there has been

a great deal of development with time dependent instantaneous innovation variances (or

volatility). Two popular classes have been developed in modeling financial volatility. One

is the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) family, pio-

neered by Engle (1982), while the other emphasizes Stochastic Volatility (SV) models,

using the ideas of Clark (1973) and Taylor (1982, 1986) (see the survey papers of McAleer

(2005) and Shephard (2005) for further details). Note that the so-called ‘realized volatility’

can be considered as noise plus the realized value of the latent volatility in SV models (see

Barndorff-Nielsen and Shephard (2002), Bollerslev and Zhou (2002), and Asai et al. (2012)

for further details).

As the conditional volatility displays long memory or long range dependencies in many

financial applications, Baillie et al. (1996) and Bollerslev and Mikkelsen (1996) developed

the Fractionally Integrated GARCH (FIGARCH) and Fractionally Integrated Exponential

GARCH (FIEGARCH) models, respectively. In the light of this evidence, Breidt et al.

(1998) developed the long memory SV (LMSV) model, in which log-volatility follows the

ARFIMA(p, d, q) (or FARIMA(p, d, q)) process. Empirical evidence from Breidt et al

(1998), Andersen et al. (2001, 2003), Pong et al. (2004), Koopman, Jungbacker, and Hol

(2005), and Asai et al. (2012) indicate that estimates of d lie between zero and one.

Motivated by these extensions and applications, Arteche (2004) developed the general-

ized LMSV model, using the Gegenbauer process. The Gegenbauer process is a type of long

memory process, developed by Gray et al. (1989). Incorporating the Gegenbauer process

in volatility modeling enables a more flexible class of process for the conditional/stochastic
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variance that is capable of explaining and representing the observed temporal dependen-

cies in financial market volatility. Arteche (2004) suggested the semi-parametric estimation

technique for its long memory parameter.

The main purpose of this paper is to extend the work of Arteche (2004) by consider-

ing short memory components and spectral likelihood estimation for general long memory

stochastic volatility models.

The organization of the paper is as follows. Section 2 briefly reviews stochastic volatility

models, while Section 3 introduces the Gegenbauer ARMA process. Section 4 develops the

new generalized LMSV model, and develops its statistical properties. Section 5 suggests

estimation via spectral likelihood (SL), which is equivalent to the quasi-maximum likelihood

(QML) estimator, and examines the finite sample properties of the SL estimator. Section

5 also explains the method for estimating and forecasting volatility. Section 6 presents

empirical results using the exchange rate returns of Japanese Yen (YEN), Euro (EUR),

and British Pound (GBP) relative to the US dollar (USD). Section 7 provides concluding

remarks.

2 Review of Stochastic Volatility (SV) Models

An alternative to the modeling of the popular GARCH and related conditional volatility

models is a class of models such that the variance follows a certain latent stochastic process.

Suppose that a discrete time series {Yt} is given by Yt = σtξt, where ξt ∼ IID(0, 1) and

the volatility process satisfies:

σt = exp(Xt/2). (2.1)

Two popular cases related to (2.1) have been analysed in the literature:

• {Xt} follows a stationary and invertible ARMA(p,q) process given by:

φ(L)Xt = C + θ(L)vt, (2.2)

where vt is white noise with zero mean and variance σ2
v , C is a constant, L is the lag

operator, and the roots of φ(L) (AR(p) polynomial) and θ(L) (MA(q) polynomial) lie

outside the unit circle to ensure stationarity and invertibility of {Xt}.
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• {Xt} follows a stationary and invertible ARFIMA(p,d,q) process given by:

φ(L)(1 − L)dXt = C + θ(L)vt, (2.3)

where, in addition to the conditions in (2.2), the parameter d ∈ (−0.5, 0.5) to ensure

stationarity and invertibility of {Xt}.

Particular attention has been paid to the class in (2.3) when 0 < d < 0.5 to model long

memory in SV. In this case, (2.1) and (2.3) describe a family of LMSV. This paper introduces

a general family of long memory models with SV. In order to develop the theory, we first

consider Gegenbauer polynomials and Gegenbauer ARMA (GARMA).

3 Gegenbauer ARMA (GARMA) Model

Suppose that a time series {Xt} is generated by:

φ(L)(1 − 2ηL+ L2)dXt = θ(L)vt, (3.1)

where the polynomials φ(L), θ(L) and noise {vt} are as defined in (2.2), and |η| ≤ 1 and

|d| ≤ 1 are real parameters.

