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Abstract

The alpha calcium calmodulin kinase II (a-CaMKII) is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal
place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies
that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit
studies, with a-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (a-CaMKIIT305D mutants), that
indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that a-
CaMKIIT305D mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that
besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns
of a-CaMKIIT305D mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not
significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to
total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in a-
CaMKIIT305D mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-
known function in synaptic plasticity, a-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a
role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular
processes involved in acquiring information may also shape the patterns used to encode this information.
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Introduction

A number of studies indicate that autophosphorylation at

threonines 305/306 regulate the association of a-CaMKII with

the post-synaptic density (PSD) [1,2]. Autophosphorylation at

305/306 inhibits the interaction between a-CaMKII and the PSD,

and appears to provide a negative constraint for long-term

potentiation or LTP [1]. Mice with a mutation in the a-CaMKII

gene, which replaces threonine 305 with an aspartate (a-

CaMKIIT305D mice) and mimics inhibitory autophosphorylation

[1], reveal hippocampal LTP deficits and learning and memory

abnormalities in hippocampal tasks. Interestingly, preventing

inhibitory autophosphorylation by replacing the a-CaMKII

threonines 305 and 306 with nonphosphorylatable amino acids

decreased the threshold for LTP induction and also resulted in

learning deficits [1]. These findings demonstrate the importance of

a-CaMKII inhibitory phosphorylation for synaptic plasticity and

learning.

Besides its role in synaptic plasticity, a-CaMKII is also thought

to affect the function of channels that modulate neuronal

excitability [3,4,5,6]. Thus, it is possible that a mutation which

prevents the activation of this kinase and disrupts its cellular

distribution could also affect neuronal excitability and possibly the

temporal structure of in vivo burst patterns, especially in the

hippocampus, a region that expresses high levels of a-CaMKII [7].

In this paper, we describe experiments with in vivo extracellular

recordings of awake and behaving mice that indicate that a-

CaMKII has a role in bursting patterns of hippocampal pyramidal

cells.

The hippocampus has a critical role in spatial learning and

memory. Hippocampal cells show unique place-dependent firing

characteristics that are thought to reflect spatial cognitive maps

[8,9,10,11,12,13,14]. Place fields form rapidly as an animal

navigates in a novel environment [15], and they tend to be stable

over time [16,17]. Pyramidal neurons in the CA1 area of the

hippocampus fire single spikes and complex bursts of consecutive

spikes as an animal navigates through a given environment

[18,19].

Several studies have demonstrated that the mutation of single

genes required for synaptic plasticity disrupt the stability of

hippocampal place fields [20,21,22,23,24,25]. We extend these

findings and provide evidence that a-CaMKII, a gene required

for synaptic plasticity, place cell stability and learning and

memory, is also involved in modulating place cell firing

characteristics. Our results reveal that a-CaMKII is involved

in governing the temporal patterns of complex spiking as well as

the reliability of spiking with respect to the animal’s position.

Therefore, our results provide in vivo evidence that the a-

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31649

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/43289021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CaMKII gene has a role in shaping pyramidal cell spiking

patterns.

Results

CA1 area pyramidal cells were recorded extracellularly using

single unit recordings and only those cells showing a distinct spatial

firing preference were included in the analyses (.0.2 Hz of mean

firing rate & .0.5 of spatial selectivity at the same time). Twenty-

eight place cells were recorded from 6 a-CaMKIIT305D mice, and

32 place cells were recorded from 6 wild type littermates.

Recordings were made while the animals were moving freely

inside a cylindrical chamber 30 cm in diameter and 35 cm in

height (see Methods for details). Along with neuronal recordings,

positional data were also gathered through the video-tracking

system (Datawave. Inc). No difference was observed in gross

behavior including running speed (mean6S.E.M.: 6.4460.22 for

T305D vs. 6.1560.17 cm/sec for WT, p = 0.29) between T305D

and WT. This suggests that differences in place cell characteristics

between WT and T305D mice were not the result of differences in

running speed or related behaviors (e.g., overall activity level).

General Properties of Place Fields are Normal in T305D
Mice

Figure 1A shows examples of place fields of hippocampal CA1

pyramidal neurons from both groups measured in 3 sessions. The

configuration of visual cues was identical in sessions 1 and 3. In

session 2 a cue card within the recording cylinder was rotated by

90u in a counter clockwise direction. However, distal cues outside

of the recording cylinder were not moved. Our set up included a

light positioned outside of the arena in the ceiling of the recording

environment, which was a salient distal cue within the relative

darkness of the recording environment.

Visually, the individual place fields from T305D mice appear

to be normal; the complex spike neurons in the hippocampal

CA1 of the mutants also displayed place-dependent increases in

firing rates. Neuronal firing rates over whole sessions did not

differ either (1.5160.14 in T305D vs. 1.2960.09 Hz in WT,

p = 0.18). Although there was a slight tendency for increased

firing rates in T305D mice, this did not reach statistical

significance.

In-field firing rate of the place fields measured was defined as the

average firing rate in position pixels within the firing field. The

firing field pixels, in turn, were defined as those pixels for which

the firing rate of the cell was higher than the average firing rate of

the cell. The mean in-field firing rates did not differ significantly

between mutants and WT littermates (3.6660.25 Hz in T305 vs.

