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Abstract The aim of the study was to investigate the

relationship between serum 25(OH)D levels and axial length

(AL) and myopia in 6-year-old children. A total of 2666

children aged 6 years participating in the birth-cohort study

Generation R underwent a stepwise eye examination. First,

presenting visual acuity (VA) and AL were performed.

Second, automated cycloplegic refraction was measured if

LogMAR VA[ 0.1. Serum 25-hydroxyvitamin D

[25(OH)D] was determined from blood using liquid chro-

matography/tandem mass spectrometry. Vitamin D related

SNPs were determined with a SNP array; outdoor exposure

was assessed by questionnaire. The relationships between

25(OH)D and AL or myopia were investigated using linear

and logistic regression analysis. Average 25(OH)D con-

centration was 68.8 nmol/L (SD ± 27.5; range 4–211);

average AL 22.35 mm (SD ± 0.7; range 19.2–25.3); and

prevalence of myopia 2.3 % (n = 62). After adjustment for

covariates, 25(OH)D concentration (per 25 nmol/L) was

inversely associated with AL (b -0.043; P\ 0.01), and

after additional adjusting for time spent outdoors (b-0.038;

P\ 0.01). Associations were not different between Euro-

pean and non-European children (b -0.037 and b -0.039

respectively). Risk of myopia (per 25 nmol/L) was OR 0.65

(95 % CI 0.46–0.92). None of the 25(OH)D related SNPs

showed an association with AL or myopia. Lower 25(OH)D

concentration in serum was associated with longer AL and a

higher risk of myopia in these young children. This effect

appeared independent of outdoor exposure and may suggest

a more direct role for 25(OH)D in myopia pathogenesis.
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Abbreviations

AL Axial length

25(OH)D 25-Hydroxyvitamin D

VA Visual acuity

VDR Vitamin D receptor gene

SE Spherical equivalent

OR Odds ratio

Introduction

In the last decades, the prevalence of myopia has increased

dramatically in Asia as well as in the Western world [1–3].

Prevalence estimates are now around 2 % in 6-year-old

children with European ethnicity, and 12 % in children of

Asian descent [4, 5]. These figures rise to 50 % in young

European adults [6] and up to 96 % in students from South

Electronic supplementary material The online version of this
article (doi:10.1007/s10654-016-0128-8) contains supplementary
material, which is available to authorized users.

& Caroline C. W. Klaver

c.c.w.klaver@erasmusmc.nl

J. Willem L. Tideman

j.tideman@erasmusmc.nl

1 Department of Ophthalmology, Erasmus Medical Center,

NA2808, PO Box 5201, 3008 AE Rotterdam, The

Netherlands

2 Department of Epidemiology, Erasmus Medical Center,

Rotterdam, The Netherlands

3 Department of Paediatrics, Erasmus Medical Center,

Rotterdam, The Netherlands

4 Department of Internal Medicine, Erasmus Medical Center,

Rotterdam, The Netherlands

5 Department of Orthoptics and Optometry, Faculty of Health,

University of Applied Sciences, Utrecht, The Netherlands

123

Eur J Epidemiol (2016) 31:491–499

DOI 10.1007/s10654-016-0128-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/43288388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10654-016-0128-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10654-016-0128-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10654-016-0128-8&amp;domain=pdf


Korea [7]. Although myopic refractive error can be cor-

rected optically by glasses, contact lenses, or refractive

surgery, the longer axial length ([26 mm) increases the

life-time risk of severe visual impairment and blindness

due to retinal complications [8]. The basis of myopia is a

developmental mismatch between the optical components

of the eye [9, 10], of which excessive elongation of axial

length (AL) in early youth is the most important [11].

The need to reveal the etiology of myopia and develop

preventive measures is urgent from a public health per-

spective. Associations with genetic risk variants [12, 13]

and environmental factors such as time spent outdoors [14–

16] and education [4, 12] have been well established [17,

18]. Recent studies reported an association with serum

25-hydroxy vitamin D [25(OH)D] concentration and

myopia in adolescents [19, 20]. Whether this reflects the

association between outdoor exposure and myopia, or

whether vitamin D itself plays a role in the pathophysiol-

ogy is unclear. Studies investigating the potential relation

with vitamin D receptor (VDR) polymorphisms found no

consistent relationships [21, 22].