This family in (3.1) is known as the Gegenbauer ARMA of order(p, d, q; η) or GARMA(p, d, q; η)

and enjoys the following properties:

• The power spectrum:

fX(ω) = [4(cosω − η)2]−dg(ω), −π < ω < π, (3.2)

where g(ω) = |θ(e−iω)|2
|φ(e−iω)|2

σ2
v

2π
corresponds to the ARMA part.

• The process in (3.1) is stationary and explains long memory when |η| < 1 and 0 <

d < 1/2, or |η| = 1 and 0 < d < 1/4, with the stationary condition on φ(L).

From (3.2), it is clear that the long memory features are characterized by an unbounded

spectrum at the Gegenbauer frequency ω = ωg = cos−1(η) when |η| < 1, and at ω = 0

when η = 1, in addition to the hyperbolic decay of the autocorrelation function (acf).
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For later reference, we consider a special case, namely, the class of GARMA(0, d, 0; η)

given by:

(1 − 2ηL+ L2)dXt = vt. (3.3)

Under the AR regularity conditions:

(a1) |η| < 1 and d < 1/2; or

(a2) |η| = 1 and d < 1/4,

the Wold representation of (3.3) is given as:

Xt = ψ(L)vt =
∞∑

j=0

ψjvt−j, (3.4)

where ψ(L) = (1−2ηL+L2)−d =
∑∞

j=0 ψjL
j , with ψ0 = 1, and the Gegenbauer coefficients

ψj in terms of the Gamma functions, Γ(.), have the explicit representation:

ψj =

[j/2]∑
k=0

(−1)k(2η)j−2kΓ(d− k + j)

k!(j − 2k)!Γ(d)
, j ≥ 0 (3.5)

such that
∑∞

j=0 ψ
2
j <∞ (see Erdélyi et al., 1953, 10.9 for details). The coefficients ψj , j ≥ 2,

are recursively related by:

ψj = 2η

(
d− 1 + j

j

)
ψj−1 −

(
2d− 2 + j

j

)
ψj−2,

with initial values ψ0 = 1 and ψ1 = 2dη. These coefficients, ψj, reduce to the corresponding

standard long memory (or binomial) coefficients when η = 1, such that ψj = Γ(2d+j)
Γ(j+1)Γ(2d)

.

Under the MA regularity conditions:

(b1) |η| < 1 and d > −1/2; or

(b2) |η| = 1 and d > −1/4,

(3.3) admits an invertible solution, such that:

vt = (1 − 2ηL+ L2)dXt =

∞∑
j=0

πjXt−j, (3.6)
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where the coefficients, πj , are obtained from (3.5), by replacing d with −d.
In the general case (3.1), the corresponding stationary and invertible solutions can be

obtained from:

Xt = ψ(L) ∗ ψ′(L)vt,

and

vt = [ψ′(L)]−1 ∗ (1 − 2ηL+ L2)dXt,

respectively, where ψ′(L) = [φ(L)]−1θ(L) (see Dissanayake et al. (2016) for further details).

In recent papers, Shitan and Peiris (2008, 2013) have considered an alternative family of

generalized fractional processes given by:

φ(L)(1 − αL)dXt = θ(L)vt.

As an extension, Section 4 develops a new family of generalized long memory volatility

models using Gegenbauer polynomials.

4 Generalized Long Memory SV (GLMSV) Models

This section considers the generalized long memory SV (GLMSV) model, defined by:

Yt = σtξt, ξt ∼ IID(0, 1), σt = exp(Xt/2), (4.1)

φ(L)(1 − 2ηL+ L2)d(Xt − μ) = θ(L)vt, (4.2)

where {ξt} is independent of {Xt} for all t. In the model, log-volatility follows the GARMA(p, d, q; η)

process. From the spectrum of (4.2), it is clear that the log volatility process, {Xt}, has

generalized long memory when |η| < 1 and 0 < d < 0.5, with a spectral peak at Gegen-

bauer frequency ωg = cos−1(η). As distinct from Arteche (2004), we incorporated the short

memory components, φ(L) and θ(L), and excluded seasonal long memory to avoid over-

parameterization in long range dependencies.

4.1 Properties of GLMSV

Suppose that {vt} in (3.1) is Gaussian and let γ(k) be the autocovariance function (ACVF)

of {Xt} given by γ(k) = Cov(Xt, Xt+k). It follows from the properties of the lognormal

distribution that:
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• E(Yt) = 0 and V ar(Yt) = exp[γ(0)/2],

• γY (k) = Cov(Yt, Yt+k) = 0 for all k �= 0,

• {Yt} is a martingale difference.