3.3860.2 Hz in WT, p = 0.36). Spatial selectivity is the measure of

the degree of the elevation of in-field firing rate as compared to

firing outside of the field [Spatial Selectivity = log10 (InField Firing

Rate/OutField Firing Rate)]. Average spatial selectivity of place

fields was also not significantly different between T305D and WT

Figure 1. Comparisons of place fields. A. Examples of place fields from a-CaMKII T305D mice (top three rows) and their wild type counterparts
(bottom three rows). Session 1 and 3 were identical in terms of visual cues available, while for session 2 a cue card in the wall of the arena was rotated
by 90u in a counter clockwise direction. A distal cue (light) located outside the recording cylinder was never moved. S: Session. Firing Rate codes (Hz)
were labeled on the right of each place map. B. Comparisons of place field stability between T305 mutants and controls. Place fields were classified
according to whether they followed a Local Cue (card), Distal cue (light) or Remapped. The figure shows the proportion of place fields in each of
these three categories (Local Cue, Distal Cue and Remapped). Local and distal cue configurations were as described above.
doi:10.1371/journal.pone.0031649.g001
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mice throughout all sessions recorded (1.0860.05 in T305D vs.

1.1860.05 in WT, p = 0.18). When only burst spikes were used to

calculate selectivity, we confirmed that there is no significant

difference between groups (1.6860.37 in T305D vs. 1.7160.24 in

WT, p = 0.77).

Decreased Spatial Coherence and Information in Place
Fields of T305D mice

Although the gross firing characteristics of cell spiking seemed

normal and similar to WT, T305D mice showed on average

significantly larger place fields than those in WT mice

(231.77610.31 vs. 161.8266.66 pixels, p,0.00001, respective-

ly). The place maps of T305D mice also showed higher pixel-to-

pixel variability as measured by spatial coherence. Spatial

coherence is a way to quantify the local smoothness of a place

field surface. Spatial coherence of a place cell is defined as the

correlation between firing rate of a position pixel and the

average firing rate over its 8 neighboring pixels. For cells with

high spatial coherence, firing rates of most position pixels are

highly correlated with its neighbors, and consequently the cell-

firing rate over a given spatial location is usually smooth. On the

other hand, with a low spatial coherence, firing rates at nearby

locations are uncorrelated and the firing rate map is highly

variable from position to position. Spatial coherence was

significantly lower in T305D mice than in WT littermates (Z

transformed, 0.4260.02 vs. 0.5260.02, p,0.005, respectively).

In addition, we measured spatial information [26] that provided

us with information about animal’s current position predicted by

firing rate, as follows,

I~

ð

x

l(x) log2

l(x)

l
r(x)dx,

where I is the information rate (bits/sec) of the cell, x is location,

p(x) is the probability density for the rat being at location x, l(x)
is the mean firing rate when the animal is at location x, and

l~
Ð
x

l(x)r(x)dx is the overall mean firing rate of the cell.

Spatial information was also significantly lower in T305D mice

than WT littermates (0.8760.07 vs. 1.0560.08 bit/sec, p,0.05,

respectively) suggesting that place cells in T305D mutants process

less information about the given environment compared to the

ones in WT littermates.

Decreased Stability of T305D Place Fields
Next, we asked whether place fields were stable in T305D mice.

Using a pixel-by-pixel cross correlation across the 3 recording

sessions (see Methods for details), stability or reproducibility of

each place field was examined by comparing the average firing

rates of each pixel across 2 place fields obtained from different

recording sessions. The pixel-by-pixel cross-correlations of place

fields across sessions reflect the stability of spatial representations.

We used ,5 min intervals between the end of sessions 1 and 2,

and between the end of sessions 2 & 3. Approximately 35 min

intervals separated sessions 1 & 3. Each session was ,25 minutes

long.

T305D mice showed lower pixel-by-pixel similarity in place

fields between sessions than their WT littermate controls

(Figure 2A). Specifically, the similarity between session 1 and 3,

which had identical cue card positions, was significantly lower in

mutants than controls (p,0.05), suggesting that place cells in the

mutants were less capable of recognizing the same environment

compared to the control group. Similarities for other combinations

(1 vs. 2 and 2 vs. 3) also showed differences between mutants and

controls. The results indicate that WT place fields were far less

affected by small environmental changes, (e.g., a cue rotation,

interval between sessions) than T305D place fields. In another

words, the place fields of mutant mice were more prone to

remapping than those of controls. Nevertheless, we found that the

similarity of place cells in the mutants was significantly higher than

two randomly picked pairs of place cells, indicating that T305D

place cells do not completely remap after the end of each session

(compare Random Pairs similarities to the rest of bars in

Figure 2A).

Differences in Cue Dependency of Place Fields
To further study place field stability across recording sessions,

we rotated place fields of one of the sessions being compared

(session 1 vs. 2, 1 vs. 3 and 2 vs. 3) until we found the maximum

similarity between the two sessions for the same cell. With a

completely stable place field, we would expect that the maximum

similarity would be obtained with zero rotation of one of the place

fields. Cells with a higher amount of required rotation for

maximizing similarity may be deemed less stable. Even though

comparisons between individual sessions showed only a tendency

for increased rotation required for T305D place fields compared

to WT place fields (Figure 2B, left panel; p = 0.07 for 1 vs. 2,

p = 0.38 for 1 vs. 3 and p = 0.15 for 2 vs. 3), the amounts of

rotation required for maximum similarity were larger for T305D

place cells. The difference between T305D and WT was more

obvious when the comparison included all sessions (p,0.05),

which is consistent with the earlier observation that place fields in

T305D mice are less stable than controls (Figure 2B, right panel).

These results were consistent over different measurements for

similarity or stability of place fields. For example, the maximal

amount of similarity achieved for T305D mice was significantly

lower than that of WT (Figure 2C). These observations suggest

that the 90u internal cue rotation in session 2 and/or the removal

from the recording environment between sessions disrupted the

place fields of the mutants more than WT littermates.

