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The number of subjects per variable required in linear regression analyses
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Abstract
Objectives: To determine the number of independent variables that can be included in a linear regression model.
Study Design and Setting: We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable

(SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals,
and on the accuracy of the estimated R2 of the fitted model.

Results: A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than
10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and
estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize
bias in estimating the model R2, although adjusted R2 estimates behaved well. The bias in estimating the model R2 statistic was inversely
proportional to the magnitude of the proportion of variation explained by the population regression model.

Conclusion: Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and
confidence intervals. � 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The question of how many independent predictor vari-
ables may be included in a multivariable regression model
is one that is faced by statistical analysts and applied
researchers in diverse fields of research. Overfitting of
regression models arises when a regression model
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includes more predictor variables or incorporates more an-
alytic steps (e.g., univariate prescreening of variables,
stepwise selection of variables, searching for nonlinear
transformations and statistical interactions) than are war-
ranted by the amount of data available [1e3]. A conse-
quence of overfitting a regression model is that the
model may predict poorly in subsequent subjects who
were not used for model derivation. This arises because
the systematic component of the fitted model has incorpo-
rated idiosyncrasies of the sample in which it was devel-
oped. Furthermore, the estimated R2 statistic of a linear
regression model can be artificially inflated as the number
of subjects per variable (SPV) decreases [when outcomes
are binary or time-to-event in nature, the corresponding
quantities are the effective sample size, denoting the num-
ber of observed events and the number of events per var-
iable (EPV)] [4]. Although the effects of overfitting in the
context of logistic regression or survival analysis have
been examined in greater detail, the number of subjects
required to achieve accurate estimation of regression coef-
ficients in the context of linear regression has not been
explored to the same extent.
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What is new?

Key findings
� Two subjects per variable (SPV) tends to permit

accurate estimation of regression coefficients in a
linear regression model estimated using ordinary
least squares.

� When the number of SPV is low, the adjusted R2 is
to be preferred over the conventional R2 for quan-
tifying the proportion of variance explained by the
model.

What this adds to what was known?
� Prior studies have examined the minimum number

of events per variable required for estimation of lo-
gistic regression models and Cox proportional haz-
ards regression models.

� The required number of SPV for linear regression
appears much smaller than in logistic or Cox
regression.

What is the implication and what should change
now?
� When fitting multivariable/multiple linear regres-

sion models, analysts should require a minimum
of only two SPV in the model to guarantee unbi-
ased estimation of coefficients and adjusted R2

values but higher numbers for adequate statistical
power.
The primary objective of the present study was to inves-
tigate the number of SPV required for accurate estimation
of a linear regression model. We examined estimation of
regression coefficients, confidence intervals, standard errors
of the estimated regression coefficients (i.e., whether the
estimated standard errors of the estimated regression coef-
ficients approximate the variability of the sampling distri-
bution of the estimated regression coefficients), and the
R2 of the fitted model. The article is structured as follows:
in Section 2, we provide a brief summary of previous ap-
proaches to the required sample size for reliable regression
modeling. In Section 3, we describe the design of Monte
Carlo simulations and we report the results in Section 4.
Finally, in Section 5, we summarize our results and place
them in the context of the existing literature.
2. Previous approaches to sample size for adequate
regression modeling

Green [5] used statistical power analysis to compare the
performance of different rules-of-thumb for how many
subjects were required for linear regression analysis. These
rules-of-thumb can be classified into two different classes.
The first class consists of those rules-of-thumb that specify
a fixed sample size, regardless of the number of predictor
variables in the regression model, whereas the second
class consists of rules-of-thumb that incorporate the num-
ber of SPV. In the former class, Green described a rule,
attributable to Marks, that specifies a minimum of 200
subjects for any regression analysis. In the latter class,
Green described a rule, attributable to Tabachnick and Fi-
dell, who suggested (with what Green described as some
hesitancy) that although 20 SPV would be preferable,
the minimum required SPV should be five. Another rule
attributed to Harris is that the number of subjects should
exceed the sum of 50 and the number of predictor vari-
ables. Schmidt [6] determined that, in a variety of settings,
the minimum number of SPV lies in the range of 15 to 20.
In a similar vein, Harrell [2] suggested that 10 SPV was
the minimum required sample size for linear regression
models to ensure accurate prediction in subsequent
subjects.