Let Ut = log(Y 2
t ). Then the observation equation satisfies the linear state space model,

Ut = log(σ2
t ) + log(ξ2

t ), and reduces to:

Ut = c+Xt + εt, (4.3)

where c = μ + E[log(ξ2
t )] and εt = log(ξ2

t ) − E[log(ξ2
t )] is an iid process independent of

{Xt}. Note that, if ξt is standard normal, then ξ2
t ∼ χ2

1, which gives E[log(ξ2
t )] = −1.2704

and V ar[log(ξ2
t )] = π2

2
≈ 4.93.

It follows from (4.3) that the corresponding spectra are related by:

fU(ω) = fX(ω) +
σ2

ε

2π
, −π < ω < π, (4.4)

where fX(ω) = g(ω)[4(cosω − η)2]−d, −π < ω < π, and σ2
ε = V ar(εt).

From the results in Granger and Morris (1976) for the sum of an MA process and noise,

we can write:

Ut = c +

∞∑
j=0

ψ̃jvt−j + εt = c +

∞∑
j=0

κjet−j, (4.5)

where {et} is a white noise process, and ψ̃j is the jth coefficient of the polynomial ψ̃(z) =

(1 − 2ηz + z2)−dφ(z)−1θ(z), with ψ̃0 = 1. Hence, we obtain the MA(∞) representation of

Ut. The distribution of et can be obtained by the the convolution of the distributions of Xt

and εt, where {et} is serially uncorrelated, but is not an independent process.

Clearly, (4.4) implies that the log squared returns of {Yt} have long memory, with the

same memory parameter d as in the volatility process {Xt}. In particular, when η = 1 and

0 < d < 1/4, GLMSV reduces to the standard LMSV. These spectral properties can be

used to identify the GLMSV and LMSV processes in practice.
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4.2 Identification of GLMSV and LMSV

The following lemma on spectral densities can be used to identify LMSV and/or GLMSV.

Lemma: fU(ω) ∼ fX(ω) as ω → ωg = arccos(η).

Proof: Let f ∗(ω) = [fX(ω)]−1 σ2
ε

2π
. Then from (4.4) we have:

fU(ω) = fX(ω)[1 + f ∗(ω)]. (4.6)

Clearly, f ∗(ω) is bounded from above and bounded away from zero when 0 < d < 0.5, and

f ∗(ω) → 0 as ω → ωg = arccos(η). Hence, the lemma holds. �

The lemma shows that the spectrum of {Ut} behaves like that of {Xt} near the Gegen-

bauer frequency, ωg. We illustrate this for three important cases by taking φ(L) = θ(L) = 1

for simplicity.

Illustrations

• Standard LMSV when η = 1 :

The sdf of {Ut} is given by:

fU(ω) ∼ [2(sin(ω/2)]−4d σ
2
v

2π
, −π < ω < π, (4.7)

and is unbounded as ω → 0 when 0 < d < 1/2.

The following diagram illustrates f = fU(ω), d = 0.4, σ2
v = 2 :

• GLMSV when |η| < 1 :

The sdf of {Ut} is given by:

fU(ω) ∼ [4(cosω − η)2]−d σ
2
v

2π
, −π < ω < π, (4.8)

and is unbounded as ω → cos−1(η) (the Gegenbauer frequency, which is away from

the origin) for |η| < 1 and 0 < d < 1/2.

The second diagram illustrates f2 = fU(ω), d = 0.4, η = 0.8, σ2
v = 2 :
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5 Estimation and Forecasting

5.1 Spectral-Likelihood Estimator

Though the process {vt} is non-Gaussian, a reasonable estimation procedure is to maximize

the quasi-likelihood, or the likelihood computed as if {vt} was Gaussian. For the LMSV

models, the approaches of So (1999, 2002) and Doornik and Ooms (2003) enable us to

compute the quasi-likelihood exactly, using the autocovariance functions up to order n. For

the GLMSV model, it is not easy to calculate the exact autocovariances, but it is possible to

obtain their approximate values with the use of the algorithm of McElroy and Holan (2012).

Hence, the effectiveness of the QML estimation of this type depends on the accuracy of the

approximation of the autocovariance functions. Rather than the approximate approach, we

suggest a spectral domain estimator, which was used in estimating the LMSV model by

Breidt et al. (1998).

