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Abstract

pathways affected over the course of ASDs.

growth and hormonal signaling.

Background: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with symptoms manifesting
before the age of 3, generally persisting throughout life and affecting social development and communication.
Here, we have investigated changes in protein biomarkers in blood during childhood and adolescent development.

Methods: We carried out a multiplex immunoassay profiling analysis of serum samples from 37 individuals with a
diagnosis of ASD and their matched, non-affected siblings, aged between 4 and 18 years, to identify molecular

Results: This analysis revealed age-dependent differences in the levels of 12 proteins involved in inflammation,

Conclusions: These deviations in age-related molecular trajectories provide further insight into the progression and
pathophysiology of the disorder and, if replicated, may contribute to better classification of ASD individuals, as well
as to improved treatment and prognosis. The results also underline the importance of stratifying and analyzing
samples by age, especially in ASD and potentially other developmental disorders.
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Background

Autism spectrum disorders (ASDs) are a clinically and
biologically heterogeneous group of neurodevelopmental
conditions characterized by a triad of core features: so-
cial and communication impairments and restricted re-
petitive behavior. The clinical manifestations of ASD
have been shown to change over development. Cross-
sectional and longitudinal research indicates that the se-
verity of the core features and maladaptive behaviors of
ASD among adolescents and adults tend to abate with
age [1-4]. A cross-sectional study showed improved gaze
behavior and social functioning of ASD subjects between
adolescence and adulthood, with the suggestion that
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increased mirror neuron system activity may contribute
to these effects [5].

In addition to the clinical manifestations, there is ac-
cumulating evidence that individuals with ASD have sig-
nificant differences in brain development compared to
controls. The results of several studies that were
reviewed in [6] have shown there is reduced functional
activation in multiple brain areas of 2-to 4-year-old chil-
dren during socio-emotional, cognitive and attention
tasks. Also, studies have shown age-dependent changes
in cortical development [7] in brain regions involved in
social-cognitive and motor function [8], language [9],
and symptom severity [10]. Taken together, the findings
indicate that neurobiological alterations that occur dur-
ing the first years of life may underlie the neuroanatom-
ical, functional and behavioral aspects of ASD.
Therefore, identification of biomarkers associated with
these alterations may provide further insights into the
disease etiology.

© 2013 Ramsey et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Thus far, there have been only a small number of stud-
ies that have attempted to identify molecular changes in
ASD that occur at different ages. One study found age-
dependent gene expression changes in prefrontal cortex
using whole-genome analysis of mRNA levels in post-
mortem brains of ASD subjects [11]. Most of the mo-
lecular profiling studies have investigated age-related
changes in ASD subjects in the levels of growth factors
such as brain-derived neurotrophic factor (BDNF). In
ASD cases, the levels of BDNF were found to be signifi-
cantly lower in 0- to 9-year-old children compared to
those aged greater than 10 years, while no age-related
differences in BDNF levels were found for non-ASD
controls [12]. This suggested that there may be a delayed
increase of BDNF with development. The 'H nuclear
magnetic resonance (NMR) analyses found lower frontal
lobe ratios of N-acetylaspartate/creatine, which was cor-
related with age in ASD children [13]. This could reflect
increased mitochondrial metabolism and may be related
to symptoms of obsessional behavior and decreased so-
cial function of the patients.

Most previous molecular profiling studies of ASD have
been performed using specific age groups, which pre-
cludes identification of changes that occur at different
stages of development. Here we have attempted to gain
further insight into age-related molecular trajectories in
ASD by multiplex immunoassay profiling of 208 analytes
in serum from patients and sibling controls, following
partitioning into three age groups (4 to 9, 9 to 13 and 13
to 18 years). This platform has the advantage of being
capable of screening multiple molecules simultaneously
in biological samples and has been used previously to
identify serum or plasma biomarkers in several areas of
medicine, including neuropsychiatric conditions such as
schizophrenia, bipolar disorder, major depressive dis-
order and Asperger syndrome [14-16].