In the epidemiologic and clinical literature, dichoto-
mous outcomes and time-to-event outcomes that can be
subject to right censoring are more common than are
continuous outcomes [7]. Peduzzi et al. [8,9] conducted a
series of simulation studies to examine the effective sample
size that was required to allow logistic regression models
and Cox proportional hazards models to be reliably esti-
mated. Their focus was on the number of events, which de-
fines the effective sample size. For dichotomous outcomes,
the number of events (i.e., the effective sample size) was
defined to be the smaller of the number of outcomes and
the number of nonoutcomes. For survival outcomes, the
number of events was the observed number of events that
occurred during follow-up (i.e., the number of noncensored
observations). They found that if the number of EPV was at
least 10, then logistic regression models and Cox propor-
tional hazards models could be estimated accurately, with
an expected relative bias of less than 10%. In a more recent
study, Vittinghoff and McCulloch [10] found that this
requirement of 10 EPV could be relaxed in the context
of confounder adjustment, to requiring five to nine EPV.
Courvoisier et al. [11] suggested that there was not a single
value of the number of EPV that would be sufficient for all
contexts. Instead, the number of EPV would depend on the
number of predictors, the anticipated magnitude of the
regression coefficients, and the correlations between the
predictor variables. Steyerberg suggested three thresholds
for the number of EPV in the context of accurate prediction
of binary outcomes: 10 for any prediction modeling, 20
would remove the need for shrinkage of estimated regres-
sion coefficients in prespecified models, and 50 EPV would
be required to permit reliable variable selection from a set
of candidate predictors (where the number of variables is
equal to the total number of candidate variables consid-
ered) [12].
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3. Methods

We used a modification of the methods used by Peduzzi
et al. [8,9] to examine the number of events per predictor
variable when estimating logistic regression or Cox propor-
tional hazards regression models. To do so, we used a real
data set and estimated two prespecified linear regression
models using ordinary least squares. Subsets of increasing
size were then randomly drawn from the data set, and the
regression coefficients estimated in the full sample were
used to simulate a continuous outcome for each subject in
each randomly drawn data set. The prespecified linear
regression models were then estimated in each subset,
and the estimated regression coefficients were compared
with those used in simulating outcomes.
3.1. Data sources

The Enhanced Feedback for Effective Cardiac Treat-
ment (EFFECT) study was a cluster randomized trial in-
tended to assess the effect of public reporting of hospital
performance on an array of quality indicators for patients
with cardiovascular disease in Ontario, Canada [13,14].
Detailed clinical data on patients hospitalized with heart
failure between April 1, 1999, and March 31, 2001
(Phase 1), and April 1, 2004, and March 31, 2005 (Phase 2),
at 103 hospitals in Ontario, Canada, were obtained by retro-
spective chart review. Data on patient demographics, vital
signs and physical examination at presentation and at
discharge, medical history, results of laboratory tests, and
medications administered during the hospital stay were
collected. The present study was restricted to those subjects
discharged alive from hospital. Furthermore, subjects with
missing data on baseline covariates necessary to estimate
Table 1. Description of study sample and regression coefficients relating pr

Variable
Summary of distribution
[median (IQR) or N (%)]

Discharge systolic blood pressure 122 (110e140)
Admission systolic blood pressure 147 (127e170)
Discharge heart rate 76 (66e85)
Admission heart rate 93 (76e111)
Age 76 (67e83)
Female sex 3,486 (48.5)
Hypertension 4,197 (60.1)
COPD 1,216 (17.4)
Ischemic heart disease (vs. nonischemic
heart disease)

2,360 (33.8)

LVEF low 501 (7.2)
LVEF medium 1,388 (19.9)
Angiotensin-converting enzyme
inhibitor/angiotensin receptor blocker

5,742 (82.2)

Beta-blocker 3,488 (50.0)
Calcium channel antagonist 2,376 (34.0)
Digoxin 2,630 (37.7)
Diuretic 6,647 (95.2)
Vasodilators 347 (5.0)

Abbreviations: IQR, interquartile range; COPD, chronic obstructive pulm
the prespecified regression model were excluded from the
analyses, leaving 6,982 patients for analysis.

