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Abstrat
Ville Tapani Lahtinen, �Interating Non-Abelian Anyons in an ExatlySolvable Lattie Model�, Ph.D. thesis, University of Leeds, Marh 2010.In this thesis, we study the non-Abelian anyons that emerge as vorties in Ki-taev's honeyomb spin lattie model. By generalizing the solution of the model,we expliitly demonstrate the non-Abelian fusion rules and the braid statistis thatharaterize the anyons. This is based on showing that the presene of vorties leadsto zero modes in the spetrum. These an aquire �nite energy due to short rangevortex-vortex interations. By studying the spetral evolution as a funtion of thevortex separation, we unambigously identify the zero modes with the fusion degreesof freedom of non-Abelian anyons.To alulate the non-Abelian statistis, we show how the vortex transport an beimplemented through loal manipulation of the ouplings. This enables us to employthe eigenstates of the model to simulate a proess where a vortex winds aroundanother. The orresponding evolution of the degenerate ground state spae is givenby a Berry phase, whih under suitable onditions oinides with the statistis. Byonsidering a range of �nite size systems, we �nd a physial regime where the Berryphase gives the predited statistis of the anyoni vorties with high �delity.Finally, we study the full-vortex setor of the model and �nd that it supports apreviously undisovered topologial phase. This new phase emerges from the phasewith non-Abelian anyons due to their interations. To study the transitions betweenthe di�erent topologial phases appearing in the model, we onsider the Fermi sur-fae, whose topology aptures the harateristi long-range properties. Eah phaseiii



is found to be haraterized by a distint number of Fermi points, with the num-ber depending on distint global Hamiltonian symmetries. To study how the Fermisurfaes evolve into eah other at phase transitions, we onsider the low-energy �eldtheory that is desribed by Dira fermions. We show that phase transition driv-ing perturbations translate to a oupling to hiral gauge �elds, that always leadto Fermi point transport. By studying this transport, we obtain analytially theextended phase spae of the model and its properties.
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Chapter 1
Introdution
I started my journey into topologially ordered systems more or less by an aident.When bak in 2005 I was pondering about a possible Master's thesis topi, all Iknew was that I wanted to do something quantum information related. It turnedout that my previous supervisor did not know muh about quantum information.His latest researh onerned quantum �eld theory in a non-ommutative spae-time, whih ould hardly be further away. However, where physial theories arerelated to partiular problems, the mathematial strutures underlying them knownot of suh restritions. The same mathematis may play a role in systems whihhave nothing to do with eah other. It was suh a onnetion that set me on myway to topologially ordered systems.In non-ommutative geometry one uses a piee of mathematis known as quan-tum groups to quantize the spae-time geometry [1℄. My supervisor had enounteredthem also earlier in onnetion with disrete lattie gauge theories [2℄. Suh theorieswere known to give rise to anyons, partiles with exoti intermediate statistis be-tween bosons and fermions, that were �rst envisioned by Leinaas and Myrheim [3℄and later developed in a more physial setting by Wilzek [4, 5℄. However, due totheir limited appliability and the extreme physial onditions required, the researhof anyons had stayed on the fringes of ontemporary theoretial physis. This allhanged with the seminal paper by Alexei Kitaev, [6℄, where he was the �rst to1



Chapter 1. Introdutionpropose employing anyons for intrinsially fault-tolerant quantum omputation, i.e.performing topologial quantum omputation [7℄. This paper was oneived alreadyin 1997, but it got published in a peer-reviewed journal only in 2003. So, when mysupervisor suggested me doing the master's thesis on this topi, it was still a novel�eld with nothing but open questions.During spring 2006 when I was putting �nishing touhes on my Master's thesis[8℄, I disovered the KITP program �Topologial Phases and Quantum Computation�whih one ould follow online. The mood of the talks was enthusiasti, although the�eld seemed to lak ohesion with a number of potential approahes and tehniques,all with their own advantages and shortomings. This feeling was best aptured inan earlier talk by Mihael Freedman [9℄, whih I quoted for the opening paragraphof my Master's thesis. Now four years later, our understanding of topologial phaseshas taken signi�ant steps forward. Still, I �nd these words resonating enough withwhat is fasinating about the �eld for them to be repeated here:� . . . you don't want to do it unless there is a sweet way to do it. That issort of the way I feel about topologial quantum omputation, that theword topologial is going to make it sweet, that we are not going to takesome system and just make it more and more isolated, older and olderand fore one or two more qubits in a year out of it. We are going todo something that is beautiful and elegant and then even if we fail, wehave at least pursued the right ourse and will probably learn somethinginteresting about solid state physis on the way.�-Mihael H. Freedman, 2004, [9℄Looking at the �eld of topologial quantum omputing today, the researh is stillmore about �learning something interesting about solid state physis�, than puttingthe �nal piees together. Referring to the reent advanes in topologially orderedsystems as just �something interesting�, however, does no justie to them.On the oneptual side, a more holisti piture has been obtained. Anyon modelswith up to 4 partile types have been atalogued [10℄, the general properties of sys-2



tems giving rise to them have been lassi�ed [11, 12℄, and the onnetions betweendi�erent approahes have also been lari�ed [13�16℄. Topologial entanglement en-tropy, [17, 18℄, has been established as a robust harateristi of topologial order in�nite temperatures [19℄, and the reently introdued entanglement spetrum, [20℄,promises to provide a new haraterization. The abstrat theory of anyons has alsobeen extended to aount for anyon-anyon interations [21℄. These were disoveredto drive phase transitions between topologial phases [22�25℄, whih an also resultfrom a ondensation of anyons [26, 27℄. Also, whereas a few years ago Preskill'sleture notes, [28℄, were the standard referene for topologial quantum omputing,nowadays there exist several omprehensive review artiles [29, 30℄.The frational quantum Hall e�et has long been the primary �eld of researhin topologially ordered systems. The reent years have seen more andidate trialwave funtions being proposed [31�33℄, and our understanding of the known oneshas improved [34℄. With the proliferation of plausible andidates though, the �eldseems to be waiting for a deisive experiment to guide the theory. Steps towardsthis diretion were taken by the �rst attempt to verify the existene of non-Abeliananyons. Where the Abelian quasipartiles of the elebrated Laughlin state, [35℄, hadbeen deteted by various groups [36, 37℄, the diret detetion of non-Abelian anyons,[38℄, had remained an open question. A simple interferometri sheme was proposedin 2006 [39, 40℄, and it was over the following years translated to an experiment onthe Moore-Read state [41℄. Although non-onlusive, it gave for the �rst time strongdiret evidene for the existene of non-Abelian anyons [42℄.Similar rapid experimental advanes took plae also with reently disoveredtopologial insulators [43�45℄. Only a few years from the theoretial predition,Majorana fermions, that are essentially non-Abelian anyons, were deteted [46, 47℄.This led to a urious paradigm shift. Whereas bak in 2006 the Fibonai anyonswere the holy grail due to their universality for quantum omputing, the experi-mental aessibility suddenly made the Majorana fermions the hottest topi in the�eld [48℄. Although they are not universal for quantum omputation by themselves,3