Methods

Subjects

Subjects were recruited from Karakter Child and Ado-
lescent Psychiatry and the Radboud University Nijmegen
Medical Center in Nijmegen, The Netherlands. The sub-
jects included 37 ASD subjects (age = 10.8 + 3.5 years;
body mass index (BMI) = 18.0 + 3.7 kg/mz) and 37 con-
trols (age = 10.5 + 3.2 years; BMI = 17.6 + 3.0 kg/m?).
The Commissie Mensgebonden Onderzoek (CMO) regio
Arnhem Nijmegen ethical committee approved the study
protocols, informed written consent was given by the
parents of all participants, and studies were conducted
according to the Declaration of Helsinki. Clinical diag-
nosis of ASD was conferred by board certified child
psychiatrists based on developmental history and psychi-
atric interview and observation and according to ac-
cepted international criteria (APA, DSM-IV-TR).

Page 2 of 9

Diagnosis of ASD was confirmed by a structured devel-
opmental interview with the parents (ADI-R) [17]. Sub-
jects with a diagnosis of autistic disorder (AD) or
pervasive developmental disorder-not otherwise speci-
fied (PDD-NOS) were included in the study. The
Wechsler Abbreviated Scale of Intelligence was adminis-
tered to all participants to measure intelligence quotient,
and age-appropriate Autism Spectrum Quotient (AQ)
questionnaire scores were recorded for all ASD and con-
trol individuals. All diagnoses and clinical tests were
performed by psychiatrists under Good Clinical Practice
compliance to minimize variability. Unaffected control
subjects were siblings recruited from the same families
and had comparable age, gender and body mass index
(BMI) to the respective patient populations.

Samples

Blood samples were collected from all ASD individuals
and controls into S-Monovette 7.5 mL serum tubes
(Sarstedt, Numbrecht, Germany). Serum was prepared
using standard protocols by leaving samples at room
temperature for 2 hours to allow clotting, followed by
centrifugation at 4,000 x g for 5 minutes to remove clot-
ted cells and other particulate material. The resulting su-
pernatants were stored at —80°C in LoBind Eppendorf
tubes (Hamburg, Germany). The study protocols, pro-
cessing of clinical samples and execution of test methods
were carried out in compliance with the Standards for
Reporting of Diagnostic Accuracy (STARD) initiative
[18].

Multiplex immunoassay analysis

The levels of 256 initial analytes were measured in 250
puL serum using multiplexed immunoassays (Discovery
MAP™ platform) in a Clinical Laboratory Improvement
Amendments (CLIA)-certified laboratory (Myriad-RBM;
Austin, TX, USA) as described previously [14]. Briefly,
samples were analyzed at optimized dilutions and raw
intensity measurements were converted into absolute
protein concentrations using duplicate 8-point standard
curves. Sample analysis was randomized to minimize
bias due to measurement-related effects.

Statistical analysis

The statistical programming software R (http://www.r-
project.org/) was used to pre-process, analyze and plot
the multiplex immunoassay data. First, the data were fil-
tered to remove those assays with more than 30% of
values lying outside the limits of quantitation. This
resulted in exclusion of 48 assays. For the remaining 208
analytes, low values were replaced by 0.5 X the corre-
sponding minimum values for that assay and high read-
ings were replaced by 2.0 X the maximum levels. For
each assay, values were log, transformed for analysis,
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and outlying values were removed if these exceeded
more than 3 standard deviations from the means. Devia-
tions from typical molecular developmental patterns in
ASD siblings were assessed by calculating age-diagnosis
interactions. The interaction was assessed using a linear
model, adjusting for additional covariates of family
membership, plate, BMI, and sex. A similar procedure
was used to identify molecules changed in ASD,
adjusting for these same additional covariates in a linear
model. Next, relationships between molecules with sig-
nificant age-diagnosis interactions were tested by com-
puting Spearman rank correlation coefficient between
each pair of molecules for control siblings using un-
transformed data. Statistical tests were deemed signifi-
cant at P <0.05.

In-silico pathway analysis

The UniProt accession codes of proteins which showed
diagnosis-age interactions were uploaded into the In-
genuity Pathways Knowledge Database (IPKB; Ingenu-
ity™ Systems; Mountain View, CA, USA). Pathways most
significant to the data set were determined by overlaying
the identified proteins onto predefined pathway maps in
the IPKB. A right-tailed Fisher’s exact test was used to
calculate P values associated with the identified path-
ways. The significance of the association between the
dataset and canonical pathways was measured by the ra-
tio of the number of significant molecules divided by the
total number of molecules in the canonical pathway and
by the Fisher’s exact test P value.