For this study, we considered two different continuous
outcome variables: systolic blood pressure at discharge
(measured in mm Hg) and heart rate discharge (measured
in beats per minute). For the regression of discharge
blood pressure, we considered twelve predictor variables:
age, sex, presence of hypertension, ischemic heart failure
(vs. nonischemic etiology), systolic blood pressure at
hospital admission, and left ventricular ejection fraction
(LVEF) [categorized as low (�20%) vs. medium (20%
to 40%) vs. high (O40%), with high being the reference
category]. We also included use of the following medica-
tions during hospital stay: angiotensin converting enzyme
inhibitors or angiotensin receptor blockers, beta-blockers,
digoxin, calcium channel antagonists, vasodilators, and
diuretics. The regression of discharge heart rate modified
the first regression model by replacing two predictor vari-
ables (systolic blood pressure at admission and history of
hypertension) with two different predictor variables (heart
rate at admission and history of chronic obstructive pul-
monary disease). Summary statistics for the continuous
outcome variable and the predictor variables are reported
in Table 1.

3.2. Simulation methods

A linear regression model, estimated using ordinary
least squares, was used to regress each continuous depen-
dent variable on the 12 predictor variables described previ-
ously. Each model was estimated in the full sample
described previously, consisting of 6,982 subjects. From
each of the two fitted regression models, we extracted the
estimated regression coefficients for each of the predictor
edictors to discharge blood pressure

Regression coefficient for
modeling discharge

systolic blood pressure

Regression coefficient
for modeling discharge

heart rate

Outcome variable
0.258

Outcome variable
0.144

0.055 �0.122
1.162 1.225
5.832

0.855
�0.470 �0.101

�6.123 1.969
�2.584 0.509
�1.802 �1.149

�0.358 �3.366
3.486 �1.286

�0.281 �1.229
�0.773 0.438
3.794 �0.855

onary disease; LVEF, left ventricular ejection fraction.
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variables and the estimate of the variance of the residual
distribution (Table 1). For each of the two regression
models, we denote the vector of estimated regression coef-
ficients and the estimated variance of the residual distribu-
tion by bfull and s2full, respectively. The R2 statistics of the
fitted models were 0.24 and 0.10, for the regression of sys-
tolic blood pressure at discharge and heart rate at discharge,
respectively. The adjusted R2 statistics of the two fitted
models were also 0.24 and 0.10, respectively. The variance
inflation factors for the predictor variables were all less
than 1.1 in each of the two regression models, indicating
that multicollinearity was not an issue. Each fitted regres-
sion model consisted of 12 predictor variables; however,
LVEF was a three-level categorical variable that required
two indicator variables for inclusion in the regression
model. Thus, the estimated model used 13 degrees of
freedom (df). The estimated regression coefficients will
serve as the true population parameters that will be used
to simulate outcomes in subsequent simulated samples.

For a given number of SPV, we sampled, with replace-
ment, from the original data set of 6,982 subjects, a sample
consisting of 13� SPV subjects (because there were 13 df in
each of the two regression models). For each subject in the
randomly selected sample, we simulated a continuous
outcome from the following model: yi|Nðxbfull; s2fullÞ. Thus,
regression coefficients estimated in the full sample (bfull)
were used as the true or population regression parameters
that described the true linear relationship between the cova-
riates and the continuous outcome. Then, in the randomly
selected sample of size 13� SPV, linear regression was used
to regress the simulated outcome variable, Y, on the 13 pre-
dictor variables. This process was repeated 1,000,000 times
per value of the number of SPV. This procedure was con-
ducted for SPV ranging from 2 to 50, in increments of 1.
This entire process was done twice. First, using the regres-
sion coefficients for the systolic blood pressure at discharge
regression model and second using the regression coeffi-
cients for the heart rate at discharge regression model.

