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Abstract

This paper features an analysis of the cointegration relationships among agri-
cultural commodity, ethanol and Cushing crude oil spot and futures prices. The
use of grains for the creation of bio-fuels has sparked fears that these demands
are inflating food prices. We analyse approximately 10 years of daily spot and
futures prices for corn, wheat, sugar ethanol and oil prices from Datastream
for the period 19 July 2006 to 2 July 2015. The analysis, featuring Engle-
Granger pairwise cointegration and Markov-switching VECM and Impulse Re-
sponse Analysis, confirms that these markets have significant linkages which
vary according to whether they are in low or high volatility regimes.

Keywords: Bio-fuels , time series, cointegration , Markov-switching , VECM,
Impulse Responses, Volatility.
JEL: Q02, Q35, Q42, C22.

1. Introduction

Recent increases in grain prices have stimulated fears of food price inflation
because of the connections of grains with many food items. It has been sug-
gested that increases in grain prices are linked to demand for bio-fuels. This
paper explores the cointegration relationships among corn, wheat, sugar and
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ethanol plus cushing oil, in the form of spot and futures daily prices, to examine
the extent to which their spot and futures price movements are linked. Our
data comprises daily corn, cushing oil, ethanol, sugar and wheat spot and fu-
tures prices taken from Datastream for the period 19 July 2006 to 2 July 2015,
comprising 2337 total observations.

There has been considerable research on energy, bio-fuels and agricultural
products in recent years (see, for example, Pouliot and Babcock (2016), Hochman
(2016), and Haile et al. (2016)). Chang et al. (2015) evaluated the theory and
practice in testing for volatility spillovers between energy and agricultural mar-
kets using the multivariate diagonal BEKK and scalar DCC models, and made
recommendations as to how such spillovers might be tested using valid statisti-
cal techniques. Algalith (2010) explored the impact of oil prices on food prices,
while Chen et al. (2013) modelled the effects of oil prices on global fertilizer
prices and their associated volatility. Sari et al. (2012) explore the own- and
cross-market impacts for the lagged grain trading volume, and the open interest
in the energy and grain markets. Thus, there is considerable prior evidence that
the markets for food and energy markets are linked, particularly in terms of
their volatility and co-volatility.

There is also prior work applying cointegration analysis to this area of re-
search. For example, Abdel and Arshad (2009) report a cointegrating relation-
ship among crude oil and four vegetable oils. Hao et al. (2013) apply cointe-
gration tests among biodiesel, petroleum diesel, crude oil, corn, and soybean,
and report a relationship between biodiesel and soybean prices. Peri and Baldi
(2010) apply Hansen and Seo’s (2002) cointegration analysis, and find that the
cointegration relation of rapeseed and diesel prices is a case of threshold cointe-
gration. Serra et al. (2011) use threshold cointegration analysis to explore the
relationships for US data on corn, ethanol, oil, and gasoline prices, and report
a link between corn and energy prices.

The approach taken in this paper continues in this vein, and features an ex-
ploration of direct links between the price behaviour of these commodities and
energy series. The relationships are examined within a time series cointegra-
tion framework. We commence by exploring whether pairwise cointegration in
a basic Engle-Granger form exists among the series. When cointegration is es-
tablished, we explore the relationship in more detail, using a Markov-Switching
Vector Error Correction Model, MS-VEC model, which is used to pairwise anal-
yse their joint behaviour under different market conditions.

Exploration of how the responses to shocks vary under different market con-
ditions is undertaken by a regime-based impulse response analysis, in which the
long-run relationship is presumed to be stable, but the speed at which adjust-
ment takes place varies according to the regime. Market conditions are pre-
sumed to be potentially important because the sample period spans both the
Global Financial Crisis (GFC) and the subsequent European Sovereign Debt
Crisis (ESDC).