Results

Identification of altered molecules in autism spectrum
disorder individuals compared to sibling controls
Multiplex immunoassay analysis of all ASD individuals
(n = 37) and controls (n = 37) resulted in identification
of nine proteins which were present at significantly dif-
ferent levels (interleukin-3, interleukin 12 subunit p40,
interleukin-13, macrophage derived chemokine, stem
cell factor, Tamm-Horsfall urinary glycoprotein, tumor
necrosis factor beta, tyrosine kinase with Ig and EGF
homology domains 2 and von Wiaillebrand factor)
(Table 1). None showed a difference higher than 1.2-fold
or less than 0.8-fold. We next determined whether mo-
lecular differences between ASD and control individuals
were potentially obscured by the age range investigated.

Identification of molecules which showed diagnosis-age
interactions

The investigated individuals were separated into age
groups approximating time periods before (<9 years),
during (9 to 13 vyears) and after (>13 years) puberty
(Table 2). ASD subjects and their unaffected control sib-
lings did not differ significantly in mean age, body mass
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Table 1 Multiplex immunoassay analysis identification of
proteins significantly altered in autism spectrum
disorders (ASD)

Analytes P value Fold change®
Tamm-Horsfall urinary 0.004 118
glycoprotein

Interleukin-3 0.010 0.79
von Willebrand factor 0.023 1.16
Interleukin 12 subunit p40 0.025 087
Tyrosine kinase with Ig and 0.033 1.09
EGF homology domains 2

Tumor necrosis factor beta 0.034 1.18
Interleukin-13 0.038 0.86
Macrophage derived 0.042 092
chemokine

Stem cell factor 0.050 0.89

®Geometric means were used to calculate fold changes (ASD/control) in ASD
individuals (n = 37) compared to control (n = 37) subjects. There were no
significant differences in age (ASD = 10.9 * 3.4 years; control = 10.3 + 3.0
years) or body mass index (BMI) (ASD = 18.0 + 3.5 kg/m?, control = 17.7 +

3.1 kg/m?). Autism Spectrum Quotient (AQ) scores were significantly different
(ASD = 92.0 + 20; control = 43.9 + 18; P <0.001). See Table 2 for more detailed
demographics. Demographics are reported as mean + standard deviation.

index (BMI), height or weight values. AQ scores were
significantly different (P <0.05) between ASD and un-
affected individuals. AQ scores did not change signifi-
cantly with age for ASD individuals or for controls.
Deviations from typical molecular developmental pat-
terns in ASD subjects were assessed by calculating an
age-diagnosis interaction using a linear model, as de-
scribed in the Materials and Methods section. After
adjusting for additional covariates of family membership,
assay plate, BMI, and sex, 12 proteins showed significant
diagnosis-age interactions (Table 3; Figure 1). None of
these proteins overlapped with molecules found to be
significantly different in the comparison of all ASD and
control subjects (Table 2). The most significant diver-
gences in trajectories were observed for matrix
metalloproteinase 7 (MMP-7) (P = 0.005; increasing
slope), adiponectin (P = 0.007; increasing slope) and
transferrin (P = 0.012; decreasing slope). The most pro-
found ratiometric differences across age groups were
seen for haptoglobin, cancer antigen 19-9 (CA-19-9),
thyroglobulin (TG) and C-reactive protein (CRP), which
were present at approximately 50% of control levels in
the youngest age group (<9 years) and were increased by
more than 200% compared to controls in the highest
age group (>13 years). Four molecules (insulin-like
growth factor binding protein 5 (IGFBP5), transferrin,
neuropilin-1, creatine kinase-MB (CK-MB)) showed the
opposite trajectory with respect to typical molecular
levels, with higher levels seen in the youngest group and
lower levels in the oldest group.
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Table 2 Demographic information after separation of autism spectrum disorder (ASD) and control subjects according

to age range

<9 years 9 to 13 years >13 years
Diagnosis ASD Control ASD Control ASD Control
N (M/F) 12 (11/1) 11 (9/2) 17 (14/3) 22 (20/2) 8(8/0) 4 (4/0)
AD/PDD-NOS 7/5 NA 11/6 NA 3/5 NA
Age 72+12° 68+ 16 112+10 11.0£13 158 £ 1.7 154+ 1.0
BMI 159+£13 161 £ 1.7 176 + 2.1 175124 222+ 46 230+ 40
Height 128 £ 10 127 £ 9 154 + 7 148 = 11 173+ 9 178 £ 8
Weight 265 26+6 42+ 8 39+ 10 67 £ 19 73+£12
AQ (Total) 95+ 16 44 + 23 91 +22 46 + 17 90 + 21 33+ 11

?Demographic variables are listed as mean + standard deviation. AD autistic disorder, AQ Autism Spectrum Quotient, BMI body mass index, PDD-NOS pervasive

developmental disorder-not otherwise specified.