Chapter 1. Introdutionvarious supplementary shemes have been onsidered [49, 50℄.Instead of searhing for anyons in nature, one an nowadays envision engineer-ing systems that support them in a laboratory. These usually take the form ofspin lattie models that an potentially be realized in optial latties [51�54℄ orin superonduting arrays [55℄. In the optial latties the experiments for verify-ing topologial order have been proposed [56℄, and the required steps to probe theanyons diretly have been onsidered [57�59℄. On the other hand, in Josephson-juntion arrays topologially proteted qubits have already been demonstrated [60℄,and extended enoding shemes have been proposed [61℄.Among the lattie models a pioneering role has been played by the Kitaev'shoneyomb lattie model [62℄. Its attrativeness is based in its analyti tratability aswell as it supporting both Abelian and non-Abelian topologial phases. The simpleinterations required suggest that it is also likely to be the �rst one fully realizedin an optial lattie experiment [51℄. This rihness omes with a prie though.Unlike string-net, [63℄, or quantum double models, [6℄, that involve experimentallyomplex interations, the honeyomb lattie model is not tailored to identiallysupport anyons. This means that their haraterization and ontrol is both elusiveand experimentally hard. It is this ombination of promise and hallenge that hasmade the model so fruitful for studying topologially ordered phases.Sine its introdution in 2005, the honeyomb lattie model has given birth tonumerous projets, with even some of its footnotes being developed into PRL levelpubliations. The original enthusiasm surrounding the model was based on theAbelian phase, beause it supports the so alled tori ode anyons, that are the pro-totype for topologial quantum memories [6℄. Their emergene from the honeyomblattie model has been studied in numerous works [64�66℄. Lately the interest hasshifted to the more elusive non-Abelian phase, whih supports the so alled Isinganyons. These are essentially idential to the topial Majorana fermions [62℄. Reentstudies have led to an expliit demonstration of edge states [67℄, topologial degen-eray [68℄ and entanglement entropy [20℄. A variation of the original model with4



1.1. Motivation and the struture of the thesisspontaneous time-reversal symmetry breaking, [69℄, and a generalization to higherspin systems, [70℄, have also been introdued. The non-Abelian Ising anyons havealso been the topi of my researh. The original ontributions inlude the demon-stration of the vortex interations and fusion rules [71℄, the diret alulation of thenon-Abelian statistis [72℄, as well as a disovery of a new hiral Abelian phase [73℄.1.1 Motivation and the struture of the thesisTopologial order an be probed in many ways. Although partial haraterizationan be obtained by studying, for instane, the ground state degeneray [74℄ or theentanglement entropy [17, 18℄, the ultimate unambiguous haraterization is alwaysgiven by the statistis of the anyoni exitations. Unfortunately, this is usually veryhard. The emergene of anyons is a diret onsequene of long-range entanglementin the ground state, whih an be haraterized by a topologial invariant alledthe Chern number [75℄. It was a remarkable disovery that in some systems likethe frational quantum Hall e�et, it is related to physially measurable quantities[76, 77℄. The problem of haraterization beomes the muh simpler problem ofmeasuring these urrents.However, in other systems like lattie models there is no suh physial relation.The information given by the Chern number is also limited, beause it only tellsthat a partiular topologial phase exists. It tells nothing about the mirosopiswhih in�uene the physis in any realisti system. For all pratial purposes, onealways wants to study the anyoni exitations diretly. A prime example of this isthe reent interferometri experiment on the non-Abelian frational quantum Hallstate [41℄. Although the ondutivity prediting a state with non-Abelian anyonshad been measured to high auray [78℄, no one knew beforehand whether thenon-Abelian anyons ould atually be realized in an experiment, not to even talk ofemploying them for quantum information proessing.Our aim is to perform theoretially a similar diret study on the honeyomblattie model. While the low-energy theory of the Abelian phase of the honeyomb5



Chapter 1. Introdutionlattie model an be obtained using perturbation theory, no suh presription existsfor the non-Abelian phase. For a model that is exatly solvable, one should beable to understand the non-Abelian anyons better than only through the Chernnumber, as done in the original work [62℄. This is important for both theoretial andexperimental reasons. The honeyomb lattie model is attrative for experiments,beause it involves only simple interations. The trade-o� is that anyoni exitationsare harder to identify. The mirosopis of the model an endow them with non-topologial properties, suh as interations in our ase, that an smear out theiranyoni harater. Therefore, our original motivation was to do �The Dirty Work�,i.e. to derive expliitly the de�ning properties of the anyoni vorties, and to study atwhih length sales the topologial properties emerge undressed by the mirosopiphysis. Only by understanding how the anyons arise from the mirosopi modelan one ome up with shemes to ontrol them.Moreover, understanding the system beyond the Chern number is important,beause interations between anyons have reently been disovered to lead to newtopologial phases [24, 25℄. When applied to the honeyomb lattie model, thistheory of anyon-anyon interation driven phase transitions suggested that the non-Abelian phase should give rise to a new phase with hiral Abelian anyons. Indeed, wefound a setor of the model where this happens, whih provided the �rst veri�ationof the novel theory from a mirosopi model.Our aim was to go beyond mere veri�ation. Sine the honeyomb lattie modelis now supporting three distint topologial phases, all with distint harateristis,it provided an ideal setting to study phase transitions between them. To this end weonsidered the Fermi surfae of the model as its di�erent topologies an be related todi�erent phases [79℄. It provides a suitable platform to study the phase transitionsas, unlike the Chern number, it evolves ontinuously under perturbations. Motivatedby the suess of low-energy �eld theory piture in graphene [80℄, we set out to studythe Fermi surfae evolution in terms of the low-energy theory of Dira fermions. Thehypothesis was that phase transition driving perturbations would lead to Fermi point6