The paper is divided into four sections: a review of the research methods
and models is presented in Section 2, Section 3 presents the empirical results,
while Section 4 concludes the paper.
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2. Research Methods and Models

We commence by exploring whether Engle-Granger (1987) cointegration ex-
ist between pairs of series. Following the pioneering work of Engle and Granger
(1987), subsequently cited in their Nobel Prize in Economics Award in 2003,
the levels of many, if not most macroeconomic series, are non-stationary. This
implies that their variances and covariances are a function of time, a feature
that also applies to the time series properties of most financial prices, including
stock, energy and commodity spot and futures prices. Non-stationary time se-
ries that need to be differenced to become stationary are integrated of order 1,
I(1), while stationary series do not need to be differenced to become stationary,
and are integrated of order 0, I(0).

The insight of Engle and Granger (1987) was that linear combinations of
non-stationary series might be stationary, if they are viewed as possessing an
equilibrium relationship which causes them to move together over time. When
we combine different series with different orders of integration, we might expect
the following relationships to hold:

e ~ I(0), yp ~ I(1) = axy + by, ~ I(1). (1)

However, if cointegration exists, then:

xp ~ I(1), y ~ I(1) = axy + by, ~ 1(0). (2)

The Granger representation theorem suggests that if a set of variables is
cointegrated, then there exists a valid error correction representation of the
data, and vice-versa.

The Engle-Granger (1987) two-step procedure for testing for cointegration
suggests that we take two I(1) series and run a regression of one on the other:

Y = 0o + 01 + Uy, (3)

which captures their long-run relationship. The residuals from equation (3) are
a measure of disequilibrium:

Uy =y — 50 + Slxt-

A test of cointegration, is whether 4, is stationary and, where this holds, the
estimate of equation (3) is said to be super-consistent.
The Error Correction Model can be written as:

Ayt = ¢0 =+ Z¢jAyt—j + quhAa:Fh —+ Oéat_l + vy (4)
J=1 h=0

We rely on these properties to explore the relationships between the commodity
and energy prices, which we establish to be I(1) by means of the Kwiatkowski
et al. (2012) KPSS unit root tests. If the Engle-Granger cointegration tests
suggest that a pair of series are cointegrated, we then explore the relationship
in the context of a vector-error correction model (VECM).
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We follow Balcilar et al. (2015) and use a VECM with time-varying param-
eters, in which the parameter time variation directly reflects regime switching.
This is appropriate, given that the data set incorporates both the GFC and the
European Debt Crisis. The changes in regimes are regarded as random events
governed by an exogenous Markov process. The state of the underlying economy
is determined by a latent Markov process, which produces a MS-VEC model.
The probability of the latent state process is determined by parameters based
on sample information. Inferences about the regimes come from the estimated
probabilities of each sample observation belonging to a particular regime. This
application of the MS-VEC model analyzes the dynamic relationships among
the individual commodities spot and futures prices, and the ethanol and oil
spot and futures prices.

The model adopted from Balcilar et al. (2015) is an extension of the class
of autoregressive models featured in Hamilton (1990) and Krishnamurty and
Ryden (1998). The approach incorporates asymmetric (regime-dependent) im-
pulse response analysis and inferences. The structure of the MS-VEC model is
adapted from Krolzig (1997, 1999). The estimation procedure used to calculate
confidence intervals for the impulse response function of the MS-VEC model is
based on the Bayesian Markov-chain Monte Carlo (MCMC) integration method
of Gibbs sampling.

Let Ciand E; denote a vector of the pairs of daily commodity and energy
prices. We define the time series vector, X;, up to and including period ¢, as
X = [Cy, Ey])t. Welet S, = {X; | 7= 1,t —1,....,1 — p}, where p is a non-
negative integer. It is assumed for the vector, X;, of random variables that a
probability density function, f(X; | S¢—1,©), exists for each t € {1,2,....,T}.
The parameters and parameter space are denoted by € and O, respectively,
and the true value of 6 by 6y € O. It is assumed that the stochastic variable,
Sy € {1,2,..,q}, follows a Markov chain process, with ¢ states. In this MS-VEC
model, a latent state variable, S;, determines the probability of a given state at
a particular point in time.

It will be seen, in the empirical section that, unsurprisingly, the price levels
of spot and futures series are nonstationary. However, they may exhibit pairwise
linear combinations of stationary relationships, that is, cointegration. We follow
Balcilar et al. (2015) and take this into account, but permit their dynamic
interactions to exhibit time-varying coefficients.