The spectral-likelihood (SL) estimator is obtained by minimizing:

L(λ) =
2π

n

[n/2]∑
j=1

[
log(fU(ωj)) +

In(ωj)

fU(ωj)

]
, (5.1)
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where λ = (d, η, φ1, . . . , φp, θ1, . . . , θq, σv, σε)
′ is the vector of unknown parameters, [·] de-

notes the integer part, ωj = 2πj/n is the jth Fourier frequency, and

In(ωj) =
1

2πn

∣∣∣∣∣
n∑

t=1

xt exp(−iωjt)

∣∣∣∣∣
2

, j = 1, · · · , [n/2].

If we know the value of η a priori, we should omit the observation which corresponds to

ω = arccos(η). In a general framework, Hosoya (1997) showed that the SL estimator, λ̂, is

consistent, and:

√
T (λ̂− λ0)

d−→N
(
0,W−1U(W ∗)−1

)
,
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where λ0 is the true value,

W =
∂R(λ)

∂λ′
,

R(λ) =
∂

∂λ

∫ π

−π

log fU(ω;λ)dω −
∫ π

−π

[
∂

∂λ
log fU(ω;λ)

]
dω,

U = 4π

∫ π

−π

[
∂

∂λ
log fU(ω;λ)

][
∂

∂λ′
log fU(ω;λ)

]
dω

+ (2π)3

∫ π

−π

∫ π

−π

[
∂

∂λ
log fU(ω1;λ)

] [
∂

∂λ′
log fU(ω2;λ)

]

×Qe(ω1, ω2,−ω2)dω1dω2,

and Qe(ω1, ω2, ω3) is the fourth-order cumulant spectral density of et, defined by (4.5).

Furthermore, the SL estimator has the same limiting distribution as the QML estimator in

the time domain. In practice, the second term of U can be estimated by the approach of

Taniguchi (1982) (see Taniguchi and Kakizawa (2000, Chapter 5) and Zaffaroni (2009) for

the general justification of the SL estimator). Zaffaroni (2009) shows the consistency and

asymptotic normality of the SL estimator for conditional and stochastic volatility models

with both short and long range dependencies.

Following Gray et al. (1989) and Chung (1996a,b), we use the grid search procedure for

different values of η over the range [−1, 1] for minimizing (5.1).

5.2 Finite Sample Properties

We conducted Monte Carlo experiments for investigating the finite sample properties of the

SL estimator. The parameter values for Xt are specified as:

(μ, σ, φ, d, η) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0.199, 0.98, 0, 1) for AR(1)
(0, 0.572, 0.30, 0.2, 1) for ARFIMA(1,2d,0)
(0, 0.520, 0.30, 0.4, 0.7) for GARMA(1,d,0), Case 1
(0, 0.675, 0.70, 0.3, 0.3) for GARMA(1,d,0), Case 2.

In the parameter settings, all the variances of Xt are equal to one. Note that the standard

deviation of εt is σε = π/
√

2 = 2.221, which is greater than twice the standard deviation of

Xt. We consider sample sizes n = {1024, 2048}, with R = 2000 replications. For the AR

10



Table 1: Finite Sample Performance of the SL Estimator of GLMSV

Parameters
DGP μ σε σ φ d η
AR(1)
True 0 2.221 0.199 0.98 0 1

n = 1024 0.0091 2.1201 0.4863 0.9693 −0.1086 0.8972
(0.2967) (0.1901) (0.4455) (0.0305) (0.3847) (0.0830)
[0.2967] [0.2152] [0.5297] [0.0323] [0.3993] [0.1320]

n = 2048 0.0011 2.1666 0.4047 0.9753 −0.0869 0.8986
(0.2170) (0.1137) (0.3361) (0.0119) (0.3590) (0.0797)
[0.2168] [0.1261] [0.3938] [0.0128] [0.3691] [0.1289]

ARFIMA(1,2d,0)
True 0 2.221 0.572 0.30 0.2 1

n = 1024 0.0034 2.0796 0.5907 0.8551 0.1004 0.8901
(0.4011) (0.3942) (0.6551) (0.2127) (0.3359) (0.0824)
[0.4007] [0.4185] [0.6547] [0.5944] [0.3500] [0.1373]

n = 2048 0.0063 2.2014 0.4303 0.8939 0.1568 0.9003
� (0.3394) (0.1618) (0.4617) (0.1983) (0.2928) (0.0870)

[0.3391] [0.1629] [0.4826] [0.6261] [0.2957] [0.1322]
GARMA(1,d,0), Case 1

True 0 2.221 0.520 0.30 0.4 0.7
n = 1024 0.0027 1.9444 0.9212 0.0988 0.3301 0.6984

