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Abstract

penetrance of craniosynostosis.

Background: Mutations of fibroblast growth factor receptor 2 (FGFR2) account for a higher proportion of genetic
cases of craniosynostosis than any other gene, and are associated with a wide spectrum of severity of clinical
problems. Many of these mutations are highly recurrent and their associated features well documented. Crouzon
syndrome is typically caused by heterozygous missense mutations in the third immunoglobulin domain of FGFR2.

Case presentation: Here we describe two families, each segregating a different, previously unreported FGFR2
mutation of the same nucleotide, c.1083A>G and c.1083A>T, both of which encode an apparently synonymous
change at the Pro361 codon. We provide experimental evidence that these mutations affect normal FGFR2 splicing
and document the clinical consequences, which include a mild Crouzon syndrome phenotype and reduced

Conclusions: These observations add to a growing list of FGFR2 mutations that affect splicing and provide
important clinical information for genetic counselling of families affected by these specific mutations.
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Background

Craniosynostosis defines the premature fusion of the
cranial sutures and has an overall prevalence of 1 in
2100-2300 live births [1,2]. Nearly one quarter of
craniosynostosis has a genetic aetiology [3,4]; there is
considerable genetic heterogeneity and frequent phenotypic
overlap between different syndromes. Genes encoding three
members of the fibroblast growth factor receptor family
(FGFR1, FGFR2 and FGFR3) are commonly mutated in in-
dividuals with craniosynostosis. Heterozygous mutations in
FGFR2, which are frequently recurrent, account for ~28%
of genetic cases [4] and cause Crouzon [5,6], Pfeiffer [7-9],
Apert [10], Beare-Stevenson [11] and bent bone dysplasia
[12] syndromes. All involve synostosis of the coronal
and other cranial sutures, a distinctive “crouzonoid”
craniofacial appearance (comprising hypertelorism,
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exorbitism, prominent nose, and midface hypoplasia),
but differ in the presence and extent of abnormalities
of the hands and feet, other skeletal manifestations
and dermatological features [13,14].

FGEFR2, like the other members of the FGFR family,
comprises an extracellular ligand-binding region (com-
posed of three immunoglobulin-like domains), a single
transmembrane peptide and a cytoplasmic tyrosine kin-
ase domain. Mutually exclusive alternative splicing of exons
IIIb and Illc gives rise to epithelial and mesenchymal
isoforms (FGFR2b and FGFR2c) respectively [15]. These
alternative extracellular domains interact with different
repertoires of fibroblast growth factors (FGFs) to regulate
downstream processes such as proliferation, differenti-
ation and cell migration [16].

Here we describe two families heterozygous for the
same, previously unreported apparently synonymous vari-
ant in FGFR2 [p.(Pro361Pro)], although caused by differ-
ing nucleotide substitutions. The mutation carriers in
both families exhibit features of mild Crouzon syndrome,
and a minority required craniofacial surgery. We propose
that this variant is in fact pathogenic and demonstrate the
generation of abnormal ¢cDNA products resulting from
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incorrect splicing of exon Illc in the mutant allele. This
finding highlights the challenges posed in interpreting
such synonymous variants when providing genetic coun-
selling for affected families.

Case presentations

Family 1

Individual III-1 (Figure 1A) was born after a normal
pregnancy and was referred for craniofacial assessment
at two years of age because prominent eyes and a head
tilt. Her father II-1 (Figure 1B), grandmother I-1 and
two deceased uncles were all said to have a similar appear-
ance with prominent staring eyes, but had not required
any surgery. She had an occipitofrontal circumference
(OFC) of 50 cm (+1.1 SD) and was noted to have a mildly
crouzonoid appearance, with slight exorbitism and mid-
face retrusion. In view of the mild crouzonoid features,
sequencing of FGFR2 exons IIla and Illc was requested.
This demonstrated a heterozygous c.1083A>G [p.
(Pro361Pro)] variant within exon Illc, which was also
present in II-1 and I-1.