Serum 25(OH)D is derived from multiple sources.

Cholecalciferol (vitamin D3) is formed in the skin after

sunlight exposure, and also absorbed by the gut after

dietary intake of e.g., fatty fish. Ergocalciferol (vitamin

D2) results from intake of foods containing yeasts and

fungi [23, 24] Both precursors are hydroxylated in the liver

into 25(OH)D. Its active metabolite 1,25(OH)2D is formed

after transformation in the kidney [25] and is distributed to

other sites of the body thereafter. In non-supplemented

individuals, sunlight exposure is thought to be the main

determinant of 25(OH)D [24, 26–28]. The main function of

1,25(OH)2D is regulation of calcium and phosphate meta-

bolism in bone tissue and plasma, but it also has metabolic

functions in insulin metabolism [29, 30]. In neuronal dis-

ease such as cognitive decline and Parkinson disease [31,

32], it can be involved in immune responses [33] and in

DNA transcription and methylation [34, 35]. Whether

1,25(OH)2D has a direct effect on eye growth is currently

unclear.

The aim of this study was to investigate the association

between 25(OH)D levels, AL, and the risk of myopia in

children at age 6 years in a large population-based study.

Additionally, influence of time spent outdoors on these

relationships, and vitamin D related genotypes was studied.

Population and methods

Study population

This study was embedded in the Generation R Study, a

population-based prospective cohort study of pregnant

women and their children in Rotterdam, The Netherlands.

The complete methodology has been described elsewhere

[36, 37]. A total of 4154 children underwent an ophthal-

mologic examination by trained nurses at the research

center at age 6 years and underwent blood withdrawal for

serum measurements. The study protocol was approved by

the Medical Ethical Committee of the Erasmus Medical

Center, Rotterdam (MEC 217.595/2002/20), and written

informed consent was obtained from all participants.

Research was conducted according to the declaration of

Helsinki.

Assessment of AL and myopia

The examination included a stepwise ophthalmological

examination. Step 1 consisted of monocular visual acuity

with LogMAR based LEA-charts at 3 meter distance by

means of the ETDRS method, and ocular biometry

including AL (mm) was measured by Zeiss IOL-master

500 (Carl Zeiss MEDITEC IOL-master, Jena, Germany)

per eye; five measurements were averaged to a mean AL

[38]. Step 2 was carried out in children with a LogMAR

visual acuity of [0.1 in at least one eye and in children

wearing prescription glasses, and included performance of

automated cycloplegic refraction [Topcon auto refractor

KR8900 (Topcon, Japan)] and a complete ophthalmologic

work up by an ophthalmologist. Two drops (three in case of

dark irises) of cyclopentolate (1 %) were administered at

least 30 min before refractive error measurement. Pupil

diameter was C6 mm at time of the measurement. Spher-

ical equivalent (SE) was calculated as the sum of the full

spherical value and half of the cylindrical value in accor-

dance with standard practice, and myopia was defined as

SE B -0.5D in at least one eye. Children with LogMAR

visual acuity B0.1, no glasses or ophthalmic history were

classified as non-myopic [39, 40].

Assessment of 25(OH)D

At a median age of 6.0 y (95 % range 5.6–7.9), nonfasting

blood samples were drawn by antecubital venipuncture and

stored at -80 �C until analysis. Serum samples were col-

lected in all children on the examination day at the research

center. The measurements of 25(OH)D (nmol/L) in the

samples (110lmL serum per sample) were DEQAS certi-

fied and were conducted at the Endocrine Laboratory of the

VU University Medical Center, Amsterdam, The Nether-

lands between July 2013 and January 2014 [41]. Serum

25(OH)D was measured with the use of isotope dilution

online solid phase extraction liquid chromatography–tan-

dem mass spectrometry, the ‘gold standard’ (LC–MS/MS)

[42] using a deuterated internal standard [IS: 25(OH)D3-

d6] (Synthetica AS, Oslo, Norway). This method is highly
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sensitive and has been widely used in 25(OH)D studies [43,

44]. The limit of quantitation was 4.0 nmol/L; intra-assay

CV was \6 %, and interassay CV was \8 % for concen-

trations between 25 and 180 nmol/L.