The analysis uses the MS-VEC model, as given below:

p—1
AXi = pis, + Y TOAX + s, +e, t=1,2,...,T, (5)

k=1
where p is the order of the MS-VAR model, [¢, | S; ~ N(0,Qs, )], and (g, is a
(2x2) positive definite covariance matrix. The regime variable, Sy, is conditional
on S;_1, is independent of previous Xs, and is assumed to follow a g - state
Markov process. It follows that Pr[S; = j | Si—1 = i, St—2 = ko, eee, Sp1] =
Pr(iSy = j | Si—1 =i, S4—1] = pij, for all ¢ and k;, regimes, 4, j = 1,2, ....,q,
and [ > 2. Therefore, S; follows a q - state Markov process, with a transition
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probability matrix given by:
P11 P12 - - Pig
. e q
. e j=1
Pq1 Pq2 - - Pqq

Therefore, p;; is the probability of being in regime j at time ¢, given that
the economy was in regime ¢ at time (¢ — 1), where 7 and j take possible values
{1,2,.....,q}. The attraction of the MS-VEC model is that the model permits
all parameters, including the covariance matrix, {g,, to depend on the latent
state variable, S;.

The IIg, matrix contains the long-run relationships among the commodity
and ethanol series according to the MS-VEC model in equation (5). Balcilar et
al. (2015) note that it is is possible to interpret switching Ilg, in three ways:
the switching could be in the cointegrating vectors (ﬁ/), in the weighting matrix
(), or in both. As in Balcilar et al. (2015), we maintain a single set of long-
run relationships, preserving the Engle-Granger concept of cointegration, but

permit the weighting matrix to vary according to the state.
The long-run impact matrix, Ilg,, can be written as:

HSt = astﬁ/’ (7)

where IIg, are state-dependent, long-run impact matrices defined by the state-
independent cointegrating vectors, 8, and the state-dependent (n x r) weighting
matrix, ag,. This means that the long-run relationships among the variables
do not alter, but the speed at which adjustment takes place to equilibrium does
vary according to the state. Thus, the strength with which equilibrium errors
correct (ag, ), and the short-run dynamics of the endogenous variables (I's, ),
vary over time. In the empirical analysis, we adopt a two regime model (¢ = 2).

The framework provided by Balcilar et al. (2015) means that regimes can be
classified according to parameter switches in the full sample. The model permits
a variety of changes in the dynamic interactions among the variables at unknown
periods. It follows that it is possible to make probabilistic inferences about
the dates at which regimes change. The empirical models mean that regime-
dependent impulse response functions can be obtained. Thus, we can explore
how the relationships among commodities and ethanol prices varies according
to the regime.

The model can be established in a series of steps by determining the order,
p, of the MS-VEC model using the Bayesian Information Criterion (BIC). A Jo-
hansen procedure can be used to estimate the cointegrating vectors, even in the
presence of regime switching (see Sakkonen (1992) and Saikkonen and Lukkonen
(1997)). The MS model can be estimated using MCMC in progressive steps:
first, draw the model parameters given the regimes, draw the regimes given the
transition probabilities and model parameters, and finally draw the transition
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probabilities, given the regimes. For a full explanation of the procedure, see
Balcilar et al. (2015).

A novel feature of the approach is that the impulse response functions (IRF)
of the MS-VEC model should incorporate the regime history into the propa-
gation period. Ehrmann et al. (2003) approach the issue by assuming that
regimes do not switch beyond the shock horizon, leading to regime-dependent
impulse response functions (RDIRF). By contrast, Krolzig (2006) allows the
regime process to influence the propagation of shocks for the period of interest
h =1,2,...., H. In this approach, the conditional probabilities of future regimes,
Si+n , are computed, given the regime, Sy, and the transition probabilities, P.