Correlations of molecules with significant diagnosis-age
interactions

Spearman rank correlation testing showed that the levels
of 11 out of the 12 molecules with significant age-
diagnosis interactions were also significantly correlated
with at least one other molecule (Figure 2). TRAIL-R3
was the only protein that was not correlated with at least
one other. Neuropilin 1 had the highest Spearman cor-
relation coefficient and most significant correlations with
the proteins transferrin (R = 0.779, P = 1.36E-08) and
thyroglobulin (R = -0.618, P = 4.62E-05). Also,
adiponectin, transferrin and neuropilin 1 showed the
greatest number of connections by having significant
correlations with four other proteins.

Pathway analysis

The UniProt accession codes of all 12 proteins were
uploaded into the Ingenuity Pathways Knowledge Base
(IPKB; www.ingenuity.com) to identify the most over-

represented pathways associated with the dataset
(Table 4). This showed that the diseases most signifi-
cantly associated with these proteins were hematological
diseases (P <0.001) and endocrine system disorders
(P <0.001). Both of these categories were linked to
changes in adiponectin, creatine kinase-MB, C-reactive
protein, haptoglobin, matrix metalloproteinase 7 and
transferrin, although interferon inducible T cell a-
chemoattractant (ITAC) was associated specifically with
hematological disease and thyroglobulin was specifically
related to endocrine system disorders. The most signifi-
cant canonical pathway associated with the proteins was
acute phase response signaling (P <0.001), based on
changes in C-reactive protein, haptoglobin and
transferrin.

Discussion
This is the first proteomic profiling study aimed at iden-
tifying age-related serum biomarker changes in young

Table 3 Multiplex immunoassay analysis identification of proteins with significant age-diagnosis interactions

Analytes Interaction Fold change®
P value <9 years 9 to 13 years >13 years

Haptoglobin (HP) 0.021 0.36 1.20 283
Cancer antigen 19-9 (CA-19-9) 0.046 0.59 117 245
Thyroglobulin (TG) 0.021 032 135 2.39
C-Reactive Protein (CRP) 0014 0.51 1.90 235
TRAIL-R3 (TR3) 0.034 0.86 081 1.31
Adiponectin (ADIP) 0.007 0.80 0.81 1.25
Matrix metalloproteinase 7 (MMP-7) 0.005 0.82 1.07 1.23
Interferon inducible T cell a chemoattractant (ITAC) 0.035 0.66 0.86 1.21
Insulin-like growth factor binding protein 5 (IGFBP5) 0.027 1.23 0.95 087
Transferrin (TF) 0.012 1.28 0.89 0.86
Neuropilin-1 (NP1) 0.020 124 092 0.83
Creatine kinase-MB (CK-MB) 0.022 1.50 0.94 0.83

*The data obtained for all subjects were partitioned into the indicated age bins and geometric means were used to calculate fold changes (autism

spectrum disorder/control).
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Figure 1 Age-dependent changes in expression of serum proteins in 4- to 18-year-old autism spectrum disorder (ASD) subjects
compared to matched sibling controls. Protein concentrations were plotted against age after loge. transformation, and a linear regression was
fit in ASD subjects (orange) and sibling controls (blue). The abbreviations are as described in Table 3.