Computed tomography (CT) of the skull of individual
III-1 at the age of 2.8 years demonstrated right lambdoid
and occipitomastoid synostosis, all other major cranial
sutures being patent. Ophthalmological review identified
slightly reduced visual acuity and a latent divergent
squint with slight left hypophoria. The patient is now
four years old and has not undergone any surgical
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intervention, as she has a good overall head shape with no
major midface retrusion, is making good developmental
progress, and has no features to suggest significant intra-
cranial restriction.

Family 2

The male proband (III-2 in Figure 1C), born after an
uneventful pregnancy, was referred for craniofacial as-
sessment at the age of three months. Physical examin-
ation showed a mild cloverleaf skull with temporal
bulging and reduced OFC (36 cm; 2.2 SD), hypertelorism,
and severe exorbitism mainly at the infra-orbital level.
Skull X-ray and CT showed pansynostosis and multiple
craniolacunae, with no intracerebral anomalies.

Owing to the severe peri-orbital features and the ab-
sence of deformations of the upper and lower extrem-
ities a clinical diagnosis of Crouzon syndrome was
suggested. The patient’s mother, grandmother and several
cousins were reported to show mild facial features also
suggestive of this diagnosis.

The proband underwent fronto-orbital advancement
at the age of five months. Since the occiput was still se-
verely flattened and both lambdoid sutures were fused, oc-
cipital craniotomy and remodelling was performed at the
age of twelve months. Clumsiness and motor delay were
first noted aged 18 months; psychological testing at the
age of 12.8 years gave scores for non-verbal intelligence of
80 (SON-R) and visual-motor integration of 81. Clonidine
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Figure 1 Pedigrees and facial features of individuals with FGFR2 mutations. A, Pedigree of Family 1; solid symbols represent clinically confirmed
craniosynostosis and hatched symbols represent individuals with a similar crouzonoid appearance but without confirmed craniosynostosis. *confirmed
heterozygosity for c.1083A>G. B, Facial appearance of II-1 from Family 1 aged 33 years. C, Abbreviated pedigree of Family 2; notation of symbols as in
part Atconfirmed heterozygosity for c.1083A>T. D, Facial appearance of lll-1 from Family 2 aged 8.75 years (left) and 43 years (right).
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was prescribed due to high distractibility and he under-
went special education. During childhood, the exorbitism
increased requiring further orbital advancement and
cranial vault remodelling at the age of eight years. Several
deciduous and permanent teeth were extracted because of
Class III malocclusion and dental crowding.

Genetic testing of FGFR2 was performed, identifying the
heterozygous point mutation c.1083A>T [p.(Pro361Pro);
Figure 2A]. This variant was also present in his mother II-1.

Independently of these events, a second patient (III-1)
was referred to the same clinic at the age of ten years
with a scaphocephalic head shape. He had previously
undergone vault remodelling at the age of 16 months
owing to bicoronal synostosis. At the time of referral, he
had an occipito-frontal circumference of 48.5 cm (-2.8 SD),
hypertelorism and severe exorbitism. In addition, he had

Page 3 of 6

mild maxillary hypoplasia and both 2nd premolars of the
lower jaw were absent. Ophthalmic examination showed
myopia with divergent strabismus of the right eye associ-
ated with reduced visual acuity. A monobloc procedure
without distraction (Le Fort III and an advancement of the
forehead) was performed.