(0.0684) (0.5856) (0.5432) (0.3501) (0.1072) (0.0307)
[0.0684] [0.6473] [0.6749] [0.4035] [0.1280] [0.0307]

n = 2048 −0.0017 2.0965 0.7608 0.1693 0.3572 0.7005
(0.0564) (0.3353) (0.4068) (0.3143) (0.0797) (0.0052)
[0.0564] [0.3575] [0.4724] [0.3401] [0.0904] [0.0053]

GARMA(1,d,0), Case 2
True 0 2.221 0.675 0.70 0.3 0.3

n = 1024 0.0037 2.0348 0.8180 0.6441 0.2668 0.3016
(0.0871) (0.5725) (0.5207) (0.2018) (0.1481) (0.0937)
[0.0871] [0.6016] [0.5395] [0.2092] [0.1516] [0.0936]

n = 2048 −0.0014 2.1928 0.7022 0.6847 0.2905 0.3006
(0.0696) (0.2076) (0.2269) (0.1099) (0.0747) (0.0459)
[0.0696] [0.2094] [0.2283] [0.1109] [0.0752] [0.0458]

Note: Entries show the means of the SL estimates. Standard errors are in parentheses,
and root mean squared errors are in brackets.
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and ARFIMA models, the structure (1−2ηL+L2)d implies that the estimate of η can take

any value when the estimate of d is close to zero.

Table 1 shows the finite sample performances of the SL estimator for the GARMA

model. The bias for the estimator of d is negligible for both n = 1024 and n = 2048. The

bias for η is negligible when d > 0, and it is meaningless if d = 0. As noted before, when the

true value of d is zero, the estimates of η can take any values. The results for d = 0 show

that the estimates of η are close to 0.7, and the RMSE has no major change with respect

to the sample size. The bias for the estimates of μ and φ are negligible. The estimator

of σε has a downward bias, while that of σ is biased upward. The result may come from

the difference in the sizes of the parameters. The biases for σε and σ become small as the

sample size increases. For all the parameters, except for the meaningless case of η, the bias,

standard deviation, and RMSE decrease as the sample size increases. Next we support the

above findings using real data.

5.3 Estimating and Forecasting Volatility

We introduce an algorithm of Harvey (1998) regarding signal extraction and forecasting of

long memory plus noise processes. Define U = (U1, . . . , Un)′, X∗ = (X1 − μ, . . . , Xn −μ)′,

and ε = (ε1, . . . , εn)′, in order to obtain:

U = (c+ μ)1n + X∗ + ε,

where 1n is an n × 1 vector of ones. Then, the minimum mean square linear estimator of

X is given by:

X̃
∗

= (In − σ2V −1) {U − (c+ μ)1n} ,

where V = V X + σ2In, and V X denotes the covariance matrix of X∗. As noted in

Subsection 5.1, V X can be approximated by the algorithm of McElroy and Holan (2012)

(see the Appendix for details). Harvey (1998) recommends using the volatility estimate:

σ̃2
t = σ̃2

Ỹ
exp

(
X̃∗

t

)
,

where σ̃2
Ỹ

= n−1
∑n

t=1 Ỹ
2
t , and Ỹt = Yt exp(−0.5X̃∗

t ) are the heteroskedasticity-corrected

observations.
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Table 2: Descriptive Statistics for Exchange Rate Returns

Data Mean Std. Dev. Skewness Kurtosis
YEN/USD 0.0028 0.6617 −0.3225 8.1747
EUR/USD −0.0045 0.6383 0.1717 5.9683
GBP/USD −0.0060 0.6163 −0.3377 9.6188

For predicting the observations on Ut for t = n + 1, . . . , n+ h, denote Uh as the h× 1

vector of predicted values. Then the corresponding MMSLEs are given by:

Ũh = (μ+ c)1h + RV −1 {U − (μ+ c)1n} .

Using X̃h = Ũ h − (μ+ c)1h, the predictions of σ2
n+j (j = 1, . . . , h) are given by exponen-

tiating the elements of X̃h, and multiplying by σ̃2
Ỹ
.

6 Empirical Analysis

6.1 Data and Preliminary Results

The empirical analysis focuses on estimating and forecasting the GLMSV model for three

sets of exchange rate data, namely YEN/USD, EUR/USD, and GBP/USD. The sample

period is from October 4, 2005 to November 25, 2015, giving 2549 observations. We calcu-

lated the returns series, Rt = logPt − logPt−1, where Pt is the closing price on day t. We

use the first n = 2048 returns for estimating the GLMSV models, and the remaining 500

series for forecasting. The estimation period includes the global financial crisis. Table 2

presents descriptive statistics for the whole sample. As our interest is on volatility, we use

the mean subtracted returns, Yt = Rt − R̄.