As a rough estimate of remapping, we also classified place cells

according to the amount of rotation required for maximum

similarity between recording sessions (Figure 1B). Our set up

included a light positioned outside of the arena in the ceiling of the

recording environment, which was a salient distal cue within the

relative darkness of the recording environment. Place cells were

divided into 3 categories for each comparison pair (1 vs. 2, 1 vs. 3

and 2 vs. 3). Following cue card rotation, place fields that stayed

within a 90u range of their original position relative to a distal light

cue outside of the recording cylinder were classified as a ‘‘Distal

Cue’’ place fields. Place fields that moved within a 90u range of the

new position of the cue card were categorized as ‘‘Local Cue’’

place fields. The rest of the place fields that did not stay in their

original position or rotate with the cue card, were classified as

‘‘Remap’’ place fields. Our results (Figure 1B) show that many

place fields in the WT group tended to stay in the same quadrant

(followed distal cue) in spite of the local cue rotation (session 2),

suggesting that for WT mice the prominent distal cue had a

dominant role in shaping place field firing in the experimental

setup used in the current study. Our results suggest that faced with

the conflict between distal (did not change position between

recording sessions) and local cues (changed between recording

sessions), WT place cells tended to follow the prominent distal cue

and stay in the original location, while T305 place cells did not.

Instead, a larger percentage of T305D place cells either remapped

or appeared to follow the local cue card. This result indicates that

the T305 mutation affected the behavior of place cells in the

CA1 Place Cell Spiking in aCaMKIIT305D Mutant Mice
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mutants. It is possible that the conflict between the unchanging

prominent distal cue and the changing local cue affected the place

cells of the mutants more than the place cells of WT mice.

Altogether the data presented indicate that although

modulation of firing rate was similar between groups (e.g., no

change in spatial selectivity), T305D place fields were more

Figure 2. Comparisons of the likeness of place fields in T305 mutants and controls. Statistical measures to compare the likeness of place
fields across sessions are shown on the left panel, and the same measures pooled across all sessions are presented on the right panel. A. Similarity
reflects pixel-by-pixel correlation values for session pairs plotted on the horizontal axis in the left column. The same measure pooled across all
sessions is shown on the right. B. Maximum rotation (in degrees) required for one field to be maximally similar to another. The rotation values are the
absolute amount of rotation; e.g., counter clockwise as well as clockwise rotation of 90u have a value 90 in the plots. C. Similarity measure obtained
after the aforementioned rotation operation. * indicates significant difference between groups at p,0.05.
doi:10.1371/journal.pone.0031649.g002
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variable (as measured by spatial information and coherence)

and unstable.

Abnormal Spiking Patterns in T305D Mutants
In-vivo extracellular recordings of CA1 pyramidal neurons in

both T305D and WT mice showed a characteristic bursting

pattern of two or more action potentials in quick succession with

progressively diminishing amplitude. However, analyses of the

peak time for inter-spike intervals (ISI) from individual neurons

revealed that this value was higher in T305D mice than in controls

(3.8860.24 vs. 2.4660.11 ms, respectively, p,0.0001, Figure 3E),

suggesting that there are fundamental changes in the temporal

spiking properties of pyramidal neurons of T305D mice.

Overall ISI characteristics. To better understand the

characteristic differences in spiking between the two groups, we

compared ISI histogram variability of all spikes in the recording

session by obtaining the coefficients of variation (CV, the ratio of

standard deviation to the mean of ISIs for measurement of the

distributional dispersion) over the whole recording sessions. We

found that over the whole session, the CVs of mutants and controls

were not significantly different (2.31 for T305D vs. 2.23 for WT,

p = 0.46). However, the entropy of the distribution increased

significantly for T305D (10.68 bits for T305D vs. 9.7 for WT,

p,0.01). Altogether these results indicate that even though the

overall spiking distributions were not different between T305D mice

and controls, the increased entropy suggests a higher amount of

variation in ISIs of T305D mice.

We have also assessed the relation between the remapping

phenomenon (Figure 1B) and the ISI peak time using a logistic

regression analysis as follows. The Logistic is fit as log(P(Re-

map(i))/(1-P(Remap(i))) = a_0+a_16ISI_Peak(i)+a_26T(i)+a_36
Session2(i)+a_46Session3(i), where a_0 through a_4 are regression

Figure 3. Comparisons of complex spikes between T305D and WT groups. A. Frequency of Burst (Hz) did not differ significantly, B. Firing
rate of Burst Spike (Hz), the frequency of spikes within bursts was significantly less for T305D mice, C. Burst Length in terms of number of spikes per
burst was significantly less for mutants, D. Average inter-burst intervals were significantly longer for T305D mice, E. Average peak time from individual
ISI histograms are consistent with significantly prolonged intervals between overall spikes. F. Average Intra Burst Intervals show that intervals
between two consecutive spikes in bursts were significantly prolonged in the mutants, * indicates significant difference between groups at p,0.05.
doi:10.1371/journal.pone.0031649.g003
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coefficients. For neuron i, P(remap(i)) denotes the probability of the

neuron undergoing a complete place field remapping between

sessions as opposed to a less than 90deg rotation with either the local

or distal cues. ISI_Peak(i) denotes the peak ISI time, T(i) = 1 denotes

that i is in T305D, while T = 0 denotes that i is in WT group.

Session2 and Session3 are indicator variables for sessions 2 and 3,

respectively. The P(remap) when Session2 = 1 is thus the probability

of a complete remap from session 2 to session 3. For this prediction,

we used the ISI peak time for session 2. We found that a longer ISI

peak time was a predictor for complete remapping (Coeffi-

cient = 0.2, p,0.05). In a reduced regression using Group and

Session ID, we also confirmed that place cells in the T305D group

tended to have higher probability of remapping (Coefficient = 0.61,

p = 0.1). These results suggest that a prolonged ISI peak time may

predict remapping and that remapping tends to occur more

frequently for place cells in the T305D group.