1.1. Motivation and the struture of the thesistransport, whih in the low-energy theory of Dira fermions ould be understood asbeing due to a oupling to gauge �elds. By studying the transport we should thenbe able to obtain the ritial behavior analytially.The thesis is organized as follows:Chapter 2: Kitaev's Honeyomb Lattie ModelIn this hapter we review the honeyomb lattie model and the mapping to freeMajorana fermions as originally introdued by Kitaev [62℄. We generalize the so-lution to arbitrary vortex setors. The relevant onepts to analyze the spetrumare introdued and the phase spae of the vortex-free setor is reviewed. We intro-due the Chern number as a haraterization of the di�erent topologial phases andsummarize the properties of the non-Abelian Ising anyons.This hapter is partially based on the published ollaborative work [71℄. Theanalyti study of the generalized solution inluded in this thesis is by myself and Dr.Jiannis Pahos. The numeris at the end of the published paper are ontributed bythe NUI Maynooth group headed by Dr. Jiri Vala. These do not form part of thethesis.Chapter 3: Non-Abelian Fusion Rules and Braid StatistisIn this hapter we employ the solution to arbitrary vortex setors to expliitlydemonstrate the harateristi non-Abelian fusion rules and braid statistis of theIsing anyons. We introdue �rst an equivalene between the vortex setors andoupling on�gurations, whih provides a method to physially implement vortextransport. We employ this to study the spetral evolution as the separation be-tween the vorties is varied. Osillating short-range interations are disovered, andthey are argued to reveal the harateristi fusion rules. Finally, we alulate thenon-Abelian statistis as a vortex is transported around another. By onsideringvarious �nite system sizes, we show how the braid statistis an be obtained as aBerry phase orresponding to the evolution of the eigenstates during the transport7



Chapter 1. Introdutionproess.The �rst part onerning the fusion rules is based again on the published work[71℄, although the results and analysis here extend those of the published version.The seond part on the braid statistis is based on the published work by myselfand Dr. Jiannis Pahos [72℄.Chapter 4: Going Beyond: A New Chiral Topologial PhaseIn this hapter we show that the full-vortex setor of the honeyomb lattie modelsupports a new topologial phase with hiral Abelian anyons. We demonstrate thatthis new phase appears due to the anyon-anyon interations disovered in Chapter 3.These give rise to a new band struture haraterized by an emergent Hamiltoniansymmetry. The phase transitions between the di�erent topologial phases are studiedby onsidering the evolution of the Fermi surfae under perturbations. We show thatthis is equivalent to onsidering the low-energy �eld theory of Dira fermions oupledto gauge �elds. Two distint types of topologial phase transitions are identi�edbased on Hamiltonian symmetries and the extended phase spae inluding the newphase is outlined.This hapter is based on work with Dr. Jiannis Pahos, [73℄.Chapter 5: ConlusionsIn this �nal hapter we summarize and disuss our results. Their extensions as wellas future problems are onsidered.
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Chapter 2
Kitaev's Honeyomb LattieModel
In this hapter we review the honeyomb lattie model of Kitaev [62℄. In Setion2.1 we introdue the spin lattie model and onsider the important loal symmetriesthat underlie its analyti tratability. In Setion 2.2 we present the mapping tofree Majorana fermions, whih enables the model to be solved exatly. The exattreatment of arbitrary vortex setors is presented. As a veri�ation of our method,in Setion 2.3 we review the phase spae of the vortex-free setor, whih supportsboth Abelian and non-Abelian anyons. The di�erent phases are haraterized bythe Chern number, whih gives the anyoni properties of the vorties. As we areinterested here only on the non-Abelian Ising anyons, their relevant properties aresummarized. The vortex-free setor is simple enough to aommodate analyti treat-ment, but in general this is not possible. In Setion 2.4 we disuss how to treat theeigenvalues and eigenvetors when the diagonalization is performed numerially.9



Chapter 2. Kitaev's Honeyomb Lattie Model

Figure 2.1: The bi-olourable honeyomb lattie with the blak and white sitesdenoting the two triangular sublatties. (a) The links are labeled as x, y and zand oriented suh that there is always an arrow pointing from blak sites to whitesites. (b) A single plaquette p with its six sites enumerated. () The orientedsummation onvention for the next to nearest neighbour interations originatingfrom the external magneti �eld [62℄. (d) The elementary unit ell with lattie basisvetors nx and ny.2.1 The spin lattie modelThe Kitaev's honeyomb lattie model, [62℄, onsists of spin 1
2 partiles residing atthe verties of a honeyomb lattie. The spins interat aording to the Hamiltonian

H = −
∑
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∑
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k, (2.1)where Jαij are positive nearest neighbour ouplings on links (ij), and α = x, y or zdepending on the link's orientation (see Figure 2.1(a) for link labeling). The seondterm is an e�etive magneti �eld of magnitude K. The sum runs over the sitessuh that every plaquette p ontributes the six terms
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2.1. The spin lattie modelwhere the sites have been enumerated as shown in Figure 2.1(b). This term anbe obtained as a third order term in a perturbative expansion when an anisotropiweak (Zeeman) magneti �eld of the form Hh =
∑

i h · σi is applied. In this asethe ouplings are given by K ≈ hxhyhz

(Jα
ij)

2 , where one assumes all the ouplings Jαijto be roughly equal. The model approximates the one with a Zeeman term when
hα ≪ Jαij , but in general one an regard (2.1) also as an independent model.The physial motivation to add this term is that like the Zeeman term it expliitlybreaks the time-reversal invariane, while unlike the Zeeman term it preserves theexat solvability of the model. To be preise, time-reversal symmetry is desribedby a an anti-linear unitary operator T̂ , whih ats on Pauli operators as

T̂ σαi T̂
† = −σαi . (2.2)Any produt of an even number of Pauli operators with real oe�ients will respetthe time-reversal symmetry, whereas any odd produt, suh as the Zeeman or thethree-spin term, will violate it. The advantage of using a Hamiltonian with thethree-spin oupling (2.1) is that it has the important loal symmetries

[H, ŵp] = 0,

(

[ŵp, ŵp′ ] = 0,
∏

p

ŵp = 11

)

, (2.3)where ŵp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 are Hermitian plaquette operators. The produt is overall plaquettes p and this onstraint applies only when the system is de�ned on aompat manifold. These loal symmetries are at the heart of the exat solvabilityof the model. Sine ŵp are onserved quantities, the Hilbert spae L of N spins onan in�nite plane an be partitioned into 2N/2 setors Lw of dimension 2N/2, eahlabeled by a distint pattern w = {wp} of the eigenvalues wp = ±1. The physis ofeah setor an be onsidered independently and in the orresponding subspaes thethree-spin term gives the leading order ontribution from an external weak magneti�eld.
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Chapter 2. Kitaev's Honeyomb Lattie Model2.2 Mapping to free Majorana fermionsThe Hamiltonian an be brought to a quadrati form by representing the spin op-erators with Majorana fermions. Let us introdue two omplex fermioni modes
a1,i and a2,i residing at eah lattie site i. These an be written in terms of fourMajorana fermions by
ci = a1,i + a†1,i, bxi = i(a†1,i − a1,i), byi = a2,i + a†2,i, bzi = i(a†2,i − a2,i), (2.4)where now all bαi and ci anti-ommute with eah other and satisfy bα†i = bαi , c†i = ci.Let us represent the spin matries at site i in terms of the Majorana fermions by