Figure 2 Diagram showing significant correlations of protein levels. The coefficient (R) is given above each connection and the width of the
connections are inversely proportional to the P value. Red and green connections denote positive and negative correlations, respectively. The
abbreviations are as described in Table 3.
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Table 4 In-silico pathway analysis of proteins with
significant diagnosis-age interactions

Top diseases® P value Molecules

Hematological disease 1.60E-05 to 1.64E- ADIP, CK-MB, CRP, HP,
02 [TAC, MMP-7, TF

Endocrine system 9.51E-05 to 3.71E- ADIP, CK-MB, CRP, HP,

disorders 02 MMP-7, TF, TG

Top canonical pathway P value Ratio

Acute phase response 2.56E-04 3/172

2UniProt accession codes of all 12 proteins with significant diagnosis-age
interactions were uploaded into Ingenuity Pathways Knowledge Base (IPKB),
and the most over-represented diseases and canonical pathways were
determined as described in the Materials and Methods section. The
abbreviation of protein names are as indicated in Table 3. The ratio for
canonical pathways represents the number of molecules from the data set
divided by the total number of molecules in that pathway.

ASD subjects. In addition, we used well-matched non-
affected siblings, allowing us to detect changes related
specifically to the manifestation of ASD as a clinical
state. Using multiplex immunoassay analysis of 208 mol-
ecules we identified significantly different age-dependent
trajectories in the levels of 12 proteins in ASD individ-
uals compared to unaffected sibling controls. The most
significant canonical pathway associated with the age-
dependent changing proteins was acute phase response,
consistent with known alterations in immunological and
inflammatory functions in ASD individuals [19,20]. A lit-
erature review by Rossignol and Frye highlighted 10
studies that reported an increase in prevalence of auto-
immune disorders in family members of children with
ASD [21], and another study has linked perturbed im-
mune function in young autism children to gastrointes-
tinal disturbances [22]. In addition, changes in other
proteins were consistent with previous reports related to
alterations in metabolism [23] and mitochondrial func-
tion [24]. Furthermore, Adams and coworkers have
comprehensively reviewed the link between autism and
metabolic disturbances in young and adult autistic pa-
tients [25]. Interestingly, another study showed that
treatment of autism patients with pioglitazone resulted
in improvement of some symptoms, with a stronger ef-
fect in younger patients [26]. This is the first report
showing that changes in these molecules occur in an
age-dependent manner in ASD individuals. In addition,
our findings suggest that pubertal status may be an im-
portant factor to take into consideration after identifying
opposing directional changes in the oldest and youngest
age groups in ASD compared to unaffected individuals.
It is likely that the significantly different trajectories in
the inflammation- and metabolism-related molecules
with age in ASD are linked at a fundamental level [27].
For example, C-reactive protein and haptoglobin, which
both increased with age in the ASD subjects, are compo-
nents of the acute phase response, although these same
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proteins have also been used as biomarkers for immune
disorders and metabolic syndrome [28,29]. We also
found increased levels of TRAIL-R3, which has been
linked to inflammation by regulation of apoptotic pro-
cesses in immune cells [30] and also to the loss of
insulin-producing pancreatic beta cells in type 1 diabetes
mellitus [31]. Likewise, we found increased levels of
matrix metalloproteinase (MMP) 7 in the higher age
group of ASD individuals, suggestive of an inflammatory
phenotype. MMPs play a pivotal role in the pathogenesis
of autoimmune and inflammatory conditions such as
arthritis, atherosclerosis, pulmonary emphysema and
endometriosis [32]. In addition, changes in the MMPs
have been linked to metabolic diseases including type 2
diabetes mellitus [33].

We also found higher levels of adiponectin with in-
creasing age in ASD individuals compared to a decrease
with age seen in the control subjects. The finding of
lower levels of adiponectin in the younger age groups of
ASD patients is consistent with the findings of Shimuzu
et al., which showed decreased levels of this protein in
ASD subjects compared to controls at an average age of
12 years old [34]. Adiponectin is involved in the control
of fat metabolism and insulin sensitivity. Normally, low
levels of this protein have been used as a biomarker for
oxidative stress, diabetes and a risk factor for metabolic
syndrome [35,36]. Therefore, this finding may be in con-
trast with the reported higher incidence of these condi-
tions in ASD individuals [37,38]. However, this could
also be due to the fact that most previous studies have
not accounted for any differences in age-related trajec-
tories. In line with this, we also found decreased levels
of insulin-like growth factor binding protein 5, which is
known to be involved in cell proliferation, differentiation
and apoptosis [39], in diabetes and other metabolic con-
ditions [40]. The finding that thyroglobulin levels were
increased with age in ASD individuals may have meta-
bolic links as this protein is an essential autocrine regu-
lator of physiological thyroid follicular function that
counteracts the effects of thyroid stimulating hormone
[41]. Variations in thyroglobulin are associated with sus-
ceptibility to autoimmune thyroid disease type 3, which
include Graves’ disease and Hashimoto thyroiditis [42].