Note that the parameters used in the data-generating pro-
cess were obtained from analyses conducted in the EFFECT
study data set, which was a cluster randomized trial. Thus, it
would be reasonable to anticipate a degree of within-hospital
correlation of outcomes and subjects’ baseline covariates.
However, the estimated regression coefficients and the esti-
mated residual variance were only used to simulate out-
comes in our data-generating process. Outcomes were
simulated for subjects in samples drawn from the EFFECT
data set in a way that simulated independent observations.
Therefore, analytic methods that assume independent obser-
vations can reasonably be applied to the simulated data sets.
3.3. Statistical analyses

For a given value of the number of SPV, in some of the
simulated samples, the fitted regression model consisted of
fewer than 13 covariates. This was due to low prevalence of
some of the dichotomous predictor variables. In some of the
randomly selected samples (particularly when the number
of SPV was low), all the sampled subjects had the same
value of one of the predictor variables. Because this vari-
able was eliminated from the fitted regression model in
the randomly selected sample, there was no regression co-
efficient associated with this predictor variable in this
randomly selected sample. When this occurred, the
randomly selected sample was discarded. Thus, some of
the subsequent analyses used fewer than the number of
randomly selected samples. We refer to the retained sam-
ples as the useable samples: samples in which the fitted
regression model consisted of 13 predictor variables. For
a given value of the number of SPV, we let N denote the
number of useable samples.

From the linear regression model fit in each randomly
selected sample, we extracted the estimated regression
coefficients for the 13 predictor variables along with the
estimated standard error of each regression coefficient.
We estimated 95% confidence intervals for each of the esti-
mated regression coefficients. In the ith randomly selected
sample, we followed the approach of Peduzzi et al. [8,9]
and determined the relative bias of the kth estimated regres-
sion coefficient as RBi;k5100� ðbestimate;k � b true;kÞ=btrue;k.
Mean relative bias for the kth regression coefficient was
determined as RBk5ð1=NÞPN

i51RBi;k, where N is the num-
ber of randomly selected samples that were useable (as
described previously). For each of the 13 predictor vari-
ables, we determined the proportion of estimated 95% con-
fidence intervals that contained the true value of the
regression parameter. To determine whether the estimated
standard errors of the regression coefficients correctly
approximated the sampling variability of the estimated
regression coefficients, we did the following for each pre-
dictor variable: first, we determined the mean standard error
of the estimated regression coefficient across the N useable
samples; second, we determined the standard deviation of
the estimated regression coefficients across the N useable
samples; third, we computed the ratio of the first quantity
to the second quantity. If the estimated standard error is
correctly approximating the sampling variability of the esti-
mated regression coefficients, then this ratio should be
close to one. Finally, we determined both the R2 and the
adjusted R2 of the fitted regression model in each of the
useable samples. We then calculated the mean R2 and the
mean adjusted R2 across the useable samples for each value
of the number of SPV. We determined the relative bias in
the estimated (adjusted) R2 by comparing this quantity to
the (adjusted) R2 of the model fit in the full sample of
6,982 subjects (R2 5 0.24 and 0.10 for two regression
models, respectively). All analyses were done separately
for the two sets of simulations. The first set of simulations
were those based on the regression of systolic blood pres-
sure at discharge regression model, whereas the second
set of simulations were those based on the regression of
heart rate at discharge.



Fig. 1. Mean relative bias in estimating regression coefficients. (For interpretation of references to color in this figure, the reader is referred to the
web version of this article.)
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4. Results

When the simulations were based on discharge blood
pressure being the outcome variable, the percentage of
simulated samples that were not useable were 56%, 31%,
16%, 8%, and 4% when the number of SPV were equal
to 2, 3, 4, 5, and 6, respectively. Once the number of
SPV was at least 25, then all the 1,000,000 samples were
useable. Comparable numbers were observed when the
simulations were based on discharge heart rate as the
outcome variable.