σαi = ibαi ci. (2.5)This representation respets the algebra of the Pauli matries if one demands inaddition that the states in the physial spae |Ψ〉 ∈ L have to satisfy
Di|Ψ〉 = |Ψ〉, Di ≡ bxi b

y
i b
z
i ci, [Di, σ

α
j ] = 0. (2.6)This follows from the operator identity 11 = iσxi σ

y
i σ

z
i = bxi b

y
i b
z
i ci. Observing thatusing (2.4) we an write Di = (1 − 2a†1,ia1,i)(1 − 2a†2,ia2,i), the onstraint Di anbe interpreted as performing a projetion from the four-dimensional spae spannedby two omplex fermion modes a1 and a2 onto a two-dimensional subspae whereboth of the omplex fermioni modes are either empty or full. In this subspae ourrepresentation of the spin operators is faithful.Employing (2.5) the Hamiltonian terms beome

σαi σ
α
j = −iûijcicj and σxi σ

y
jσ

z
k = −iûikûjkDkcicj,where we have de�ned the anti-symmetri Hermitian link operators

ûij = ibαi b
α
j ,

(

ûij = −ûji, û2ij = 1, û†ij = ûij

)

, (2.7)12



2.2. Mapping to free Majorana fermionswith α = x, y, z depending on the type of link (ij). Consequently, in the physialspae L the Hamiltonian (2.1) takes the quadrati form
H =

i

4

∑

i,j

Âijcicj , Âij = 2Jij ûij + 2K
∑

k

ûikûjk. (2.8)The oriented nearest (the �rst term of Âij) and next-to-nearest (the seond term of
Âij) neighbour summations are expressed onveniently pitorially in Figures 2.1(a)and 2.1(), respetively. The antisymmetry of the ûij is taken into aount by usinga onvention suh that one assigns an overall + (−) to every term involving sites iand j when the arrow points from i to j (j to i). If two sites are not onneted byan arrow the orresponding Âij element is zero.The honeyomb lattie model as a lattie gauge theoryIn the fermionized piture the Hamiltonian aquires a new physial interpretation.One an verify that the Hamiltonian ats on the physial subspae, i.e. [H,Di] = 0,and that the link operators are loal symmetries, i.e. [H, ûij ] = 0. However, sine
{ûij ,Di} = 0, setors labeled by their eigenvalue patterns u = {uij = ±1} are notpart of the physial spae L. On the other hand, the plaquette operators (2.3), whihstill ommute with the Hamiltonian, beome the produts of the link operators andat in L,

ŵp =
∏

i,j∈p

ûij , [ŵp,Di] = 0. (2.9)These observations allow for the following lattie gauge theory interpretation. Thelink operators ûij an be thought of as lassial Z2 gauge �elds with loal gaugetransformations Di. As a single plaquette is the smallest loop that an be on-struted from the gauge �elds ûij , the gauge invariant plaquette operators ŵp anbe identi�ed with the Wilson loop operators. Consequently, the eigenvalues wp = −1an be interpreted as having a π-�ux vortex living on the plaquette p. The di�erentphysial setors of the model are then equivalent to on�gurations of vorties, thatare reated by �xing the gauge u, i.e. the pattern of the eigenvalues of the gauge13



Chapter 2. Kitaev's Honeyomb Lattie Model�elds. The eigenvalues uij = −1 an be visualized as an unphysial string passingthrough the link (ij), that either onnets two vorties or belongs to a loop. Theunphysiality follows from the onstraint (2.6), whih an be always satis�ed byperforming the projetion
|Ψw〉 = D|Ψu〉, D =

N
∏

i=1

(

11 +Di

2

)

, (2.10)where |Ψu〉 is some state belonging to a gauge setor u. Due to the anti-ommutationof Di and ûij , the physial state |Ψw〉 ∈ L will be an equal amplitude superpositionof all loops and strings ompatible with the vortex setor w.2.3 Solution for arbitrary periodi vortex on�gurationsLet us now onsider in more detail the form of Hamiltonian (2.8) for general periodivortex setors and its diagonalization using a Fourier transformation. For onve-niene, but without a�eting the physis, the honeyomb geometry is deformed byhoosing the lattie basis vetors to be nx = (1, 0) and ny = (0, 1). To study generalvortex setors, we de�ne a (Lx, Ly)-unit ell, ontaining 2LxLy sites and assume uto be �xed suh that it is translationally invariant with respet to
vx = Lxnx = (Lx, 0), vy = Lyny = (0, Ly). (2.11)This ell is illustrated in Figure 2.2. For onveniene, the labeling of site i on theoriginal honeyomb lattie an be broken down to i = (r, l, λ), where r is a vetor inbasis {vx,vy} indiating the loation of the unit ell, the vetor l = (lx, ly) in basis

{nx,ny} spei�es a partiular z-link inside the unit ell and λ = b, w denotes thesublattie the site belongs to.A Fourier transformation of the operators cλ,l,r with respet to r is given by
cλ,l,r =

√
2

∫ (Lx,Ly)BZ d2p eip·rcλ,l,p, (2.12)14



2.3. Solution for arbitrary periodi vortex on�gurations

Figure 2.2: An illustration of the generalized (Lx, Ly)-unit ell using a (5, 3)-unitell (shaded plaquettes) ontaining two vorties (blue squares). The gauge setor ugiving rise to this vortex on�guration is given, for instane, by setting uij = −1on the links rossed by the string onneting the vorties (blue dashed line), while
uij = 1 on all other links. This on�guration is periodi with respet to vx = (5, 0)and vy = (0, 3), with the pattern u repeated all aross the in�nite lattie.where the integral is over the �rst Brillouin zone orresponding to the (Lx, Ly)-unitell

∫ (Lx,Ly)BZ d2p ≡ ∫ π/Lx

−π/Lx

dpx
√

2π/Lx

∫ π/Ly

−π/Ly

dpy
√

2π/Ly
. (2.13)In the Fourier basis the Hamiltonian (2.8) is redued to the anonial form

H =
1

2

∫ (Lx,Ly)BZ d2p


cb,p

cw,p







†





hbb,p hbw,p

h†bw,p −hTbb,p













cb,p

cw,p






, (2.14)where c

†
λ,p = (c†

λ,(1,1),p
, . . . , c†

λ,(Lx,Ly),p
), and hbb,p and hbw,p are LxLy × LxLy ma-tries desribing the nearest and next-to-nearest interations, respetively.The elements of the matries hbb,p and hbw,p an be derived by onsidering all theallowed ouplings inside the unit ell. All terms desribing ouplings between sites

i and i′ belonging to the unit ell, i.e. when i = (r, l, λ) and i′ = (r, l′, λ′), followstraight from (2.8). On the other hand, when r′ = r+mvx+nvy, the orrespondingterms aquire due to Fourier transform, (2.12), the extra phases eip·(mvx+nvy) with15