Questionnaire

Each mother completed a questionnaire regarding the daily

life activities of their child. Time spent playing outdoors

and time spent watching television was obtained using

questions such as ‘‘how much time does your child spend

outdoors/watching television in the morning/afternoon/

evening’’. Questions were asked for weekdays and week-

end days separately, and answers were multiple choice

(never, 0–�, �–1, 1–2, 2–3, 3–4 h). Total time spent in a

week was summed and divided by seven to make an

average h/day.

Genotyping of SNPs in vitamin D pathway

Samples were genotyped using Illumina Infinium II

HumanHap610 Quad Arrays following standard manufac-

turer’s protocols. Intensity files were analyzed using the

Beadstudio Genotyping Module software v.3.2.32, and

genotype calling based on default cluster files. Any sample

displaying call rates below 97.5 %, excess of autosomal

heterozygosity (F\mean - 4SD) and mismatch between

called and phenotypic gender were excluded. Genotypes

were imputed for all polymorphic SNPs from phased

haplotypes in autosomal chromosomes using the 1000

Genomes GIANTv3 panel. SNPs located in genes involved

in the Vitamin D metabolic pathway were studied for

association with AL and presence of myopia; i.e., genes

determining serum 25(OH)D levels (GC, DHCR7,

CYP2R1), a gene involved in activation of serum 25(OH)D

(CYP27B1), the vitamin D receptor gene (VDR), and the

gene involved in deactivation of 1,25-(OH)2D in mito-

chondria (CYP24A1). A total of 33 SNPs [21, 45, 46] were

tested, and analyses were adjusted for multiple testing

using Bonferroni adjusted P value 0.05/33, P = 0.0015.

Measurement of covariates

Height and weight of children were measured by trained

nurses, and BMI (weight/height2) was calculated. Age was

determined at the time of the visit. Income was obtained

using the questionnaire and was clustered in low income

(lowest tertile) and higher income. If income at the time of

the visit was not available, income at birth was used.

Ethnicity was obtained in the questionnaire, according to

standardized criteria employed by ‘Statistics Netherlands’,

the official national statistics agency [47], concerning the

country of birth of parents and child: (1) if both parents

were born in the Netherlands, the ethnicity is Dutch; (2) if

one of the parents was born in another country than the

Netherlands, that country was considered country of birth;

(3) if both parents were born in the same country other than

the Netherlands, that country was represented; (4) if the

parents were born in different countries outside the

Netherlands, then the country of the mother was repre-

sented; and (5) if that child and both parents were born in

different countries outside the Netherlands, the country of

birth of the child was represented. Ethnicity was grouped

into European and non-European. To adjust for seasonality,

four seasons were formed on basis of the month in which

the children participated in the study (Winter: December–

February, Spring: March–May, Summer: June–August,

Autumn: September–November).

Statistical analysis

Separate analyses were performed for AL and myopia.

Differences in covariates between myopia and children

without myopia were tested using logistic regression

analysis adjusting for potentially confounding effects of

age and gender. The relation between 25(OH)D and AL

was investigated using multivariable linear regression

analysis; the relation with myopia (SE B -0.5D) was

analyzed using multivariable logistic regression analysis,

Covariates were only added to the model if they were

significantly related with the outcome as well as with

25(OH)D. Three models were tested: model 1 only adjus-

ted for age and gender; model 2 for age, gender, BMI,

ethnicity, television watching, family income, and season

visiting the research center; model 3 additionally adjusted

for time spent playing outdoors. Effect estimates were

determined per 25 nmol/L 25(OH)D. Beta’s are presented

with SE; Odds Ratios (ORs) with 95 % confidence inter-

vals (95 % CI). Statistical analyses were performed using

SPSS version 21.0 for Windows software (SPSS Inc).

Results

Demographics

A flow diagram presenting the selection of children for the

current analysis is shown in Supplement Figure 1. A total

of 2666 children were available for analysis of serum

Vitamin D and myopia; 2636 children were available for

analysis of serum 25(OH)D and AL. Demographic char-

acteristics are presented in Table 1. Children with myopia

were on average somewhat older. Adjusted for age and

height, girls had smaller AL than boys but not a lower

frequency of myopia. Myopic children had a higher BMI,

watched more television, and spent less time outdoors.
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Myopia occurred more frequently in children of non-

European ethnicity.