As a preliminary analysis, we estimated the new generalized fractionally integrated

EGARCH (GIEGARCH) model, defined by:

Yt =
√
htξt, xit ∼ IID(0, 1),

φ(L)(1 − 2ηL+ L2)d(log ht − μ) = θ(L)ζ(ξt−1),

where g(ξt) is the generalized return, and φ(L) and θ(L) are defined in Section 3. Following

Hansen, Huang, and Shek (2012), we consider the second-order Hermite polynomial for the
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Table 3: QML Estimates of FIEGARCH and GIEGARCH for Daily Currency Returns

YEN/USD EUR/USD GBP/USD
Parameters FIEGARCH GIEGARCH FIEGARCH GIEGARCH FIEGARCH GIEGARCH

μ −0.7736 −0.8589 −0.7916 −0.9170 −0.8771 −1.0338
(0.0474) (0.0427) (0.0715) (0.0776) (0.0809) (0.0760)

φ −0.1084 0.9749 −0.2401 0.9854 −0.2006 0.9881
(0.0278) (0.0034) (0.0509) (0.0014) (0.0379) (0.0019)

γ1 −1.1991 −0.0415 −0.2439 −0.0119 −0.7873 −0.0229
(0.3571) (0.0064) (0.1325) (0.0036) (0.2147) (0.0042)

γ2 0.7254 0.0321 0.5071 0.0140 0.4779 0.0108
(0.2696) (0.0043) (0.1496) (0.0023) (0.1727) (0.0027)

d 0.1491 0.3350 0.2368 0.4988 0.2495 0.4996
(0.0345) (0.0750) (0.0365) (0.0854) (0.0431) (0.0624)

η 1 0.3892 1 0.8583 1 0.8570
(0.0026) (0.0014) (0.0006)

ωg 0 1.1710 0 0.5388 0 0.5414

Note: FIE and GIE denote the FIEGARCH and GIEGARCH models, respectively. Standard
errors are in parentheses. The Gegenbauer frequency is given by ωg = arccos(η).

error term, as:

ζ(ξt) = γ1ξt + γ2(ξ
2
t −E(ξ2

t )).

Assuming that ξt has finite fourth moment, it is straightforward to show E[g(ξt)] = 0 and

V [g(ξt)] < ∞. When η = 1, the new GIEGARCH(p,d,q; η) model reduces to the class

of the FIEGARCH(p,2d,q) model of Bollerslev and Mikkelsen (1996). Following Bollerslev

and Mikkelsen (1996), we truncate the MA(∞) representation of the GARMA process of

log-volatility as:

log ht = μ+

J∑
j=0

ψ̃jζ(ξt−1−j),

where ψ̃j is the jth coefficient of the polynomial ψ̃(z) = (1 − 2ηz + z2)−dφ(z)−1θ(z), with

ψ̃0 = 1. We calculate the value of ψ̃j by the approximating technique of McElroy and Holan

(2012) up to J = 1000 (see the Appendix).

Table 3 shows the QML estimates of the FIEGARCH(1,2d,0) and GIEGARCH(1,d,0;

η) models. For the FIEGARCH model, the estimates of d indicate that the conditional log-
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Table 4: Estimates of GLMSV for Daily Currency Returns

Parameters YEN/USD EUR/USD GBP/USD
μ −1.2366 −1.2030 −1.3069

(0.0579) (0.0544) (0.0538)
σε 2.5173 2.3482 2.2844

(0.0414) (0.0384) (0.0368)
σ 0.0868 0.1621 0.0974

(0.0350) (0.0378) (0.0311)
φ 0.9872 0.9939 0.9980

(0.0066) (0.0042) (0.0039)
d 0.3173 0.4702 0.4987

(0.1475) (0.1029) (0.1869)
η 0.8032 0.9597 0.8400

(0.0001) (0.0003) (0.0009)
ωg 0.6381 0.2849 0.5735

Note: Standard errors are in parentheses. The Gegen-
bauer frequency is given by ωg = arccos(η).

volatility, lnh t, has long range dependence. The estimates of γ1 are negative, while those

of γ2 are positive. The estimates of φ are located in the interval (−0.25, −0.1). Except for

the estimates of γ1 for the EUR/USD return, all parameter estimates are significant at the

five percent level. These estimates are similar to the values obtained in the literature.