Other potential markers of inflammation or immune
function that were increased with age included cancer
antigen 19-9 (CA-19-9). Although CA-19-9 has been
mainly associated with pancreatic cancer [43], it has also
been used a biomarker of pancreatic tissue damage as
seen in type 2 diabetes and other metabolic disorders
[44]. Likewise this marker is elevated in ASD individuals
who have insulin resistance [45], suggesting that the
ASD individuals in this study may become more suscep-
tible to such disorders after puberty. This is consistent
with the increased prevalence of metabolic conditions in
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young ASD individuals compared to the general public
[46]. We also found high levels of creatine kinase-MB at
younger ages, consistent with the findings of a previous
study in children with ASD [47]. However, we found that
the levels of creatine kinase decreased with age, which
suggests that progressive effects may occur in energy
metabolism or related pathways in ASD. This could be
linked to mitochondrial dysfunction and oxidative stress
that has been associated with the etiology of autism [21].

The multiplex immunoassay profiling analysis also led
to identification of decreased levels of neuropilin 1 in
young ASD individuals compared to controls. The
neuropilin protein family has been implicated in the em-
bryonic development of neural and vascular systems,
and regulation of many processes in adults, such as
angiogenesis, the vascular system and the immune re-
sponse [48]. This is in line with previous reports show-
ing effects on both of these pathways in ASD subjects
[7-10,49]. Effects on the vascular system can be reflected
clinically by an abnormal blood flow. Therefore, it is in-
teresting that neuroimaging studies have identified
changes in blood flow in and between certain brain re-
gions of individuals with ASD when tested under resting
and active conditions [50,51]. It should be noted that we
did not find any age-related changes in the levels of
BDNF as described in previous studies [12]. However,
this could be due to the fact that such changes have only
been described for individuals with ASD in the 0 to 9
years age range and the present study only considered
participants older than 4 years of age.

Conclusions

One limitation of this study was the potential bias in the
molecular class of the investigated molecules. This pro-
cedure was based on the commercial availability of a
multiplexed immunoassay platform and did not specific-
ally target proteins of other functional classes. Therefore,
it is possible that a different selection of molecules
would lead to different conclusions from those drawn in
this study. Another limiting factor was the small number
of clinical serum samples tested using the multiplex ana-
lysis. This was due to the rarity of such samples that
could be obtained using strict standard operating proce-
dures from both ASD individuals and matched sibling
controls. In addition, the samples used in this study were
obtained using matched ASD individuals and controls
sampled at a single time point. It would be more accur-
ate to repeat the study under prospective conditions in
which multiple samples are taken from the same sub-
jects over time, although this is most likely impractical
and will result in a high drop-out rate. Finally, the
current findings should be considered as preliminary as
we did not correct P values from the molecular analysis
studies for multiple hypothesis testing. However, there
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have been no previous proteomic profiling studies car-
ried out in young autism patients that have led to identi-
fication of large effects because well-controlled studies
using such well-characterized patients are rare. In con-
clusion, we have identified 12 serum proteins involved in
inflammation and metabolic dysfunction that appear to
show different trajectories in ASD individuals compared
to controls. The predominant effect appeared to be an
age-related increase in inflammation and metabolic dys-
function. Future research in this area should incorporate
the use of follow-up data from analysis of separate co-
horts to confirm these findings. The study of younger
subjects in prospective studies would provide further
insight into the role of these proteins in ASD and enable
development of more accurate, early diagnostic tests.
Also, sampling from the same individuals over time will
help to determine the true age-dependency of these
serum protein expression changes. Furthermore, associ-
ation studies that compare the protein readings with the
time course of symptoms and other read-outs, such as
those from functional imaging analyses [52], will be
helpful in increasing our understanding of the changes
which occur in ASD at different developmental stages.
We anticipate that the development and application of
biomarker test panels based on the current findings will
lead to earlier and more accurate diagnosis and could
also lead to the development of much-needed novel
therapies for individuals with these conditions.
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