Serum 25(OH)D

The average serum 25(OH)D in the total study population

was lower than the optimal level of 75 nmol/L [23]. Only

37.2 % (1023) of the children reached this optimal level;

these were mostly (41.1 %) children who had been exam-

ined in summer time (Table 2). Figure 1 shows an inverse

relation between serum 25(OH)D and AL for the entire

population (P\ 0.001). Most myopes had high AL and

low serum 25(OH)D levels; only 18 % (11/62) of myopic

children reached serum levels which corresponded to the

optimal level.

Table 3 shows associations between serum 25(OH)D

and AL and myopia. Lower serum levels were associated

with higher AL and higher risks of myopia. The estimates

remained statistically significant after adjustment for

covariates. The effect between serum 25(OH)D and AL

remained [beta -0.033 (SE 0.012; P 0.02)] after exclusion

of myopic children. The association was similar in children

of European and non-European descent, but the association

with AL in the relatively small non-European group failed

to reach statistical significance.

Search for possible explanations

We hypothesized that our findings could be explained by

outdoor exposure. Figure 2 shows the positive relation

between time spent outdoors and serum 25(OH)D (Pear-

son, P =\ 0.001). Independent of serum 25(OH)D, time

spent outdoors (hr/day) was a risk factor for AL [beta

-0.034 (SE 0.012; P 0.003)]. It was not a significant risk

factor for myopia (OR 0.81; 95 % CI 0.61–1.07), possibly

due to the small number of myopes. The association

between serum 25(OH)D and AL and myopia remained

significant after adjustment for time spent outdoors

(model 3). We explored possible interactions as well, but

there was no significant interaction effect between

25(OH)D, ethnicity or income. Additionally, the associa-

tion was tested separately in the small subgroup with

missing data on time spent outdoors. The effect was

similar to the effect in the group with data.

Table 1 Demographic

characteristics of study

participants in Generation R

(N = 2666)

All

N = 2666

No myopia

N = 2604

Myopia

N = 62

P value

Characteristics

Age (years) 6.12 (0.44) 6.12 (0.44) 6.28 (0.65) 0.001

Sex, female (%) 49.1 (1308) 49.1 (1278) 48.4 (30) 0.99

BMI (kg/m2) 16.09 (1.71) 16.07 (1.69) 16.86 (2.14) 0.005

Low family income (%) 28.0 (747) 27.5 (715) 51.6 (32) \0.001

Axial length (mm) 22.35 (0.7) 22.33 (0.7) 23.14 (0.86) \0.001

Ethnicity (%)

European 75.5 (2013) 76.3 (1986) 43.5 (27) \0.001

Non-European 24.5 (653) 23.7 (618) 56.5 (35)

Activities daily life

Time spent outdoors (h/day) 1.59 (1.14) 1.60 (1.14) 1.16 (0.96) 0.003

Watching television (h/day) 1.34 (0.99) 1.33 (0.97) 1.83 (1.48) 0.001

Values are means (SD), or percentages (absolute numbers)

P values are corrected for age, gender, height in logistic regression

Table 2 Average serum

25(OH)D (nmol/L) per season

in myopic and non-myopic

children

Serum 25(OH)D concentration (nmol/L) N All No myopia Myopia

Child

All seasons 2666 68.8 (27.5) 69.2 (27.4) 50.2 (24.1)

Spring 751 60.8 (21.7) 61.3 (21.6) 42.5 (17.5)

Summer 693 84.2 (28.4) 84.4 (28.4) 69.2(22.6)

Autumn 686 72.9 (26.8) 73.1 (26.8) 63.3 (24.7)

Winter 536 54.7 (23.0) 55.3 (22.9) 36.8 (19.7)

Values are means (SD)

P values are corrected for age, gender, height. P values\0.05 are shown in bold
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To investigate a possible genetic association between