Due to the severe peri-orbital features a diagnosis of
Crouzon syndrome was suggested. Analysis of FGFR2
identified the heterozygous point mutation c.1083A>T [p.
(Pro361Pro)]. His father, grandmother and great-
grandmother had a similar craniofacial appearance. Based
on the pedigree analysis, it is evident that III-1 and III-2
are third cousins and that the FGFR2 mutation present in
these two branches is identical by descent (Figure 1C).
Apart from III-1 and III-2, none of the other affected fam-
ily members had undergone craniofacial surgery.
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Figure 2 Genomic context and consequences of FGFR2 mutations. A, Schematic representation of genomic region affected by ¢.1083A>G and
.1083A>T mutations (not to scale). llla, lllb and llic denote exons of FGFR2 encoding the 3 immunoglobulin-like domain; note that physiological
skipping of exon Illb normally occurs in blood mRNA.TM, exon encoding transmembrane domain. Sequencing of genomic DNA demonstrates
heterozygosity for c.1083A>G (II-1, Family 1) or c.1083A>T (Ill-2, Family 2) mutation at the —2 position from the end of exon llic (indicated by
dashed red line; the upper line in each trace shows the wild type sequence). Below the cartoon is shown the genomic sequence around the
cryptic donor splice site within exon llic (marked with red asterisk). B, Amplified cDNA corresponding to c.1083A>G and c.1083A>T mutations (same
individuals as for genomic analyses), demonstrates two additional smaller products (indicated with white arrows D and E), in addition to the

normal (C) product. C, In the cDNA product coincident with the wild type band (Il-1, Family 1), the mutant allele at the penultimate position of exon
lllc is not represented, indicating complete skipping of normal splicing. The consequences for splicing of the mutant allele (sequence traces illustrated
are from lll-1, Family 2) are either to activate the cryptic splice donor site within exon llic (D) or to skip exon llic completely (E).
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Materials and methods
Ethics approval for the study was obtained from NRES
Committee London - Riverside (09/H0706/20) and the
Medical Ethical Committee of the Erasmus University
Medical Center Rotterdam (MEC-2013-547). Venous blood
was collected into PAXgene Blood RNA tubes (Qiagen)
from individuals II-1 (Family 1) and III-1 (Family 2), and
RNA was extracted according to the associated protocol.
c¢DNA was synthesized using the Fermentas RevertAid
First-Strand Synthesis kit with random hexamer primers
according to the manufacturer’s instructions.

¢DNA was amplified using a forward primer in FGFR2
exon Illa (5'-TCGGAGGAGACGTAGAGTTTGTCTG
C-3") used in combination with a reverse primer in exon
11 (encoding the transmembrane (TM) domain; 5'-TGT
TACCTGTCTCCGCAGGGGGATA-3’). DNA bands were
cut out and gel purified using the Q-Spin gel extraction kit
(Geneflow). Dideoxy sequencing was carried out on the
resulting DNA products. The resulting ¢cDNA products
were numbered according to NCBI Reference Sequence:
NM_000141.4.

Results
The synonymous variants ¢.1083A>G and c.1083A>T
occur at the -2 position of the 5° (donor) splice site of
FGFR2 exon Illc (Figure 2A). The neural network splice
site predictor (http://www.fruitfly.org/seq_tools/splice.html)
generates a score for the wild type donor of 0.88, which is
reduced to 0.37 by the A>G transition, and to 0.19 by the
A>T transversion. In these circumstances, use of a cryptic
splice site (score 0.84) within exon Illc, 51 nucleotides up-
stream from the end of the exon, is expected based on ana-
lysis of a previous mutation ¢.1084+3A>G [17]. This would
lead to an in-frame deletion of 17 amino acids.
Amplification of cDNA from individuals heterozygous
for either the FGFR2 c.1083A>G or the c.1083A>T vari-
ants demonstrated the presence of two additional bands,
not present in the wild type control, at approximately
430 bp and 330 bp (Figure 2B). Sequencing of the normal
479 bp product from these individuals showed complete
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absence of the mutant allele (illustrated in Figure 2C for II-1
from Family 1), indicating that both mutations abolish use
of the normal exon IIIc donor splice site. Sequencing of
the ~430 bp product confirmed that the cryptic splice
donor within exon Illc was preferred in the mutant allele
(Figure 2D), while the ~330 bp product demonstrated
complete skipping of exon Illc (Figure 2E).