An attractive feature of RDIRF is that it permits the possibility of determin-
ing the time variation of the response of the variables to a particular shock. The
RDIRF plots the expected path of the endogenous variable at time ¢ + h after
a shock of a given size to the k — th initial disturbance at time ¢, conditional
on the regime ¢. The k—dimensional response vectors,iyi 1, ..., ¥in, represents
a prediction of the response of the endogenous variables. The RDIRF can be
defined as:

Ypih = ———— for h >0, (8)

where uy, ; represents the structural shock to the k—th variable.

There is a general problem that the reduced form shocks, e;, will be corre-
lated across equations, and hence not correspond to uy ;. In order to circumvent
this difficulty, recursive identification can be used using the Cholesky decom-
position of the covariance matrix, as Qg, = LstLigt, and identify the structural
shocks from u; = stlgt with Fs, = Lg,. Balcilar et al. (2015) solve this diffi-
culty by using Bayesian impulse responses for linear VAR models (see Nie et al.
2007), by obtaining the posterior densities of the RDIRF from Gibbs sampling.
The simulations of the posteriors of the parameters jointly with the identifica-
tion of the structural shocks via the Gibbs sampler yields directly the posterior
densities of the RDIRFs. The confidence bands are obtained via MCMC inte-
gration, with Gibbs sampling of 50,000 posterior draws with a burn in of 20,000.
It is common to ignore some number of samples at the beginning (the so-called
burn-in period), and then consider only every n‘" sample when averaging values
to compute an expectation.

3. Empirical Results

3.1. Data characteristics

The data comprise daily corn, Cushing crude oil, ethanol, sugar and wheat
spot and futures prices, taken from Datastream for the period 19 July 2006 to
2 July 2015, comprising 2337 total observations. The intention is to explore the
extent to which the various price series are linked.
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Descriptive statistics of the data are shown in Table 1. The daily series are
typical of price series, displaying skewness and excess kurtosis. Table 2 shows
the results of KPSS unit root tests and Jarque-Bera tests, which show whether
the series conform to a normal distribution.

The results in Table 2 are clear cut, and all the series reject the null hy-
pothesis of stationarity, in the KPSS tests of their levels. The Jarque-Bera tests
show they all significantly reject the null hypothesis of a normal distribution.

Plots of the series are shown in Figure 1.

Figure 1: Plots of Daily Spot and Futures Prices
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3.2. Engle-Granger pair-wise cointegration analysis

The first set of tests explore whether pairwise cointegration exists among the
series. There is little point in proceeding to Markov-switching VECM analysis
if cointegration does not exist in the data. Table 3 presents the results of Engle-
Granger pairwise cointegration tests.
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Table 3: Engle-Granger pairwise cointegration tests

Pairs ‘ constant ‘ slope ‘ R? ‘ unit root test residuals

Spot series

Corn spot and wheat spot ‘ no evidence of Engle-Granger cointegration
Corn spot and ethanol spot 1.981 (12.9%**) ‘ 1.774 (26.4%**) ‘ 0.229 ‘ -3.75492%*
Jorn spot and sugar spot no evidence of Engle-Granger cointegration
Corn spot and crude oil cushing 2.367 (20.22%%%*) 0.043 (31.68***) 0.300 -3.10987*
Wheat spot and ethanol spot 1.981 (12.85*%*%) 1.774 (26.26*%%) 0.229 -3.75492%*
Wheat spot and sugar spot no evidence of Engle-Granger cointegration
‘Wheat spot and crude oil cushing 2.367 (20.23%**) 0.043 (31.68%**) 0.300 -3.10987*
Ethanol spot and sugar spot 1.809 (63.06%**) 2.520 (16.09%**) 0.099 -4.08586%**
Ethanol spot and crude oil cushing 1.1680 (38.99***) 0.013 (37.14%**) 0.371 -5.03362%**
Futures series
Corn futures and wheat futures no evidence of Engle-Granger cointegration
Jorn futures and ethanol futures -1.118 (-10.23%*%*) ‘ 2.897 (56.24%**) ‘ 0.573 ‘ -4.82289%**
Corn futures and sugar futures no evidence of Engle-Granger cointegration
Corn futures and crude oil futures no evidence of Engle-Granger cointegration
Wheat futures and ethanol futures | 2.384 (16.52°*%) || 1.048 (28.52°*%) [| 0.258 || _3.67788**
Wheat futures and sugar futures no evidence of Engle-Granger cointegration
Wheat futures and crude oil futures | 2.831 (26.94%*%) [ 0.043 (35.25%) [ 0347 | 337717
Ethanol futures and sugar futures 1.669 (73.14*%%) 2.342 (18.97***) 0.133 -3.58890**
Ethanol futures and oil futures 1.066 (40.66***) 0.012 (39.67***) 0.402 -4.31332%%*

Note: *** indicates significant at 1%, ** significant at 5%, * significant at 10%.