Vitamin D and eye growth, we studied genes incorporated

in the Vitamin D pathway. We considered single nucleotide

polymorphisms (SNPs) in genes that determine serum

25(OH)D levels, in genes involved in activation of serum

25(OH)D, in the vitamin D receptor gene (VDR), and in

the gene involved in deactivation of 1,25-(OH)2D3 in

mitochondria (CYP24A1) (supplemental Table 1). One

SNP (rs2245153) in the CYP24A1 gene showed a signifi-

cant association with AL (beta 0.039; P 0.04) and myopia

(OR 1.55; 95 % CI 1.04–2.31), 2 SNPs in CYP24A1

(rs4809959 beta 0.032; P 0.04 and rs3787557 beta 0.046;

P 0.04) and one in the VDR (rs11568820 beta -0.042;

P 0.03) only showed a significant association with axial

length. P values were all insignificant after adjustment for

multiple testing.

Discussion

In this cohort study of young children, we found a sig-

nificant association between serum 25(OH)D levels, AL

and myopia. In this study children with lower serum

levels of 25(OH)D had longer AL, and those with higher

25(OH)D had a lower risk of myopia (OR 0.65; 95 % CI

0.46–0.92 per 25 nmol/L). The association remained sig-

nificant after adjusting for outdoor exposure, indicating

that these two closely related determinants may have

some overlapping as well as separate effects on the

development of myopia. Genetic variants in the vitamin D

pathway genes appeared not to be related: although SNPs

in the VDR and CYP24A1 genes showed some associa-

tion with AL and myopia, this did not remain after

adjustment for multiple testing.

Fig. 1 Distribution of axial length as a function of serum level of

25(OH)D in the Generation R cohort

Table 3 Multivariate regression analysis of the association between 25(OH)D and axial length and myopia in children at age 6 years

Model 1: Age and sex adjusted

model

Model 2: Multivariate model excluding

outdoor exposure

Model 3: Multivariate model including

outdoor exposure

Association P Association P Association P

N = 2636 N = 2636 N = 2636

Axial length (mm), beta (SE) of association with 25(OH)D, per 25 nmol/L

All participants -0.054 (0.012) \0.001 -0.043 (0.014) 0.002 -0.038(0.014) 0.007

European ethnicity -0.051 (0.014) \0.001 -0.043 (0.016) 0.006 -0.037 (0.016) 0.02

Non-European ethnicity -0.034 (0.027) 0.20 -0.043 (0.030) 0.16 -0.039 (0.031) 0.20

Model 1: Age and sex adjusted

model

Model 2: Multivariate model excluding

outdoor exposure

Model 3: Multivariate model including

outdoor exposure

Association P Association P Association P

N = 2666 N = 2666 N = 2666

Myopia, OR (95 % CI) of association with 25(OH)D, per 25 nmol/L

All participants 0.47 (0.35–0.62) \0.001 0.63 (0.45–0.89) 0.008 0.65 (0.46–0.92) 0.01

European ethnicity 0.61 (0.39–0.95) 0.02 0.69 (0.42–1.11) 0.13 0.71 (0.44–1.16) 0.17

Non-European ethnicity 0.56 (0.37–0.85) 0.006 0.59 (0.37–0.95) 0.03 0.61 (0.38–0.98) 0.04

The multivariate model for axial length includes adjustment for model 1 and BMI, season of blood withdrawal, ethnicity, television watching,

family income. The multivariate model for myopia includes adjustment for model 1 and BMI, ethnicity, television watching, education mother.

Outdoor exposure indicates time spent outdoors

Low serum vitamin D is associated with axial length and risk of myopia in young children 495

123



Our study had strengths and weaknesses. Assets were

the particularly large study sample, the inclusion of the

combination of measurements of AL and myopia, and the

correction for many potential confounders. The young age

of our study population was a benefit as well as a potential

drawback. It allowed for measurements of the determinant

very close to the onset of myopia, leaving less room for

confounding bias. On the other hand, it hampered the study

of large effects as most children did not develop excessive

eye growth yet. There were other drawbacks. We per-

formed cycloplegia only in children with a diminished

visual acuity. Reports show that our cut off value of Log-

MAR VA of [0.1 had a 97.8 % sensitivity to diagnose

myopia [39, 40]. We therefore think that our approach did

not substantially affect the number of myopes in our study,

nor biased the observed associations. Finally, as the cor-

relation between serum 25(OH)D level and time playing

outdoors was relatively low in our study, our questionnaire

may not have fully assessed all time spent outdoors. Not all

participants filled in the questionnaire completely and data

on time spent outdoors was partially missing. However,

association in the sample of children without data on time

spent outdoors was similar to the association in those with

complete data.