The estimates of d in the GIEGARCH model are about twice of those for the FIE-

GARCH model. The estimates of η are positive, and the estimates of φ are close to one.

The estimates of γ1 are negative, while those of γ2 are positive. All parameter estimates

are significant at the five percent level. As the estimates of η are significantly different from

one, the estimates of the Gegenbauer frequency, ωg = arccos(η), are different from zero.

6.2 Estimates and Forecasts for the GLMSV Model

In the following, we show the empirical results for the GLMSV models as compared with

those of the GIEGARCH model.

Table 4 gives the SL estimates of the GLMSV model. The estimates of d and φ are

close to the values of the GIEGARCH model. Compared with the GIEGARCH model, the

estimates of η are higher. The estimates of μ are different from those of the GIEGARCH
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model, and the differences may arise from the statistical flexibility of the class of SV models

compared with their conditional heteroskedasticity counterparts. All estimates are signifi-

cant at the five percent level. As the estimates of η are significantly different from one, the

estimates of the Gegenbauer frequency ωg = arccos(η) are different from zero.

As explained previously, we use the last 500 observations for the forecasting analysis,

based on the approach in the previous section. For this purpose, we calculated the Value-

at-Risk (VaR) thresholds, assuming normality of ξt. Combined with the one-day-ahead

forecasts of log-volatility, we computed the 1 and 5 percent VaR thresholds as −2.326σ̂2
n+1

and −1.645σ̂2
n+1, respectively, fixing the sample size as n = 2048.

In order to assess the estimated VaR thresholds, the unconditional coverage and in-

dependence tests developed by Christoffersen (1998) are widely used. A drawback of the

Christoffersen (1998) test for independence is that it tests against a particular alternative of

first-order dependence. The duration-based approach in Christoffersen and Pelletier (2004)

allows for testing against more general forms of dependence, but still requires a specific

alternative. Recently, Candelon et al. (2011) developed a more robust procedure which

does not need a specific distributional assumption for the durations under the alternative.

Consider the ‘hit sequence’ of VaR violations, which takes a value of one if the loss is greater

than the VaR threshold, and the value zero if VaR is not violated. If we could predict the

VaR violations, then that information may help to construct a better model. Hence, the hit

sequence of violations should be unpredictable, and should follow an independent Bernoulli

distribution with parameter p, indicating that the duration of the hit sequence should follow

a geometric distribution.

The GMM duration-based test developed by Candelon et al. (2011) works with the J-

statistic based on the moments defined by the orthonormal polynomials that are associated

with the geometric distribution. The conditional coverage test and independence test based

on q orthonormal polynomials have the asymptotic χ2
q and χ2

q−1 distributions under their

respective null distributions. The unconditional coverage test is given as a special case of

the conditional coverage test, with q = 1.

Table 5 shows the percentage of VaR violations and test results for the FIEGARCH,

GIEGARCH and GLMSV models. For the FIEGARCH model, some of the test statistics

are rejected at the five percent significance level. On the other hand, for the GIEGARCH
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Table 5: Backtesting VaR Thresholds for One-Step-Ahead Forecasts

(a) YEN/USD

VaR PV UC IND CC
FIEGARCH(1,d,0)
5% 0.034 0.9752 [0.3234] 8.1759 [0.0853] 76.331*[0.0000]
1% 0.004 0.5989 [0.4390] 0.9347 [0.9195] 2.0605 [0.8407]
GIEGARCH(1,d,0;η)
5% 0.036 0.5029 [0.4782] 2.1775 [0.7032] 5.4058 [0.3684]
1% 0.004 1.5034 [0.2201] 1.1999 [0.8781] 3.7080 [0.5922]
GLMSV(1,d,0;η)
5% 0.040 0.0733 [0.7866] 5.2835 [0.2594] 7.2375 [0.2036]
1% 0.010 1.2558 [0.2625] 1.6877 [0.7930] 1.6877 [0.8905]

(b) EUR/USD

VaR PV UC IND CC
FIEGARCH(1,d,0)
5% 0.058 2.0866 [0.1486] 1.3895 [0.8460] 3.0081 [0.6987]
1% 0.010 0.3457 [0.5566] 1.7610 [0.7796] 1.7610 [0.8811]
GIEGARCH(1,d,0;η)
5% 0.054 0.3174 [0.5732] 0.0726 [0.9994] 0.3424 [0.9968]
1% 0.008 0.0097 [0.9214] 0.2397 [0.9934] 0.1625 [0.9995]
GLMSV(1,d,0;η)
5% 0.044 0.6177 [0.4319] 3.5391 [0.4720] 6.6769 [0.2458]
1% 0.018 2.0001 [0.1573] 0.9180 [0.9220] 2.8541 [0.7225]