There is no evidence of cointegration in the relationships for the spot prices
between corn and wheat, corn and sugar. and wheat and sugar. The results for
the futures series are similar, and there is no evidence of cointegration between
corn and wheat, corn and sugar, corn and crude oil, and wheat and sugar. The
results for the spot and futures series differ in that, for the spot series, there is
weak evidence of cointegration between wheat spot and crude oil cushing, and
between corn spot and crude oil, but in both cases only at the 10% significance
level.

The results in Table 3 show evidence of a cointegrating relationship between
the following spot prices: corn and ethanol, corn and oil, wheat and ethanol,
wheat and oil, ethanol and sugar, and ethanol and oil. The futures series results
are similar, showing relationships between corn and ethanol, wheat and ethanol,
wheat and crude oil, ethanol and sugar, and ethanol and oil. There is no evidence
of cointegration between corn futures and crude oil futures, but there is stronger
evidence, at the 5% level, of a cointegrating relationship between wheat futures
and crude oil futures.

The existence of a cointegrating relationhip suggests evidence of a linkage
between food commodities and energy markets in the form of ethanol and oil.
There is also a link between oil and ethanol markets. Given the relative consis-
tency of the spot and futures results, we confine the Markov-switching VECM
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and impulse response analysis, the results of which are presented in the next
sub-section, to pairs of spot series which display cointegrating relationships.

3.8. Markov-switching VECM and Impulse Response Analysis

The results of the Markov-switching VECM analysis between ethanol and
wheat are shown in Table 4. The error correction term is significant when
ethanol is the dependent variable. The figures show 1 to 20 step responses to
a one standard deviation shock to the variable. Regime 1 is the low volatility
regime. The black line in the diagrams show the impulse responses and the blue
lines show the 95 per cent confidence intervals. The impulse response analysis
in sub-figures 2a and 2b shows that, if ethanol is shocked, there is a response
by ethanol in both the high and low volatility regimes. However, wheat only
shows a response to the ethanol series in the high volatility regime.

A similar pattern occurs when there is a shock to the wheat prices. It can
be seen in sub-figure 2b that ethanol responds in both regimes, but wheat only
shows a reaction in the high volatility regime. In the low volatility regime, a
shock to ethanol leads to an initial downward movement in the ethanol price,
which rapidly stabilizes. However, sub-figure 2a shows that a shock to ethanol
in the low volatility regime leads to a continued downward movement in the
price of wheat. In the high volatility regime, as shown in sub-figure 4a, the
reaction by ethanol is quite different and, after an initial downward movement,
it shows a sustained rise, whereas there is no apparent impact on wheat.

A similar pattern is displayed in sub-figure 2b. In the low volatility regime
1, a shock to wheat causes a sustained rise in the wheat price, but only a
very short-lived small downward movement in the ethanol price, which quickly
stabilises. In the high volatility regime 2, a shock to the wheat price causes an
initial rise, and then a sustained downward movement in the ethanol spot price,
but with little reaction in the wheat price.

Table 4: Markov-switching VECM analysis for Ethanol and Wheat

] Spot Prices \ \ \ \

Ethanol and Wheat | AFEthan{1} AW heat{1} Constant EC(1){1}
Ethanol 0.003 (0.16) 0.011 (0.58) -0.433 (4.59%**) | -0.015 (-5.15%***)
Wheat 0.014 (0.59) | -0.075 (-3.62%**) 0.089 (0.39) 0.002 (0.72)

NB: *** denotes significant at 1%.
Table 5: Markov-switching VECM analysis for Ethanol and Corn
] Spot prices \ \ \ \ \

Ethanol and Corn | AFEthan{l} ACorn{l} Constant EC(1){1}

Ethanol 0.0047 (0.22) | 0.0249(1.01) | 0.0305 (0.57) | -0.01855 (-5.55**%)
Corn 0.0121 (0.69) | 0.0035 (0.171) | 0.0236 (0.52) 0.011 (0.42)

NB: *** denotes significant at 1%.