Correlation of spiking rate given spatial position. Since

we did not find any glaring differences in the ISI histograms over

the whole recording session, we next asked how predictably place

cells fired at each position pixel. We used spatial regression [27] to

estimate firing rate at each position pixel. If spatial regression does

a good job of predicting firing rate given the position at new

places, one could say that the regression has captured the position-

dependent firing rate characteristics of the place cell. A good

regression fit would explain high amount of variance in firing rate

across all position pixels.

We saw that the percent of variance in pixel-by-pixel firing rate

explained by regression on position was lower for T305D mice

compared to WT mice (Firing rate percent variance explained for

T305D = 60.3% vs. WT = 67.7%, p,0.001). In other words,

having access to the animal’s position was less useful in predicting

place cell firing rate for T305D mutants. This result is not very

surprising, since spatial coherence for T305D mice was also lower.

Spatial coherence measures the correlation in firing rate between a

position pixel and the neighboring 8 pixels around it, over the

whole area. The spatial regression utilized here differs from spatial

coherence, since the data fit utilizes firing information over a

larger number of pixels in the neighborhood of each pixel to

predict its firing rate. The neighborhood size could potentially

include the whole area, if necessary. We also adapt the

neighborhood size for each cell, and fit using a neighborhood

size through a smoothing parameter that yields the best results, as

described in the next parameter. We think the spatial regression

utilized here is a better estimate of inter-dependence of local firing

rate of place cells than spatial coherence, since it is not dependent

on pixel sizes but on the smoothness of the firing rate place field.

We now discuss the choice of spatial smoothing parameter. One

of the shortcomings of spatial coherence or spatial information

measures is that they are closely dependent on the size of each

position pixel. Larger pixels would smooth the place field more,

and result in higher spatial coherence or lower spatial information.

Too small a pixel size on the other hand would result in lower

spatial coherence or higher spatial information. Rather than

comparing firing rate correlation between a pixel and its

surrounding (i.e., spatial coherence) or departure in the distribu-

tion from uniform firing rate (i.e., spatial information), we asked

what is the best prediction job one can do using available place

dependent firing rate information irrespective of the extent of spatial

neighborhood used for the prediction. With this thought, we think

the simplest plausible method was to use a spatial regression with a

smoothing parameter individually tuned to each place cell.

To arrive at the best smoothing parameter, we used a 10-fold

cross-validation over a wide range of smoothing parameters and

picked the best parameter for each cell. Generally, we found that

small smoothing parameter values generally produced the best fit.

Thus, the spatial correlation analysis also lends credence to the

spatial coherence results reported earlier, which uses only the

neighboring pixels for a linear regression fit. k-fold cross-validation

is a standard technique in regression estimation [28], where data

are split in k non-overlapping parts. Individual regression is fit k

times while holding out one of the k parts, and prediction accuracy

is measured on the held-out sample. The smoothing parameter

that achieves the best average prediction on a held-out sample is

then used for regression analysis.

Once the best smoothing parameter was found for each cell, we

performed a regression analysis for each cell as follows: For each

position pixel, the predicted firing rate was calculated as a least-

squares regression fit with that smoothing parameter. The regression

output was then compared with the actual firing rate at each

position pixel, and the percent of firing rate variance was

computed as follows:

SDExplained(c)~1{SD(y{f (x))=SD(y),

where SD(y{f (x)) is the standard deviation of residuals of actual

and regression fit of firing rates, and is the standard deviation of

the firing rate over all pixels. As reported above, the percent

variance explained in T305D mice was lower, suggesting that

knowledge about firing rate in surrounding pixels was not as

predictive for the mutants, even if we used a larger surrounding

area for firing rate prediction.

Increased temporal variability of Intra Burst Spikes. To

further understand the increased position-dependent firing rate

unpredictability, we restricted our comparisons to spikes within

bursts (Intra-burst spikes). Complex spike bursts are suggested to

be the principal signal of positional information [29]. Therefore,

we asked whether the temporal characteristics of spiking itself

changed for T305D animals. Consistent with generally accepted

definitions [16], any event of two or more spikes with each spike

occurring within 15 ms of its predecessor with progressively

decreasing amplitudes was termed a burst.

The frequency of bursting did not differ significantly between

T305D and WT mice (0.1560.02 vs. 0.1960.02 Hz, p = 0.15,

respectively, Figure 3A). However, the firing rate of spikes within

bursts (intra burst spike rate over total recording time) in T305D

mice was significantly reduced compared to that of WT littermates

(0.2160.01 vs. 0.3260.01 Hz p,0.0001 respectively, Figure 3B),

suggesting that the overall bursting activity of CA1 pyramidal

neurons in T305D mice was disrupted. On average, bursts in

T305D mice contained significantly fewer spikes compared to WT

mice (2.1660.003 vs. 2.2260.003 #spike/burst, p,0.00001,

respectively, Figure 3C). The ratio of intra-burst spikes to total

spikes in each of the recording sessions, was also significantly lower

in T305D mice than in WT mice (20.761% vs. 32.161%,

p,0.00001, respectively) suggesting that single spikes are more

frequent in the mutant mice. Inter-burst-intervals were also

significantly longer in mutant mice than in wild type littermates

(29.669.1 vs. 11.961.8 seconds, p,0.05, respectively, Figure 3D).

We also compared consecutive spike pairs in a burst: intra burst

ISI-1 refers to the interval between the first and second spike, ISI-2

refers to the interval between the 2nd and 3rd spikes, etc. Intra

burst spike intervals were significantly longer in the mutants (see

Figure 3F).