Chapter 2. Kitaev's Honeyomb Lattie Model
m,n = ±1. Carrying out this analysis for arbitrary (Lx, Ly)-unit ells,one �nds thatthe non-vanishing elements of hbw,p and hwb,p = h†bw,p are given expliitly by

c
†
bhbwcw = 2i

∑(Lx,Ly)
l=(1,1) ( +ul,l Jz c†b,lcw,l

+ul,l−nx Jxe
iδ(lx−1)p·vx c†b,lcw,l−nx

+ul,l−ny Jye
iδ(ly−1)p·vy c†b,lcw,l−ny

),

(2.15)and
c
†
whwbcb = 2i

∑(Lx,Ly)
l=(1,1) ( −ul,l Jz c†w,lcb,l

−ul,l+nx Jxe
−iδ(lx−Lx)p·vx c†w,lcb,l+nx

−ul,l+ny Jye
−iδ(ly−Ly)p·vy c†w,lcb,l+ny) .

(2.16)The addition in the indies l = (lx, ly) is understood (lx mod Lx, ly mod Ly) and
δ(x) = 1 for x = 0 and δ(x) = 0 otherwise. Likewise, the diagonal bloks hbb,p and
hww,p = −hTbb,p originating from the three-spin term are given by

c
†
bhbbcb = 2iK

∑(Lx,Ly)
l=(1,1)

( +ull,l+ny
e−iδ(ly−Ly)p·vy c†b,lcb,l+ny

−ul−nx
l,l−nx+ny

eiδ(lx−1)p·vxe−iδ(ly−Ly)p·vy c†b,lcb,l−nx+ny

−ull,l+nx
e−iδ(lx−Lx)p·vx c†b,lcb,l+nx

+u
l−ny

l,l+nx−ny
e−iδ(lx−Lx)p·vxeiδ(ly−1)p·vy c†b,lcb,l+nx−ny

+ul−nx
l,l−nx

eiδ(lx−1)p·vx c†b,lcb,l−nx

−ul−ny

l,l−ny
eiδ(ly−1)p·vy c†b,lcb,l−ny

) ,

(2.17)

16



2.3. Solution for arbitrary periodi vortex on�gurationsand
c
†
whwwcw = 2iK

∑(Lx,Ly)
l=(1,1)

( −ul+ny

l,l+ny
e−iδ(ly−Ly)p·vy c†w,lcw,l+ny

+u
l+ny

l,l−nx+ny
eiδ(lx−1)p·vxe−iδ(ly−Ly)p·vy c†w,lcw,l−ny+ny

+ul+nx
l,l+nx

e−iδ(lx−Lx)p·vx c†w,lcw,l+nx
,

−ul+nx
l,l+nx−ny

e−iδ(lx−Lx)p·vxeiδ(ly−1)p·vy c†w,lcw,l+nx−ny

−ull,l−nx
eiδ(lx−1)p·vx c†w,lcw,l−nx

+ull,l−ny
eiδ(ly−1)p·vy c†w,lcw,l−ny

) ,

(2.18)
where we have used the short-hand notation ujk,l ≡ uk,juj,l.These expressions give the most general Hamiltonian for periodi vortex setors,that an be studied at the thermodynamial limit. After hoosing a partiular vortexsetor, (2.9), by �xing the uij = ±1 on all links inside the unit ell, the Hamiltonianan be readily diagonalized. This gives in general

H =

∫ (Lx,Ly)BZ d2pLxLy
∑

i=1

Ei,pb
†
i,pbi,p −

LxLy
∑

i=1

Ei,p
2



 , (2.19)where bi,p are LxLy fermioni mode operators and Ei,p are the positive eigenvaluesorresponding to eah momentum mode. In an n-vortex setor, the ground state
|Ψnv

0 〉 with energy Env0 , and the lowest lying exited state |Ψnv
i,p0

〉 on the ith bandwith energy Envi are given by
|Ψnv

0 〉 = D

LxLy
∏

i=1

∏

−π≤px,py≤π

bi,p|φ〉, Env0 = −
∫ (Lx,Ly)BZ dp LxLy

∑

i=1

Ei,p
2
, (2.20)and

|Ψnv
i,p0

〉 = Db†i,p0
|Ψnv

0 〉, Envi = ∆nv
i + Env0 , (2.21)respetively. Here D performs the gauge symmetrization (2.10), |φ〉 is an arbitraryreferene state and ∆nv

i is the energy gap with respet to the ground state de�ned17



Chapter 2. Kitaev's Honeyomb Lattie Modelby ∆nv
i ≡ minpE

nv
i,p.2.4 The phase diagram in the absene of vortiesThe phase diagram in the absene of vorties has been studied in the original work[62℄. In this setion we reprodue these results using our more general Hamiltonian(2.14), and outline the previously known phase spae by studying the behavior ofthe energy gaps. Further, we introdue the Chern number, whih an be used toharaterize the di�erent topologially ordered phases appearing in the honeyomblattie model.The vortex-free on�guration (wp = 1 on all plaquettes) an be reated, forinstane, by setting uij = 1 on all links in (2.15)-(2.18). Let us also assume that allthe ouplings Jx, Jy and Jz have uniform values on all x-, y- and z-links, respetively.The resulting system is periodi with respet to eah z-link. Choosing then simplya (1, 1)-unit ell gives a 2× 2 Hamiltonian, (2.14), with

hbw,p = 2i
(

Jz + Jxe
ipx + Jye

ipy
)

= if(p),

hbb,p = 4K (sin(px − py) + sin(py)− sin(px)) = g(p).The Hamiltonian is diagonal, (2.19), in the basis of the fermioni operators
bp = Λp

(

c2,p + i
Ep − gp
fp

c1,p

)

, Λ2
p =

|fp|2
(Ep + gp)2 + |fp|2

, (2.22)where the eigenvalues ±Ep are given by
Ep =

√

|fp|2 + g2p, (2.23)
|fp|2 = 4(J2

x + J2
y + J2

z + 2 (JxJz cos px + JxJy cos(px − py) + JyJz cos py)),

g2p = 16K2 (sin py − sin px + sin(px − py))
2 .These expressions agree with [62℄.There it was shown that in the vortex-free setor the honeyomb lattie model18



2.4. The phase diagram in the absene of vorties
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(a) (b)Figure 2.3: (a) An illustration of the vortex-free setor phase diagram with fourdistint phases Ax, Ay, Az and B. The phases Aα ours when the ouplings of type
Jα ≫ Jβ , Jγ and the phase B when they all roughly equal. The boundaries betweenthe phases Aα and B are given by Jα = Jβ + Jγ . The Aα phases support Abeliantori ode anyons (ν = 0), whereas for K > 0 the B phase supports non-AbelianIsing anyons (ν = −1). (b) The behavior of the energy gap ∆0v aross the transitionbetween Az and B phases. Here J = Jx = Jy when Jz = 1. The phase Az is alwaysgapped with ∆0v depending only on J , whereas the B phase is only gapped when
K > 0. The phase transition ours for all K at J = 1