A novel finding of our study was that the increase in AL

in children with low 25(OH)D was already present in the

physiological range of refractive error, before the onset of

myopia. This implies that Vitamin D has a continuous

effect on AL, and not only determines the development of

myopia. We confirmed that the risk of myopia decreased

with increasing 25(OH)D levels (OR 0.65) with each

25 nmol/L. The association between 25(OH)D and axial

length was also significant in the European children; but

failed to reach significance in the Non-European group due

to low statistical power. Correction for time spent outdoors

demonstrated some attenuation of the association, but did

not explain it entirely. Whether this is due to residual

confounding of time spent outdoors or whether Vitamin D

is truly causally related with AL and myopia remains an

open question. The evidence for a role of time spent out-

doors in myopia is available from cross sectional studies,

intervention and randomized clinical trials as well as from

animal studies [15, 16, 48, 51]. Vitamin D production is

triggered by UV-exposure, not by light exposure per se.

Animal studies have shown that artificial light, free of UV,

can inhibit development of myopia development [48]. This

may suggests that outdoor exposure and Vitamin D are

independent risk factors for axial elongation and myopia.

However, true causality cannot be concluded from a cross

sectional study; longitudinal and functional studies are

needed to provide more profound evidence.

A few previous studies have investigated the role of

serum 25(OH)D in myopia. A South-Korean and an Aus-

tralian study found a positive association in adolescents

and young adults [19, 49]. The ALSPAC study found an

association with development of refractive error only for

25(OH)D2, not for 25(OH)D3 in 15 years old children. A

potential drawback of this study was the measurement of

refraction without any cycloplegia [50]. Mutti et al. [21]

found an association between SNPs in the VDR gene and

myopia in a smaller study. We could not validate this

association, as none of the Vitamin D related SNPs were

significant after adjusting for multiple testing.

Various hypotheses underscribe a function of 25(OH)D

in eye growth. One theory focusses on Vitamin D in rela-

tion to dopamine. The current view is that light exposure

initiates the release of dopamine in retinal amacrine cells

[51–53]. The released dopamine appears to influence the

function of gap junctions and the size of receptive fields

[54], an important determinant of eye growth. Vitamin D is

known to influence dopamine metabolism in neurological

disorders, such as Morbus Parkinson and restless legs

syndrome [55]. In particular in Parkinson, Vitamin D

protects against cell death in the substantia nigra of the

dopamine secreting neuron [32, 56]. Increased dopamine

metabolism [57] was found in the rat brain under influence

of vitamin D. In the developing rat brain, Vitamin D was

found to upregulate glial derived neurotrophic factor

(GDNF) which increases dopamine neurons [58]. Taken

together, Vitamin D appears to strengthen the function of

dopamine or dopamine secreting cells in neuronal tissues.

Fig. 2 Distribution of serum level of 25(OH)D as a function of time

spent outdoors
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Whether this also accounts for dopamine secreted by

amacrine cells in the retina remains an intriguing question.

Another mechanism may be the regulation of DNA

transcription in genes containing vitamin D response ele-

ments (VDRE, supplemental figure 2). In this case, the

active intracellular 1,25(OH)2D binds to VDR binding

protein, enters the nucleus, and forms a complex with

retinoid X receptor in order to bind to VDRE and initiate

transcription. VDREs are located in many genes [59]. It has

been shown that retinal cells can metabolize 1,25(OH)2D;

and this active form of vitamin D may interfere with

transcription of genes that promote the myopia signaling

cascade [60].

In conclusion, we found that serum levels of 25(OH)D

were inversely related to AL, and that low levels increased

the risk of myopia. Our data suggest that this relationship

may be independent from time spent outdoors. The

potential role for 25(OH)D in myopia pathogenesis should

be further explored by intervention research and functional

studies.
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