The relationship between mean relative bias and the
number of SPV is reported in Fig. 1. The left panel de-
scribes results for the simulations based on the regression
of systolic blood pressure at discharge, whereas the right
panel describes the results for the simulations based on
the regression of heart rate at discharge. On each panel,
we have superimposed two horizontal lines denoting rela-
tive bias of 610%, which we consider, admittedly arbi-
trarily, as denoting ‘‘limited bias.’’ In the first set of
simulations, based on blood pressure as the outcome vari-
able, the mean relative bias was less than 10% for all
variables and across all values of the number of SPV (range
�2.2% to 8.8%). In the second set of simulations, based on
heart rate as the outcome variable, the mean relative bias
was less than 14.3% for all values of the number of SPV
(and this value occurred for only one variable) (range
�6.4% to 14.3%). Apart from this variable, the relative bias
was less than 4% across the range of the number of SPV
considered.

The relationship between the empirical coverage rates of
95% confidence intervals and SPV is reported in Fig. 2. On
each of the two panels, we have superimposed curves de-
noting the lower and upper range of empirical coverage
rates that would not be statistically significantly different
from the advertised rate of 0.95, based on a standard
normal-theory test and the number of useable samples (note
that these superimposed curves are not horizontal due to not
all the samples being useable). The empirical coverage
rates were approximately equal to the advertised rates of
95% across all values of number of SPV. Even when the
number of SPV was very low, empirical coverage rates
were very close to 95%.



Fig. 2. Empirical coverage rates of 95% confidence intervals. (For interpretation of references to color in this figure, the reader is referred to the web
version of this article.)
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The relationship between the ratio of the mean estimated
standard error for the regression coefficient and the stan-
dard deviation of the estimated regression coefficients and
the number of SPV is described in Fig. 3. Once the number
of SPV was greater than approximately 10, this ratio tended
to be between 0.97 and 1.01, indicating that the estimated
standard error closely approximated the sampling distribu-
tion of the estimated regression coefficient. Even when the
number of SPV was very low, the ratio of these two quan-
tities was still relatively close to one.

The relationship between the mean (adjusted) R2 of the
estimated linear model and the number of SPV is described
in Fig. 4. Four curves are depicted in each of the two
panels. Two, whose scale is depicted on the left axis, denote
the mean R2 and adjusted R2 of the estimated linear model,
whereas two, whose scale is depicted on the right axis,
denote the relative bias of the R2 and adjusted R2 of esti-
mated linear model when compared with the R2 and
adjusted R2 of the model fit in the full sample (0.24 and
0.10 for the two simulation scenarios). Two horizontal lines
have been superimposed on each panel: the first denoting
the R2 in the full sample and the second denoting a relative
bias of 0%. When the number of SPV was 20, the relative
bias in the estimated R2 was 15% for the simulations based
on blood pressure and 43% for the simulations based on
heart rate. The number of SPV had to be greater than 30
before the relative bias in the estimated R2 was less than
10% in the first set of simulations, whereas the relative bias
still exceeded 10% even when the number of SPV was
equal to 50 in the second set of simulations. In contrast,
the bias in the adjusted R2 was minimal, regardless of the
number of SPV.
5. The effect of model R2 and SPV on estimating R2

The findings mentioned previously may be surprising to
analysts in medical and epidemiologic research who are
more familiar with generalized linear models and
likelihood-based inference. We conducted a second set of
simulations for two reasons. First, to confirm the low num-
ber of SPV required for accurate estimation of regression
coefficients in a different setting. Second, in the simulations
mentioned previously, the only quantity that was poorly



Fig. 3. Ratio of mean estimated standard error to standard deviation of estimated coefficients. (For interpretation of references to color in this
figure, the reader is referred to the web version of this article.)

633P.C. Austin, E.W. Steyerberg / Journal of Clinical Epidemiology 68 (2015) 627e636
estimated in the presence of a low number of SPV was the
model R2. In this second set of simulations, we sought to
examine this issue in greater depth.
5.1. Simulationsdmethods

For each subject, we simulated five predictor variables
from independent standard normal random variables:
Xij|Nð0; 1Þ; j51;.; 5; and i51;.; 5� SPV. We
simulated data sets of size 5 � SPV. For each subject, a
continuous outcome was simulated from the following
model: Yi50:2Xi1 þ 0:4Xi2 þ 0:6Xi3 þ 0:8Xi4 þ 1Xi5 þ εi,
where εi|Nð0; s2Þ. The variance of the residual distribution
(s2) was selected to induce the desired model R2. Data were
simulated with the following values for the model R2: 0.05,
0.10, 0.25, and 0.50. For each of the scenarios, 100,000
simulated data sets were generated. The number of SPV
was allowed to range from 2 to 4 in increments of one
and then from 5 to 100 in increments of five.