Figure 4 shows smoothened mean intra-burst ISI histograms for

T305D vs. WT mice. For clarity and to avoid redundancy, only

ISIs between the 1st and 2nd spikes of a burst are shown, since we

observed identical curves for ISI-2 and ISI-3. Smoothing was

performed by fitting cubic splines to each cell ISI histogram, and

CA1 Place Cell Spiking in aCaMKIIT305D Mutant Mice
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then performing an average of these spline fits for each group to

get the average for each group. Point-wise 25th and 75th percentile

of these spline fits constitute the thin-lines. Thinner lines in

Figure 4 show the 25th and 75th quartiles for each ISI value. We

quantified this increased variability using Entropy. For each cell

and session, we measured the entropy of the ISIs. For example,

ISI-1 is the entropy of the distribution of ISIs between the 1st and

2nd spike of a burst. A two-tailed t-test comparison showed that the

ISI-1 entropies of the T305D group were significantly higher than

controls (3.9 bits for the T305D group vs. 3.5 bits for the WT

mice, p,0.01). This shows that within each burst, the ISI-1

distributions of T305D mice as a population are both visibly and

quantitatively more variable than those of WT control littermates.

We found similar results for ISI-2, and ISI-3 (not shown). We did

not use the usual measures like Standard Deviation (SD) or

Coefficient of Variation (CV) for this analysis, since, as seen in

Figure 4, the ISI histograms are truncated at 15 ms; the definition

of the burst tends to underestimate the SD and CV for the T305

group. Nevertheless, SD was higher in the T305D group, but this

difference did not reach statistical significance (3.19 for T305D vs.

3.10 for WT, p = 0.19).

Decreased reliability of bursts as position indica-

tors. Since bursts are fewer in number compared to the

overall number of spikes, and each session lasted only

30 minutes, the data collected were insufficient to perform a

rigorous spatial regression fit to predict bursting given spatial

position, as it was done for individual spikes earlier. Instead, we

asked how reliably a burst reflected the animal’s position in the

place field. For example, if 100% of the bursts occurred when the

animal is within the place field, the bursts would be deemed

completely reliable. On the other hand, if bursts were randomly

distributed outside place fields, one may conclude that bursting

provides no added information about the animal’s location. Since

the overall place field sizes were different for T305D and WT

mice, we defined the place field as those pixels with higher than

average firing rate. We found that in T305D mice a significantly

lower fraction of total bursts was contained in the PF compared to

WT (71.9% for T305D vs. 77.4% for WT, p,0.05). This leads us

to conclude that bursts are more variable and thus are a less reliable

signal of position in T305D mice. We also repeated the same

analysis by redefining the place field as the top 25% pixels by firing

rate. Here also, we found that a lower fraction of bursts occurred

within the place field for T305D (63.1% for T305D vs. 72.2% for

WT, p,0.01). We also compared the spatial coherence of the burst

place-map between the two groups. T305D mice had significantly

lower spatial coherence (0.28 for T305D vs. 0.34 for WT,

p,0.05). In other words, bursting intensity of nearby locations was

not as correlated for T305D as for WT mice. This observation is in

agreement with the spike place-field spatial coherence we noted

earlier.

Discussion

Previous studies demonstrated that a-CaMKII has a role in the

stability of hippocampal place fields: Transgenic mice that express

a mutated Ca2+-independent form of a-CaMKII show place cells

that are both less precise and less stable [30]. Similarly, studies of

mice with a mutation that substituted threonine 286 for alanine (a-

CaMKII T286A) also revealed unstable place cells [23]. Both of

these a-CaMKII mutations impaired hippocampal CA1 N-

Methyl-D-Aspartate Receptor (NMDAR) dependent LTP as well

as hippocampal-dependent learning (e.g. spatial learning)[30,31].

These and other results indicated that hippocampal CA1 LTP is

required for the stability of place cells [32,33]. Here, we describe in

vivo electrophysiological studies suggesting that besides a role in the

stability of place fields, a-CaMKII is also implicated in shaping

bursting patterns.

Besides unstable place fields with lower spatial coherence, a-

CaMKII T305D mutant mice show dramatic changes in both the

intra-burst and inter-burst properties of hippocampal place cells.

Comparisons between T305D and WT groups showed that

although the frequency of bursts did not differ significantly

between the two groups, burst length (number of spikes per burst),

average inter-burst intervals, and average intra burst intervals were

altered in the mutants.

In addition, both inter-burst and intra-burst intervals were more

variable in place cells of T305D mice, demonstrating that this

mutation introduced high variability in the temporal structure of

spike patterns. Spatial selectivity (elevation in firing rate within the

place field) appeared to be lower in the T305D mutants, but this

did not reach statistical significance. The variability in spike

patterns of T305D mutants may have also affected other

properties of spike bursts, perhaps accounting for the decreased

spatial coherence and larger place fields of T305D mice. Thus, it is

possible that the greater variability of bursting patterns of T305D

mice contributed to their spatial learning deficits [1].

What could be the mechanism responsible for the changes of

bursting patterns in T305D mice? Electrophysiological studies in

brain slices indicated that this kinase modulates intrinsic

excitability by regulating various ion currents. CaMKII may

phosphorylate and regulate T-type Ca2+ channels thought to

modulate the initiation of dendritic and somatic Ca2+ spikes

involved in shaping spike patterns [34]. There is also a significant

amount of evidence that implicates CaMKII in the modulation of

A currents. CaMKII phosphorylates synapse dependent protein

97 (SAP97), and this phosphorylation regulates the post-synaptic

density and dendritic localization of a key constituent of A currents

(Kv4.2) [3,35,36]. A-type potassium currents (and Kv4.2) were

implicated in the regulation of dendritic excitability and plasticity

[36]. These findings are consistent with results from Drosophila

Figure 4. ISI density distribution of ISIs between the first and
the second spikes of all bursts. Thick lines show the mean of
individual ISI histograms of cells for the two groups, T305D (dashed
line) and WT (continuous line). Thinner lines show 25th and 75th

quartiles for cells in each group, over the range of observed ISIs. Intra
burst ISI in T305D group is more variable compared to WT group.
doi:10.1371/journal.pone.0031649.g004

CA1 Place Cell Spiking in aCaMKIIT305D Mutant Mice

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e31649



showing that CaMKII inhibition with KN-62 or KN-93 caused a

significantly decreased A-type current and resulted in abnormal

firing patterns, including increased variability in spike frequency,

inter-spike-interval, spike duration and amplitude [5]. Hippocam-

pal neurons from a-CaMKII null mutants and rat neurons treated

with a CaMKII inhibitor showed increased neuronal excitability

and preponderance for both spontaneous and evoked seizures

[37]. Cultured hippocampal neurons treated with a CaMKII

inhibitor showed abnormal spike rates [38].