3 EMPIRICAL RESULTS 11

Figure 2: Impulse responses for wheat and ethanol, and MCMC in low regime probabilities
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When we apply a Markov switching VECM analysis to ethanol and corn,
the ECM is significant when ethanol is the dependent variable. The impulse
response analysis in Figures 4 and 5 is somewhat dubious in that only very
small responses are shown after considerable lags. They are apparently large
in the diagrams, but the vertical axes show that the amounts involved are of
a very small order. Therefore, we will not dwell on these results between corn
and ethanol.

Table 6 shows the results of the MVECM analysis of the relationship between
crude oil and corn. The analysis is significant when crude oil is the dependent
variable, but not when corn is the dependent variable.

It can be seen in Figure 6 that oil prices spend a greater proportion of the
time in the low volatility regime. A shock to crude oil prices causes a short-live
upward movement in oil prices, in the low volatility regime, and a downward
movement in corn prices in the same regime. The impact in the high volatility
regime is different, and a shock to oil prices causes a very short-lived downward
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Figure 3: Impulse responses for wheat and ethanol, and MCMC in high regime probabilities
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movement in oil prices, but a much more prounounced, downward movement in
corn prices.

The impulse responses to a shock to corn prices, as shown in Figure 7,
are quite different and show a very small impact on corn prices in the low
volatility regime, and an initial downward movement in corn prices, followed
by a prolonged upswing, in the high volatility regime. The impact on crude
oil prices is different, and shows a small initial downward movement in the low
volatility regime, and virtually no impact in the high volatility regime.

Table 7 shows the analysis of the relationship between ethanol and sugar.
The MSVECM is significant when ethanol is the dependent variable, but this is
not the case when sugar is the dependent variable.

The results of the MSVECM shown in Table 7 reveal that the error correction
equation estimates are significant when ethanol is the dependent variable, with
the ECM significant at the 1% level. In Figure 8, the MCM plots show that
there is substantial switching between the two regimes. The impulse response
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Figure 4: Impulse responses for corn and ethanol, and MCMC in low regime probabilities
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analysis to ethanol as the dependent variable reveals that, in the low volatility
regime, there is not much response to a shock to the ethanol price by either
ethanol or sugar. This changes in the high volatility regime, in which there
is a sharp downward movement, then an oscillating response in the ethanol
price, which eventually stabilises, while there is marked continuing downward
movement in the sugar price.

In contrast, in Figure 9 a shock to the sugar price evokes little response from
either series in the low volatility regime, but in the high volatility regime there
is a very small positive response in the ethanol price, but a continued upward
movement in the sugar price.

The results of the MSVECM analysis of the relationship between ethanol
and crude oil are shown in Table 8. The ECM is significant at the 1% level
when ethanol is the dependent variable. Figures 10 and 11 present the results
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Figure 5: Impulse responses for corn and ethanol, and MCMC probabilities in high regime
and IRF corn
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of the MCMC analysis of the probabilities of occurrence of the low and high
volatility regimes and the impulse response analyses.

In the low volatility regime, a shock to ethanol causes a downward move-
ment in the ethanol price, which lasts for a few periods and then returns to
equilibrium. The response by the crude oil price is more pronounced, show-
ing a continuing downward trend. In contrast, in the high volatility regime,
the response by ethanol is to show a sustained upward trend, while there is no
discernible response in the crude oil price.