In each simulated data set, a linear regression model was
fit in which the continuous outcome was regressed on the
five predictor variables. The R2 and adjusted R2 statistic
of the fitted regression model was determined. The relative
bias of each regression coefficient and of each of the R2

statistics was determined, and the relative biases were aver-
aged across the 100,000 simulated data sets in each of the
four scenarios.
5.2. Simulationsdresults

Across the four scenarios defined by the four different
values of the true population R2 and across all values of
the number of SPV, the mean relative biases for the esti-
mated regression coefficients ranged from �2.5% to
4.0%. Thus, even when the number of SPV was very
low (i.e., 2 or 3), the mean relative bias for the estimated
regression coefficients was minimal. There is one panel in
Fig. 5 for each of the true values of R2 (0.05, 0.10, 0.25,
and 0.50). In each of the four scenarios, the adjusted R2

was essentially unbiased across the range of the number
of SPV. However, the relationship between the number
of SPV and the relative bias of the estimated R2 statistic



Fig. 4. R2 of estimated regression model (first set of simulations).
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depended on the magnitude of the true R2 statistic. For a
fixed value of the number of SPV, the relative bias of
the estimated R2 statistic decreased as the true population
R2 increased. Thus, a greater relative bias was observed
when the true population R2 was low, compared with when
it was high.
Fig. 5. R2 of estimated regression mo
6. Discussion

We conducted a series of simulations, based on an
empirical analysis of existing data, to determine the mini-
mum number of SPV to permit accurate estimation of linear
regression models using ordinary least squares. We
del (second set of simulations).
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observed that accurate estimation of regression coefficients
was possible even when the number of SPV was as low as
two. Furthermore, even when the number of SPV is equal to
two, the estimated standard errors of the regression coeffi-
cients will accurately estimate the sampling variability of
the estimated regression coefficients and the coverage rates
of the estimated confidence intervals for the regression co-
efficients will have coverage rates as advertised. Minimal
bias in the adjusted R2 was observed over the entire range
of number of SPV, whereas substantial bias was observed in
the conventional R2 when the number of SPV was low.
Hence, the adjusted R2 is clearly preferable over the con-
ventional R2 when quantifying the predictive ability of a
linear regression model when the number of SPV is low.

These observations differ somewhat from those of
Schmidt [6], who used simulations in the early 1970s to
examine the effect of differing numbers of SPV when esti-
mating linear regression models. The design of his simula-
tions was informed by prior empirical studies in the
psychological and education literature. In summarizing
the findings by Schmidt, Green [5] suggested that the min-
imum number of SPV ranges from 15 to 25. As our study
arrived at more liberal guidelines than those of Schmidt,
it is important to note that the two studies used very
different criteria with which to evaluate model perfor-
mance. The present study focused on accurate estimation
of regression coefficients, standard errors, and confidence
intervals. In contrast, Schmidt compared the R2 from an
estimated linear regression model with the R2 that arose
from simply summing up the predictor variables (equiva-
lent to assuming that all the regression coefficients were
equal to one). Schmidt’s thresholds on the number of
SPV reflect the criterion necessary for the R2 of the esti-
mated linear model to exceed that of the R2 obtained by
summing up the predictor variables. We believe that our
criteria for identifying the minimum number of SPV are
of greater utility when the focus is on model estimation.
Apart from the present study and that of Schmidt, there is
a lack of guidelines derived from theoretical derivations
or Monte Carlo simulations on the minimum SPV required
for estimating linear regression models.