2 where the gap vanishes andthe Chern number hanges.exhibits four distint phases denoted by Ax, Ay, Az and B. These appear for di�erentvalues of the ouplings Jα suh that the system is in the B-phase when one violatesall the inequalities
|Jy|+ |Jz| ≤ |Jx|, |Jx|+ |Jz| ≤ |Jy|, |Jx|+ |Jy| ≤ |Jz|. (2.24)The phase boundaries are given by the equalities and the phases Aα our when only

|Jβ | + |Jγ | ≤ |Jα| holds and the other two inequalities are violated. The resultingphase spae is illustrated in Figure 2.3(a).This analysis of the phase spae relies on the behavior of the energy gap, i.e. theenergy of the lowest lying state above the ground state,
∆0v = min

p
Ep, (2.25)as a funtion of the parameters Jα and K. Stable topologial phases exist only for19



Chapter 2. Kitaev's Honeyomb Lattie Modela non-vanishing gap, with points of vanishing gap signaling phase transitions. Weplot in Figure 2.3(b) the behavior of the gap ∆0v as alulated from (2.23). The Aαphases are always gapped, whereas the B-phase is gapped only when K 6= 0. In the�rst the gap depends only on Jα whereas in the latter it depends on both Jα and Kwith ∆0v = 6
√
3K when Jx = Jy = Jz = 1. The gap vanishes always at Jz = Jx+Jyas expeted from (2.24). The di�erent behavior of the gap is due to topologiallydistint Fermi surfaes in the phases Aα and B. We will return to disuss their rolein the haraterization of the phases in Chapter 4.2.4.1 The Chern numberThe study of the energy gap reveals the phase spae struture, but does not tellanything about the properties of the phases. To probe whether they are topologi-ally ordered, one an study whether the ground state degeneray depends on thetopology of the spae [74℄, whether the entanglement entropy has a onstant term[17, 18℄, or ultimately study diretly the statistis of the exitations [94℄. These allan be onneted to the properties of the ground state, whih an be aptured byalulating by the so alled spetral Chern number ν. It is a topologial invariantwhose importane to topologially ordered phases was �rst appreiated in the on-text of quantum Hall e�et [75, 76℄. Later it was shown to haraterize also moregeneral systems [77, 82, 83℄.The Chern number an take only integer values, eah orresponding to a di�erentphase with di�erent anyoni properties. In a non-interating gapped free-fermionsystem with broken time-reversal symmetry, it gives the following information onthe statistial properties of the vorties [83℄:

• ν = 0: non-hiral Abelian anyons (e.g. ν = 0 for the tori ode)
• ν even: hiral Abelian anyons
• ν odd: hiral non-Abelian anyons (e.g. ν = ±1 for the Ising anyons)In the honeyomb lattie model, there exists altogether eight di�erent anyon models,20



2.4. The phase diagram in the absene of vortiesthat orrespond to di�erent ν's. These have been atalogued in [62℄.The Chern number is of partiular importane in quantum Hall systems, whereits value is diretly proportional to the physially measurable o�-diagonal ondu-tivity [76℄. In the honeyomb lattie model there is no diret physial analogue, butit is still useful in the theoretial haraterization of the di�erent phases. It an beexpliitly alulated from the eigenstates using the de�nition [84℄
ν =

1

2πi

∫

BZ
d2p (∂pxAy,p − ∂pyAx,p

)

, (2.26)where Aα,p = 〈Ψ0,p|∂pα |Ψ0,p〉 and |Ψ0,p〉 is a momentum omponent of the groundstate (2.20). Mathematially, the Chern number lassi�es the U(LxLy) �bre bundleabove the Brillouin zone formed by the LxLy oupied modes belonging to theground state (2.20).For the vortex-free ase |Ψ0,p〉 = |ψ−
1,p〉 with the analyti expressions (2.22) andthe Chern number an be evaluated analytially. However, in general the analytiexpressions are not available and the Chern number must be evaluated numerially.A partiularly useful form is given in [85℄. Using an n × n mesh for the Brillouinzone, the Chern number (2.26) an be written as

ν =
1

2π

n−1
∑

i,j=1

〈Ψi,j |Ψi+1,j〉〈Ψi+1,j |Ψi+1,j+1〉〈Ψi+1,j+1|Ψi,j+1〉〈Ψi,j+1|Ψi,j〉, (2.27)where |Ψi,j〉 = |Ψ
0,(pix,p

j
y)
〉 with piα = − π

Lα
+ 2π

Lα

i−1
n−1 . This form is partiularlyonvenient for alulations involving sparse vortex setors. Evaluating the Chernnumber for the four phases shown in Figure 2.3(a), we obtain ν = 0 for Ax, Ay and

Az, whih means that the vorties behave as non-hiral Abelian tori ode anyons.On the other hand, for the phase B one obtains ν = ±1 (the sign depends on thesign of K), whih orresponds to hiral non-Abelian Ising anyons.It was also shown in [85℄ that the Chern number is robust with respet to thedisretization of the momentum spae, i.e. to the mesh size n. This means thephases haraterized by it should be insensitive to the system size, with topologial21



Chapter 2. Kitaev's Honeyomb Lattie Modelorder persisting down to small systems. This is a point we will be hallenging from aphysial point of view in this thesis. Although the Chern number an indeed hangeonly at the phase transitions, we will show that system size does a�et signi�antlythe physis. Without induing a phase transition, these mirosopi e�ets a�etthe exitation spetrum and its properties, depriving it from the expeted anyonibehavior.2.4.2 Ising anyonsBy de�nition, anyons are partiles obeying statistis that is neither bosoni orfermioni. This exoti statistis leads to the anyons being labeled by some on-served topologial quantum numbers. Usually when talking about the low-energytheories of topologially ordered phases, one talks in general about anyon models.These refer to a set of all partiles appearing in the system that arry onservedquantum numbers. An anyon model desribes the onservation of these quantumnumbers as well as the mutual statistis of the partiles, some whih are anyoniand some other bosoni or fermioni. Mathematially these onepts are best uni�edthrough ategory theory [62℄. In this thesis we are interested in the so alled non-Abelian Ising anyons that appear in the B-phase of the honeyomb lattie model.Their de�ning properties as an anyon model are summarized below.The Ising anyon model has three types of partiles types: 1 (vauum), ψ (fermion)and σ (non-Abelian anyon). These labels an be thought of as the topologial quan-tum numbers. The fusion rules, i.e. onservation laws for the quantum numbers,are given by
ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ, (2.28)with the vauum fusing trivially with the other partile types. The fusion rule forthe σ's implies that there is a degree of freedom assoiated with the di�erent waysa number of σ's an fuse. This is a unique property of non-Abelian anyons. Asthe global quantum numbers have to be always onserved, this degree of freedomappears when there is more than one way of fusing n σ partiles to a given partile22