The behaviour is different when there is a shock to the oil price. In the low
volatility regime, the ethanol price initially moves downward, and then returns
rapidly to equilibrium, while the oil price shows a continuing upward trend.
In the high volatility regime, a shock to oil causes the ethanol price to move
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Table 6: Markov-switching VECM analysis for Crude Oil and Corn

] Spot prices \ \ \ \

Crude Oil and Corn | ACrude Oil{1} ACorn{1} Constant EC(1){1}
Crude Oil ~0.0611(2.84%%) | -0.0014(-0.059) | 1.5249 (2.87%%%) | -0.00529 (-2.91%*%)
Corn 70.0240 (1.23) | 0.011 (0.52) | -0.1954 (-0.407) 0.0007 (0.46)

NB: *** denotes significant at 1%.

Table 7: Markov-switching VECM analysis for Ethanol and Sugar

’ Spot prices \ \ \ \

Ethanol and Sugar | AEthanol{1} ASugar{l} Constant EC(1){1}
Ethanol 0.0047(0.23) 0.0041(0.23) 1.510 (3.88%%%) | -0.01146 (-3.98%*%)
Sugar 0.0085 (0.35) | -0.252 (012.59%%%) | 0.181 (0.40) | -0.00143 (-0.423)

NB: *** denotes significant at 1%.

upwards initially, and then trend downwards. There is no discernible response
in the oil price.

In conclusion, the MSVECM and impulse response analysis of the pairwise
relationships among the spot prices of ethanol and wheat, ethanol and corn,
crude oil and corn, ethanol and sugar, and ethanol and crude oil, confirm the
significance of the MSVECM pairwise relationships. The significance of the
relationships depends on the ordering of the dependent variables. The impulse
response analysis reveals that the responses change, according to a low or high
volatility regime.

4. Conclusion

Energy and agricultural commodities and markets have been the subject of
extensive but unrelated research for a number of years. Recently, emphasis on
bio-fuels and green energy, especially bio-ethanol, which can be derived from
a range of agricultural products, has led to a topical and developing literature
on the spillovers between energy and agricultural markets. The emphasis has
been on testing the magnitude and direction of the volatility spillovers between
alternative commodities in these markets (see Chang et al. (2015)). There have
also been a number of prior studies which have used cointegration analysis to
establish links between these markets.

In this paper we have adopted a threshold approach to cointegration anal-
ysis to apply a Markov switching VECM and regime-based impulse response
analysis. We reported the existence of simple Engle-Granger pairwise cointe-
gration relationships between a number of the markets considered, and then
explored these relationships in the context of low and high volatility regimes
using a method suggested by Bacilar et al. (2015). The MSVECM analysis
suggested that the significance of the relationship is dependent on the ordering
of the dependent variables, and the impulse response analysis revealed that the
responses changed according to low or high volatility regimes.
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Table 8: Markov-switching VECM analysis for Ethanol and Crude Oil

] Spot prices \ \ \ \

Ethanol and Crude Oil | AEthanol{1} | ACrudeOil{1} Constant EC(1){1}
Ethanol 0.0067(0.32) 0.0106(0.88) | -3.0735 (-4.029°%) | -0.0172 (-4.89%%%)
Crude Oil 0.0145 (0.75) | -0.0603 (-2.91%%¥) 0.7093 1.21) 0.0040 (1.24)

NB: *** denotes significant at 1%

World agricultural markets have featured unusual price peaks and volatil-
ity in recent years. The results in the paper add to the evidence that price
movements in agricultural commodities are related to the prices of crude oil
and bio-fuel. These links need to be considered when making policies to pro-
mote the use of bio-fuels in order to recognize and evaluate the likely impact on
agricultural commodity prices.

The MSVECM and RDIRF analyses undertaken in the paper suggest that
market volatility conditions also have a significant impact on the strength and
direction of these relationships.
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Figure 6: Impulse responses for crude oil and corn, and MCMC in low regime probabilities
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Figure 7: MCMC probabilities for the high regime and IRF corn
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Figure 8: Impulse responses for Ethanol and Sugar, and MCMC in low regime probabilities
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Figure 9: Impulse responses for Ethanol and Sugar and MCMC high regime probabilities
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Figure 10: Impulse responses Ethanol and Crude Oil, and MCMC in low regime probabilities
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Figure 11: Impulse responses Ethanol and Crude Oil, and MCMC in high regime probabilities
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