Green [5] evaluated different rules-of-thumb for the
number of SPV in the context of statistical power analysis.
He found that many such rules resulted in samples sizes
that provided inadequate statistical power to detect mean-
ingful effect sizes. The focus of the present study was on
accuracy of estimation of a linear regression model, rather
than on statistical hypothesis testing. Statistical power anal-
ysis is an appropriate lens through which to evaluate sample
size when the focus is on detecting as statistically signifi-
cant a regression coefficient of a given magnitude. Howev-
er, not all linear regression models are estimated with the
objective of testing hypotheses about the magnitude of
certain regression coefficients. Instead, there is often an in-
terest in the magnitude of estimated regression coefficients
and/or their associated confidence intervals.
In the present study, we considered only the number of
SPV for fitting a prespecified linear regression model. We
did not consider the effect of variable reduction algorithms,
such as backward or stepwise variable selection, on the
required number of SPV. Prior research in the context of
logistic regression found that backward variable selection
resulted in increased bias compared with fitting a prespeci-
fied regression model [15]. Based on these observations,
one would anticipate that a higher threshold for the number
of SPV would be required if one were to account for data-
based variable selection. Development of thresholds for the
number of SPV that account for variable selection merits
examination in subsequent research.

The primary limitation of the present study is that our
conclusions are based on Monte Carlo simulations from a
specific setting and thus are restricted to situations that
resemble that described by our data-generating process.
Our data-generating processes were based on patients hos-
pitalized with congestive heart failure. Accordingly, the
distribution and correlation of covariates were based on that
of these patients. Thus, our simulations reflect the multivar-
iate complexity of patients with an acute medical condition.
Furthermore, our data included dichotomous variables that
occurred very frequently, dichotomous variables that
occurred for approximately half of the sample, and dichot-
omous variables that occurred rarely. In all, our simulations
may well reflect a real-world complexity that is not
observed in all studies that use Monte Carlo simulations.
It should be noted that the covariates on which our simula-
tions were based displayed a low degree of multicollinear-
ity. It is possible that divergent results would be obtained in
a setting with substantial multicollinearity. We would also
note that we replicated our observations and conclusions
in a second set of Monte Carlo simulations that were not
based on actual clinical data and thus which may be more
representative of data-generating processes in other studies
that used Monte Carlo simulations.

Our primary set of simulations found that the number of
SPV required to result in estimation of regression coeffi-
cients and standard errors that displayed minimal bias was
lower than the corresponding number of EPV required in lo-
gistic regression models or for Cox proportional hazard
regression models. This observation is, in one aspect, unsur-
prising, as pointed out by a reviewer of this article. In ordi-
nary least squared regression, closed-form expressions exist
for estimating these quantities [16]. Furthermore, these esti-
mates will be unbiased provided the model assumptions are
satisfied (as they were in our simulations). This is in contrast
to estimation methods for logistic or survival analysis, in
which likelihood-based methods are used, and methods to
approximate the likelihood and determine the parameter
values that maximize the likelihood must be used [8,9].
Thus, it was not surprising that we observed essentially un-
biased estimation of regression coefficients (and their asso-
ciated standard errors) even when the number of SPV was
very low. In contrast to these observations, we also observed
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that biased estimation of the model R2 occurred when the
number of SPV was low and that this bias was amplified
when the true population R2 was low compared with when
it was high. This biased estimation of the model R2 in the
presence of a low number of SPV is a consequence of over-
fitting, in which the model that is fit has greater complexity
than is permitted by the available data. When overfitting has
occurred, the systematic component of the fitted model has
incorporated idiosyncrasies of the sample in which it was
estimated. This results in the fitted model appearing to
explain a greater proportion of the variation than is ex-
plained by the population model. Our findings suggest that
although estimation of regression coefficients are relatively
unaffected by the number of SPV, the estimation of the
model R2 is susceptible to a low number of SPV.

In summary, prior research in the context of logistic
regression and Cox proportional hazards models suggests
that a minimum of 10 EPV is required for estimating these
regression models [8,9]. Our findings suggest that in the
context of linear regression estimated using ordinary least
squares, a minimum of only two SPV is required for
adequate estimation of regression coefficients.
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