2.4. The phase diagram in the absene of vorties
a. To illustrate this, onsider four σ partiles, for whih the repeated assoiativeappliation of (2.28) gives

σ × σ × σ × σ = 1 + 1 + ψ + ψ. (2.29)This means that there are two distint ways the four σ's an fuse to either thevauum 1 or to the fermion ψ.These fusion degrees of freedom, or fusion hannels, an be enoded in the fusionspae Vσ4 . Due to the two possible global setors 1 and ψ, it breaks down to twoorthogonal two-dimensional subspaes, Vσ4 = V 1
σ4 ⊕ V ψ

σ4
. The bases in V a

σ4 are givenby the states assoiated with di�erent intermediate fusion outomes with respet tosome hosen fusion ordering. For future purposes, let us onsider V ψ
σ4

and hoosea pair-wise fusion hannel basis, where the basis states are assoiated with thefollowing proesses:
|Ψ1〉 : (σ × σ)1 × (σ × σ)2 → ψ × 1 = ψ,

|Ψ2〉 : (σ × σ)1 × (σ × σ)2 → 1× ψ = ψ.
(2.30)These are illustrated diagrammatially in Figure 2.4(a). The state |Ψ1〉 (|Ψ2〉) or-responds to pair 1 (2) fusing to a ψ, with the other fusing to vauum. In both asesthe global setor is ψ.Di�erent hoies for the fusion order of the σ partiles orrespond to di�erentbases. As there are only a �nite number of fusion order hoies for a �nite number ofpartiles, all the bases are related by so alled F -moves, whose ation is illustratedin Figure 2.4(b). These are a �nite set of unitaries that at in the fusion spae. Theyare obtained by solving a set equations known as pentagon equations [62℄. For thefusion rules (2.28), the non-trivial F -moves ating in V ψ

σ4
are given by

F ≡ Fψ
σ4

=
1√
2







1 1

1 −1






, F̄ ≡ Fψσψσ = F σψσψ = −11, (2.31)23
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(a)

(b)
()Figure 2.4: Diagrammati representations of the topologial properties of anyons.The diagrams represent world lines of the partiles with time �owing upwards. (a)The basis in V ψ

σ4
is hosen suh that the state |ψi〉 orresponds to pair i fusing toa ψ. (b) Basis hanges are implemented by fusing the anyons in di�erent orders.The F -move F σσ3 ≡ Fψ

σ4
gives the expansion of the state in the new basis in termsof the original basis states. () When two σ's are exhanged lokwise, the braidmatries Raσσ assign di�erent phases depending on the fusion outome a. In thefusion spae V ψ

σ4
it ats as a diagonal matrix whenever the σ's belonging to a samepair are exhanged.

24



2.4. The phase diagram in the absene of vortieswhih both are given in the basis {|Ψ1〉, |Ψ2〉} (2.30).
When the σ partiles are exhanged, there an be non-trivial evolution withinthe fusion spae V ψ

σ4
. This proess is desribed by a braid operator, or an R-move,whose ation is illustrated in Figure 2.4(). Possible braid operators onsistent withthe F -moves an be obtained by solving the so alled hexagon equations, whihmight in general have several solutions. When the σ's belonging to the same pairare exhanged, the solution orresponding to the Ising anyons is given by

R = e−i
π
8







1 0

0 i






, (2.32)whih desribes states orresponding to di�erent fusion hannels aquiring di�erentphases. When the σ anyons from di�erent pairs are exhanged or transported aroundthe eah, the evolution is more ompliated, but it an always be onstruted as somesequene of only the F -moves, (2.31), and the R-moves, (2.32). We will onsidersuh evolutions in Setion 3.3 where the harateristi non-Abelian statistis areevaluated from the eigenstates of the model.

To summarize, at a purely mathematial level an anyon model is spei�ed byits partile ontent ({1, ψ, σ}), the fusion rules (2.28) and the F -, (2.31), and R-moves, (2.32). Any evolution in a pure topologial phase an be understood only interms of these disrete objets. In the presene of non-Abelian anyons, one expetsthe fusion spae to be manifest as a global ground state degeneray. The statistisorrespond to the evolution of the ground state spae under exhanges of the anyons.However, in real physial systems this is rarely the ase due to the mirosopis ofthe model. In Chapter 3 we will study to what degree and at what length sales dothe harateristis of Ising anyons appear for the vorties in the honeyomb lattiemodel. 25



Chapter 2. Kitaev's Honeyomb Lattie Model2.5 Numerial diagonalizationTo study the physis of the vorties, we need to employ large systems with sparsevortex setors. As the size of the Hamiltonian (2.14) grows polynomially with the sizeof the unit ell, analytial solution an be readily obtained only for the limiting asesof vortex-free [62℄ or full-vortex on�guration [71, 86℄. In general, the diagonalizationof the Hamiltonian (2.14) with the omponents (2.15)-(2.18) has to be performednumerially. This orresponds still to exat treatment of the model. No numerialapproximations are involved exept for the disretization of the Brillouin zone.In general, the diagonalization amounts to �nding the eigenvalues Ei,p and eigen-vetors |ψ±
i,p〉 that satisfy

Hp|ψ±
i,p〉 = ±Ei,p|ψ±

i,p〉, (2.33)where Hp is the 2LxLy × 2LxLy matrix with omponents hbb and hbw in (2.14).The normalized omplex valued vetors |ψ+
i,p〉 (|ψ−

i,p〉) represent the fermioni onepartile modes b†i,p (bi,p), whereas the eigenvalues Ei,p oinide with those in (2.19).We all (2.33) the mode spetrum of the system.Apart from the eigenvalues Ei,p that an be obtained diretly from the modespetrum, we will also need the eigenstates orresponding to the ground state, (2.20),and various exited states, (2.21). As the Hamiltonian is diagonal in a basis of freefermions, these an be onstruted as Slater determinants of the vetors |ψ−
i 〉 [87℄,whih represent the anti-ommutation properties of the operators bi. Assumingthe Brillouin zone to be disretized using a n × n mesh, the ground state (2.20) isrepresented by

|Ψ0〉 = D
∑

{qi}∈BZ LxLy
∑

k,...,l=1

ε
LxLy

k,...,l
√

LxLy!