CaMKII is also thought to modulate the slow component of

post-burst afterhyperpolarization (sAHP), a current known to

shape spike patterns, since a-CaMKII T286A mutant mice

showed a decrease in hippocampal sAHP following tetanic

synaptic stimulation[39]. CaMKII may also modulate (directly

or indirectly) the slowly activating h current, a key regulatory

component of neuronal firing. Postsynaptic theta-burst firing can

decrease neuronal excitability in a h-channel dependent manner.

This decrease in excitability is also CaMKII-dependent, since an

inhibitor of this kinase prevents it [6]. CaMKII-mediated

phosphorylation of high-conductance, Ca2+-activated and volt-

age-gated (BK) channels is known to increase channel activity, and

these channels have a key role in neuronal firing [40].

Additionally, there is also evidence that CaMKII modulates the

expression and localization of G-protein-gated inwardly rectifying

potassium (GIRK) channels [41]. Thus, CaMKII regulates a

number of currents that are known to affect neuronal excitability

and modulate spike patterns. However, prior to the present study

there was little in vivo evidence demonstrating that this kinase had a

role in shaping spike patterns.

Our results provide direct in vivo evidence that besides a role in

the stability of hippocampal place fields (likely due to its

involvement in the induction of LTP), a-CaMKII also modulates

the temporal structure of spike patterns. Thus, the results

presented here suggest that some of the molecular processes

involved in acquiring information may also shape the patterns

used to encode this information.

Materials and Methods

Ethics Statement
All procedures used in this work were reviewed and approved

by the Chancellor’s Animal Research Committee (ARC) at the

University of California at Los Angeles, in accordance with US

National Institutes of Health guidelines (ARC Protocol #: 1998-

069).

Subjects and Experimental Setups
The generation of the mutant mice used in the present study is

described in detail elsewhere [1]. Place cells were recorded from 6

male mutant mice (C57/BL6J X 129SvJ genetic background,

henceforth referred to as T305D mice) and 6 male littermate wild-

type mice (henceforth WT) while the animals were freely moving

inside a gray cylindrical chamber of 30 cm diameter with a height

of 35 cm. Animals were food deprived to maintain 85,90% of

their original weight and trained to forage for food pellets. During

the duration of the experiment, animals had unrestricted access to

water. The slight food deprivation motivated mice to explore every

corner of the recording chamber for all 3 recording sessions.

Surgery
For the surgery, animals were anesthetized with Nembutal

(50 mg/kg, i.p.) and treated with atropine methyl nitrate (0.4 mg/

kg) for electrode implantation. Using a stereotaxic instrument, one

tetrode mounted on movable microdrive was chronically implant-

ed just above the CA1 pyramidal layer of the hippocampus (right

hemisphere; AP 21.94, ML +1.5, DV 21.0). To position the

electrode, the skull of the animal was exposed, and small holes

were made over the target area for electrode bundle insertion. Five

small screws were secured to the skull to help anchor the electrode

assembly using dental acrylic mixture. One of the screws was

extended with a connector to be used as a ground wire during

recording. During the surgery, ophthalmic ointment was applied

to the eye balls of the animal to prevent dryness. After 7 days of

postoperative recovery, recordings were performed every day over

several days while animals foraged for food pellets.

Tetrodes and stereotrodes were constructed using four 12.5 mi-

cron nichrome wires (Form Var coated, H.P. Reid, USA) each; an

additional micro-wire was used for the ground. The tip of

electrodes was cut with a 45u angle to yield maximum conductive

area while the rest of the wires were insulated along their main

axes. Each wire tip was gold-plated (Sifco Process, Independence,

OH, USA) to obtain a final impedance of 300–500 kV (tested at

1 kHz).

Screening and Recordings
Both screenings and recordings were performed in an isolated

compartment constructed by the investigators. Inside the com-

partment, soundproof insulators were installed to avoid distraction

of the animals by unwanted noise. A cylindrical black curtain was

installed from ceiling to bottom, which provided a homogeneous

visual environment around the recording cylinder. Recording

cables were connected to an 8-channel amplifier (Neural-Lynx

Co., Bozmen, MT, USA.) and then to the computer. At the end of

the cable, a house-made 4-channel head-stage amplifier was

installed. On the inside of the cylindrical chamber, a white

cardboard (90u of arc) was installed as a local cue. Our set up also

included a light positioned outside of the arena in the ceiling of the

recording environment, which was a salient distal cue within the

relative darkness of the recording environment.

On top of the compartment, a food pellet dispenser (Med-

associates. Inc., St. Albans, VT, USA) was programmed to drop

20 mg food pellets into the recording chamber at random

locations.