Conclusions

In humans there is a consensus sequence around the 5’
splice donor site: A, C or T, AG / gtaagt (where / indicates
the exon-intron boundary). Mutations of the consensus A
at the penultimate nucleotide of the exon have been asso-
ciated previously with loss of splicing at the donor site
[18,19]. Other mutations near the FGFR2 exon Illc splice
donor site have also been described (Table 1), all associ-
ated with a mild Crouzon phenotype. It is likely that the
p-(Ala362Ser) substitution [20] in fact exerts its pathogenic
effect via the G>T transversion at the -1 position in the
exon, rather than as a missense substitution, but this was
not tested experimentally.

In the cases reported here, the wild type splice donor
site is abolished by the A>G or A>T mutations at the
-2 position from the intron, leading to the cryptic site
being preferred. The apparently greater amount of mu-
tant cDNA products associated with the A>T mutation
appears to correlate both with the greater predicted dis-
ruption of the splice site and with the more severe
phenotype in clinically affected individuals from Family
2 compared with Family 1. However, since the A>G muta-
tion did not support use of the normal exon Illc donor
splice site (Figure 2C), other explanations for these differ-
ences are possible, such as differing proportions of cell
types in the blood samples analysed, and/or differences in
genetic background.

Utilisation of the cryptic donor would lead to an in-
frame deletion of the last 17 amino acids of exon Illc
(p.Gly345_Pro361del), including four residues that form
specific contacts with the ligand FGF2 [25]. However as
craniosynostosis-causing FGFR mutations function in a

Table 1 Summary of mutations affecting correct splicing of the FGFR2 exon llic donor site

Mutation Protein Proposed effect Experimental demonstration Reference
c.1032G>A p.(Ala344Ala)  Activation of cryptic splice site Yes Reardon et al. 1994 [6]; Li et al. 1995 [21];
Del Gatto & Breathnach 1995 [22]
c.1083A>G p.(Pro361Pro)  Loss of normal donor site with use ~ Yes This study
of alternative cryptic splice site
c.1083A>T p.(Pro361Pro)  As above Yes This study
c.1084G>T p.(Ala362Ser)  Annotated as missense but likely No Everett et al. 1999 [20]
to affect splicing
c.10844+3A>G - Loss of normal donor site with use ~ Yes Kan et al. 2004 [17]
of alternative cryptic splice site
c.1084+3A>C - Loss of normal donor site with use  No Cornejo-Roldan, Roessler & Muenke 1999 [23];

of alternative cryptic splice site

Kress et al. 2000 [24]



http://www.fruitfly.org/seq_tools/splice.html

Fenwick et al. BMC Medical Genetics 2014, 15:95
http://www.biomedcentral.com/1471-2350/15/95

constitutively active dominant manner [26], it is also likely
that in these individuals a mutant protein is formed which
is prone to forming covalently-linked dimers [26], leading
to variable features of Crouzon syndrome.

Our case reports document the range of phenotypic
consequences associated with these particular mutations.
Whilst a mild crouzonoid phenotype was generally evident,
only a minority of individuals developed overt craniosynos-
tosis requiring calvarial surgery. Orthodontic problems
may also occur but these were not fully documented in our
study. The causes of the clinical variability are unknown,
although one potential factor may be the extent of intra-
uterine fetal head constraint [27].

In conclusion, mutations near the FGFR2 exon Illc
splice sites should be carefully evaluated as to whether
they may be pathogenic, even if they are synonymous or
outside the canonical AG/GT splice acceptor/donor se-
quences. In particular, the mutations described here are
associated with variable Crouzon syndrome features and
affected families should be counselled as such.

Consent

Written informed consent was obtained from the patients
for publication of this Case report and any accompanying
images. A copy of the written consent is available for
review by the Editor of this journal.
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