(c) GBP/USD

VaR PV UC IND CC
FIEGARCH(1,d,0)
5% 0.048 0.0193 [0.8894] 18.555*[0.0010] 23.801*[0.0002]
1% 0.004 0.4137 [0.5201] 0.8417 [0.9328] 1.7850 [0.8780]
GIEGARCH(1,d,0;η)
5% 0.050 0.0281 [0.8669] 1.0782 [0.8977] 1.0782 [0.9560]
1% 0.004 2.0368 [0.1535] 1.2781 [0.8651] 4.6977 [0.4539]
GLMSV(1,d,0;η)
5% 0.052 1.7100 [0.1910] 7.1894 [0.1262] 3.9607 [0.5551]
1% 0.012 2.3767 [0.1232] 2.7581 [0.5991] 3.8607 [0.5697]
Note: PV denotes the percentage of violations, which is the percentage of
days when returns are less than the VaR threshold. UC, IND, and CC are
the generalized method of moments duration-based tests for unconditional
coverage, independence and conditional coverage, developed by Candelon
et al. (2011). The number of orthonormal polynomials is set to 5. P
values are in brackets.
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and GLMSV models, the tests do not reject the null hypothesis at the 5% and 1% VaR

thresholds, thereby indicating that the estimated VaR thresholds are satisfactory.

7 Concluding Remarks

In this paper, we proposed a new generalized long memory volatility (GLMSV) model,

based on the GARMA(p,d,q; η) process, and examined the statistical properties of the

new model. We applied the spectral likelihood (SL) estimation method, for which the

asymptotic distribution is the same as that of the QML estimator. Then we conducted

Monte Carlo experiments for investigating the finite sample properties of the SL estimator,

and found that the finite sample biases are negligible for n = 2048.

In addition, we estimated the FIEGARCH, GIEGARCH, and GLMSV models, using

three exchange rate returns for YEN/USD, EUR/USD, and GBP/USD. The empirical

results supported long memory for log-volatility, and also showed a non-zero Gegenbauer

frequency. Furthermore, the new specification of generalized long memory improved the

out-of-sample forecasts for the VaR thresholds satisfactorily, which shows that the GLMSV

model is a useful addition to the existing models in the literature.
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Appendix

We explain the calculation of the coefficients of the MA(∞) representation of the GARMA(p,d,q;

η) model, and the calculation of the autocovariance functions.

For the GARMA process, it is not easy to obtain explicit formulas for the MA coef-

ficients and the autocovariances that are valid for all lags. Recently, McElroy and Holan

(2012) developed a computationally efficient method for calculating these values. Using the

Gegenbauer frequency, λ = ωg, the spectral density of Xt can be written as:

f(ω) = σ2|1 − e−iλe−iω|−2d|1 − eiλe−iω|−2dg(ω),

where g(ω) represents the short memory part of the spectrum. For convenience, we define

κ(z) so that g(ω) = |κ(e−iω)|2. Then, κ(z) takes the form κ(z) =
∏

l(1− ζlz)pl for (possibly

complex) reciprocal roots, ζl, of the moving average and autoregressive polynomials, where

pl is one if l corresponds to a moving average root, and minus one if l corresponds to an

autoregressive root.

Define:

gj = −2
∑

l

plζ
j
l

j
,

βj =
4d cos(jω)

j
+ gj,

ψ̃j =
1

2j

l∑
m=1

mβmψ̃j−m, ψ̃0 = 1.

McElroy and Holan (2012) showed that the MA(∞) representation of (4.2) is given by:

Xt = μ+
∞∑

j=0

ψ̃jvt−j,

and the autocovariances of Xt for h ≥ 0 are given by:

γh = σ2
J−1∑
j=0

ψ̃jψ̃j+h +RJ(h),

where

RJ (h) = σ2

{
J−1+2dF (1 − d, 1 − 2d; 2 − 2d;−h/J)

Γ2(d)(1 − 2d)

}
{1 + o(1)},

and F (a, b; c; z) is the hypergeometric function evaluated at z. Note that γ−h = γh. McElroy

and Holan (2012) recommend using the cutoff value J ≥ 2, 000.
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