In increments of approximately 8–15 mm (up to a total of 25 mm

daily), the electrodes were lowered gradually into the pyramidal

cell layer of the CA1 region to isolate single neuron(s). The

electrical signal from neurons, measured with respect to the

ground, transmitted through the head stage amplifier (unity Gain

buffer), through the cable to the programmable amplifier (gain

between 5,000 to 20,000; filter 300 Hz high pass and 10 KHz low

pass; Neuralynx Co., Bozmen, MT, USA). The amplified signal

was then digitized and stored on a personal computer. The

Discovery software package (DataWave Tech, USA) was used to

process the incoming signals. Each spike waveform thus isolated

was digitized and stored for cluster analysis. Also, neuronal firing

rates were compared to exclude those inconsistent with pyramidal

cell firing rates. Two infrared LEDs mounted on the head stage

were used to monitor the position of the animal simultaneously

with the neural recordings. The positions of LEDs were captured

by an overhead CCD camera (60 Hz refreshing rate) and these

signals were translated into 2D coordinate values by the video

tracking system. These position values were then stored in the

personal computer along with their time stamps. Samples were

obtained from approximately 700 square pixels of 161 cm inside

the recording chamber. Both spike and positional events were

synchronously time stamped and used to analyze the spatial firing

characteristics of the cell.
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Isolated place cells were recorded in 3 successive 25–30-min

sessions. Each session was separated by a 3–4 minute break for

untwisting the cable, wiping the floor of the apparatus with alcohol

and for the 90u cue rotation. Place maps showing average cell

firing rates at positions in the cylinder were constructed for

individual sessions. At the end of each session, the animal was

returned back to its cage, the recording chamber was cleaned, and

the recording cables were untwisted. Also, between the first and

the second sessions, the visual cue was rotated by 90u in a counter

clockwise direction. At the end of the second session the cue was

placed back in its original position by rotating it 90u clockwise,

thereby making the sensory cues identical to those of session 1.

Mice were repeatedly exposed to the same recording chamber

over days until the end of the experiment. In case the cell being

recorded drifted or was lost between sessions, that cell was

excluded from the analyses.

Data Analyses
Only well-isolated single units confirmed to be in the CA1

region by histology were used in the analyses. Data obtained via

data acquisition software were cluster-cut into single units. Each

cluster-cut unit was confirmed to be a signal from a single neuron

by verifying that no spike counts existed under the first 1 ms in the

inter-spike interval histogram within a single unit.

For place field analysis, Linux based R- program was used. The

midpoint of two LEDs was calculated for each position sample,

and used as the position of the animal’s head. For each pixel, the

total number of spikes was divided by the total time spent by an

animal in the pixel. Firing rates per pixel over the whole session

were used to construct a color map representing a place field of

each recording session.

A stability index was obtained by calculating pixel-by-pixel

correlation between place maps derived from two recording

sessions chosen pair-wise. Another index for stability was deemed

as the amount of rotation of the place maps between 2 sessions that

yielded the maximum value of pixel-by-pixel cross-correlation. For

finding the maximum cross-correlation, pixel-by-pixel correlations

were performed with a place map successively rotated in 1u steps.

The size of the place field was defined as the number of pixels that

had firing rates above the overall cell firing rate for the session. All

correlation values were transformed into Fisher’s Z scores for

parametric comparisons. Definitions of spatial information,

coherence, spatial selectivity, and variability, of complex spike

bursts are defined in the corresponding sections of Results. The

firing properties were calculated using data from all 3 sessions

combined. Throughout the analyses, a two tailed unequal variance

Student’s t-test for equality of means was used to compare groups.

Histology
After completion of recordings, recording locations were

verified. Mice were overdosed with Nembutal, an electrolytic

lesion was made by passing current through the recording

electrode (5–20 mA, 10 s), and then perfused transcardially with

3.7% formalin (1:10 dilution of 37% formalin solution in 0.9%

saline). Brains were extracted and further fixed in 3.7% formalin

(1:10 dilution of 37% formalin solution in ddH2O) for a week at

room temperature. Coronal sections (50 mm) were cut through the

entire hippocampus with a microtome cryostat. The sections were

stained with cresyl violet and examined under a light microscope

to determine recording sites.

Acknowledgments

We would like to thank Dr. Hugh T. Blair and Mayank Mehta for

comments that helped to shape this manuscript.

Author Contributions

Conceived and designed the experiments: JC AJS. Performed the

experiments: JC. Analyzed the data: JC RB AJS. Contributed reagents/

materials/analysis tools: AJS YE. Wrote the paper: JC AJS. Generation

and supply of mutance mice: YE. Analysis Programming: RB.

References

1. Elgersma Y, Fedorov NB, Ikonen S, Choi ES, Elgersma M, et al. (2002)

Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity,

and learning. Neuron 36: 493–505.

2. Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and

localization in hippocampal neurons by NMDA receptor stimulation. Science
284: 162–166.

3. Gardoni F, Mauceri D, Marcello E, Sala C, Di Luca M, et al. (2007) SAP97

directs the localization of Kv4.2 to spines in hippocampal neurons: regulation by
CaMKII. J Biol Chem 282: 28691–28699.

4. Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, et al. (2004)
Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression

and upregulates neuronal A-type potassium currents. J Neurosci 24: 3643–

3654.

5. Yao WD, Wu CF (2001) Distinct roles of CaMKII and PKA in regulation of

firing patterns and K(+) currents in Drosophila neurons. J Neurophysiol 85:
1384–1394.

6. Fan Y, Fricker D, Brager DH, Chen X, Lu HC, et al. (2005) Activity-dependent

decrease of excitability in rat hippocampal neurons through increases in I(h). Nat
Neurosci 8: 1542–1551.

7. Brocke L, Srinivasan M, Schulman H (1995) Developmental and regional
expression of multifunctional Ca2+/calmodulin-dependent protein kinase

isoforms in rat brain. J Neurosci 15: 6797–6808.

8. O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13:
419–439.

9. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Res 34: 171–175.

10. Muller R (1996) A quarter of a century of place cells. Neuron 17: 813–822.

11. Muller RU, Kubie JL (1987) The effects of changes in the environment on the
spatial firing of hippocampal complex-spike cells. J Neurosci 7: 1951–1968.

12. O’Keefe J, Speakman A (1987) Single unit activity in the rat hippocampus
during a spatial memory task. Exp Brain Res 68: 1–27.

13. O’Keefe J, Nadal L (1987) The Hippocampus as a Cognitive Map: Oxford

University.

14. Quirk GJ, Muller RU, Kubie JL, Ranck JB, Jr. (1992) The positional firing

properties of medial entorhinal neurons: description and comparison with

hippocampal place cells. J Neurosci 12: 1945–1963.

15. Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble

code for space. Science 261: 1055–1058.

16. Muller RU, Kubie JL, Ranck JB (1987) Spatial firing patterns of hippocampal

complex-spike cells in a fixed environment. J Neurosci 7: 1935–1950.

17. Thompson LT, Best PJ (1989) Place cells and silent cells in the hippocampus of

freely-behaving rats. J Neurosci 9: 2382–2390.

18. Ranck JB, Jr. (1973) Studies on single neurons in dorsal hippocampal formation
and septum in unrestrained rats. I. Behavioral correlates and firing repertoires.

Exp Neurol 41: 461–531.

19. Harris KD, Hirase H, Leinekugel X, Henze DA, Buzsaki G (2001) Temporal

interaction between single spikes and complex spike bursts in hippocampal

pyramidal cells. Neuron 32: 141–149.

20. McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired

hippocampal representation of space in CA1-specific NMDAR1 knockout mice.

Cell 87: 1339–1349.

21. Rotenberg A, Abel T, Hawkins RD, Kandel ER, Muller RU (2000) Parallel

instabilities of long-term potentiation, place cells, and learning caused by

decreased protein kinase A activity. J Neurosci 20: 8096–8102.

22. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal

CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:

1327–1338.

23. Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H (1998) Abnormal

hippocampal spatial representations in alphaCaMKIIT286A and CREBalpha-

Delta- mice. Science 279: 867–869.

24. Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, et al. (2003)

Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-

time experience. Neuron 38: 305–315.

25. Cacucci F, Wills TJ, Lever C, Giese KP, O’Keefe J (2007) Experience-

dependent increase in CA1 place cell spatial information, but not spatial

reproducibility, is dependent on the autophosphorylation of the alpha-isoform

CA1 Place Cell Spiking in aCaMKIIT305D Mutant Mice

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e31649



of the calcium/calmodulin-dependent protein kinase II. J Neurosci 27:

7854–7859.

26. Skaggs WE, McNaughton BL, Gothard KM, Markus EJ (1993) An information-

theoretic approach to deciphering the hippocampal code. Neural Infomation

Process System 5: 1030–1037.

27. Cleveland ER, Grosse WS, Shyu WM (1992) Local regression models. In:

Chambers JM, Hastie T, eds. Statistical Models in S. New York: Chapman and

Hall. pp 309–376.

28. Devijver PA, Kittler J Pattern Recognition: A Statistical Approach: Prentice-

Hall, London.

29. Lisman JE (1997) Bursts as a unit of neural information: making unreliable

synapses reliable. Trends Neurosci 20: 38–43.

30. Rotenberg A, Mayford M, Hawkins RD, Kandel ER, Muller RU (1996) Mice

expressing activated CaMKII lack low frequency LTP and do not form stable

place cells in the CA1 region of the hippocampus. Cell 87: 1351–1361.

31. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at

Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science

279: 870–873.

32. Mayford M, Mansuy IM, Muller RU, Kandel ER (1997) Memory and behavior:

a second generation of genetically modified mice. Curr Biol 7: R580–589.

33. Wilson MA, Tonegawa S (1997) Synaptic plasticity, place cells and spatial

memory: study with second generation knockouts. Trends Neurosci 20:

102–106.

34. Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, et al. (2003) A

mechanism for the direct regulation of T-type calcium channels by Ca2+/
calmodulin-dependent kinase II. J Neurosci 23: 10116–10121.

35. Serodio P, Rudy B (1998) Differential expression of Kv4 K+ channel subunits

mediating subthreshold transient K+ (A-type) currents in rat brain.
J Neurophysiol 79: 1081–1091.

36. Tkatch T, Baranauskas G, Surmeier DJ (2000) Kv4.2 mRNA abundance and A-
type K(+) current amplitude are linearly related in basal ganglia and basal

forebrain neurons. J Neurosci 20: 579–588.

37. Butler LS, Silva AJ, Abeliovich A, Watanabe Y, Tonegawa S, et al. (1995)
Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent

kinase II alpha-subunit mutation. Proc Natl Acad Sci U S A 92: 6852–6855.
38. Churn SB, Sombati S, Jakoi ER, Severt L, DeLorenzo RJ (2000) Inhibition of

calcium/calmodulin kinase II alpha subunit expression results in epileptiform
activity in cultured hippocampal neurons. Proc Natl Acad Sci U S A 97:

5604–5609.

39. Sametsky EA, Disterhoft JF, Ohno M (2009) Autophosphorylation of
alphaCaMKII downregulates excitability of CA1 pyramidal neurons following

synaptic stimulation. Neurobiol Learn Mem 92: 120–123.
40. Liu J, Asuncion-Chin M, Liu P, Dopico AM (2006) CaM kinase II

phosphorylation of slo Thr107 regulates activity and ethanol responses of BK

channels. Nat Neurosci 9: 41–49.
41. Nassirpour R, Bahima L, Lalive AL, Luscher C, Lujan R, et al. (2010)

Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in
hippocampal neurons. J Neurosci 30: 13419–13430.

CA1 Place Cell Spiking in aCaMKIIT305D Mutant Mice

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31649