εn
2

q1,...,qn2√
n2!

|ψ−
k,q1

〉 ⊗ · · · ⊗ |ψ−
l,qn2

〉, (2.34)where εai,j,...,k is the fully anti-symmetri tensors of rank a. Choosing the referenestate in (2.20) suh that b†i,p|φ〉 = 0, the exited states (2.21) an be similarly26



2.6. Summaryrepresented by
|Ψi,p0

〉 = D
∑

{qi}∈BZ
{qi}6=p0

LxLy
∑

k,...,l=1

ε
LxLy

k,...,l
√

(LxLy)!

εn
2−1

q1,...,qn2−1
√

(n2 − 1)!
|ψ−
k,q1

〉 ⊗ · · · ⊗ |ψ−
l,qn2−1

〉. (2.35)In order to perform the gauge symmetrization D numerially, one should di-agonalize the Hamiltonian Hp for all equivalent gauges u under the loal gaugetransforms (2.6) and form the orresponding linear ombinations manually. For ourpurposes this turns out not to be neessary, beause all quantities of physial interestan be expressed in terms of inner produts. Sine 〈Ψ|DkDl|Ψ〉 = δkl, whih followsfrom {Di, ûij} = 0, only the states in the same gauge an have overlap. Hene, allthe inner produts an be alulated using a single gauge hoie u.The fat one never needs to expliitly onstrut the representations of the statesis also a ruial tehnial point. The number of elements in (2.34) and (2.35) growsexponentially with the system size and hene they are in general too large to bestored in a omputer.2.6 SummaryIn this �rst hapter we have reviewed the Kitaev's honeyomb lattie model andits diagonalization through the mapping to free Majorana fermions. At the heartof the exat solvability is the breaking of the full Hilbert spae in the setors la-beled by patterns of vorties. Previously only the limiting vortex-free setor hadbeen studied. We generalized the solution of the model to arbitrary vortex setorswhere the Hamiltonian has the omponents (2.15)-(2.18). In general these systemsare too ompliated to aommodate analyti treatment, but they an be studiednumerially without employing any approximation methods.This generalization of the solution allow us to go beyond the previously studiedvortex-free setor. We are now able to onsider large systems with only a few vortiesand thereby diretly study how they in�uene the spetrum. In partiular, our aimis to derive diretly the properties of the Ising anyons that should appear as the27



Chapter 2. Kitaev's Honeyomb Lattie Modellow-energy vortex exitations in the B-phase. This will be the topi of Chapter 3.The full-vortex setor has been studied for K = 0 in [86℄. Our generalizedsolution allows us to onsider also the K > 0 ase, whih turns out to have dramationsequenes for B-phase. It will turn out to support a new hiral Abelian phase,whih we will study in detail in Chapter 4.

28



Chapter 3
Non-Abelian Fusion Rules andBraid Statistis
In this hapter we do �The Dirty Work�, i.e. employ the solutions of sparse vortexsetors to expliitly demonstrate the harateristi non-Abelian fusion rules andbraid statistis of the Ising anyons. To this end, we �rst introdue in Setion 3.1an equivalene between the gauge setors and the oupling on�gurations. Thisenables a theoretial interpolation between vortex setors and provides a physialprotool for vortex transport. In Setion 3.2 we study the spetral evolution as theseparation between vorties is varied. The vorties are found to introdue zero modesinto the spetrum, whih, however, an aquire �nite energy when the vorties arebrought near eah other. We argue that the vorties are interating and that theseinterations reveal the harateristi fusion rules of Ising anyons. By studying theinterations we obtain a harateristi length sale for the pure topologial phase. InSetion 3.3 we alulate the non-Abelian statistis as a vortex is transported aroundanother. By onsidering various �nite system sizes, we show how the braid statistisan be obtained as a Berry phase orresponding to the evolution of the eigenstatesduring the transport proess.As we are interested only on the properties of the non-Abelian Ising anyons, weset |Jx| = |Jy| = |Jz | = 1 on all links for the purposes of this hapter.29



Chapter 3. Non-Abelian Fusion Rules and Braid Statistis
(a) (b)Figure 3.1: The equivalene between (a) the oupling on�gurations J and (b) vortexon�gurations w. Fixing the gauge by setting uij = 1 on all links, but tuning theouplings suh that Jij = 1 on all solid links and Jij = −1 on all dashed links isequivalent to reating the vortex on�guration shown in (b).3.1 Gauge/oupling on�guration equivalene and vor-tex transportAs desribed in the previous hapter, vortex on�gurations w = {wp} are reatedthrough (2.9) by �xing the gauge on�guration u = {uij}. In order to manipulate w,one should thus manipulate u loally. Even though u is not by itself gauge invariantand thus not a physial parameter of the model, we an e�etively manipulate itthrough the oupling on�gurations J = {Jij}. As an be seen from (2.8), uijappears always uniquely paired with a loal oupling Jij . Therefore, as uij = −1with Jij > 0 is equivalent to uij = 1 with Jij < 0, we an regard the value of thegauge �eld just as the sign of the ouplings,

uij = sign(Jij), ⇒ Jij → −Jij ⇔ uij → −uij. (3.1)Stritly speaking one should also imprint these signs on the loal values of K. How-ever, when the term approximates an external magneti �eld, i.e. when K ≪ Jij ,ontrolling the signs of Jij is su�ient. Therefore, assuming that the system has beenprepared in the ground state belonging to the vortex-free setor [88℄, we an treatthe gauge setors, and thereby the vortex setors, just as some non-homogenous ou-pling on�gurations J with varying overall signs. From now on, we adopt this dual30



3.1. Gauge/oupling on�guration equivalene and vortex transport
(a) (b)
() (d)Figure 3.2: A protool for vortex transport in s steps through loal oupling manip-ulation. (a) Initially the oupling on�guration is hosen suh that Jij = −1 on thelinks rossed by the dashed line, while Jij = 1 on all other links. This orrespondsto a vortex on the left plaquette. (b) Consider hanging the value oupling on thelink in the middle from Jij = 1 to Jij = −1 in S steps of size 2

S . At step s its valueis Jsij = 1 − 2s
S , whih we interpret as the vortex oupying a loation away fromthe plaquette enter. () When Jsij = 0, the Wilson loop operator is de�ned only onthe omposite plaquette. As the vortex oupies both plaquettes simultaneously, weinterpret it as being right in the middle. (d) Finally, as Jsij → −1, the vortex movessmoothly to the plaquette on the right.perspetive, whih allows to relate the manipulation of vorties to the manipulationof physially tunable parameters. We will still be referring to gauge and vortex se-tors, but these terms should be understood as referring to oupling on�gurationsthat give rise to them.To study the physis of the vorties, we de�ne a sparse vortex on�guration byhoosing a large (Lx, Ly)-unit ell and onsider the system in the vortex-free setorby setting uij = 1 on all links. Consider then tuning the oupling on�guration suhthat Jz = −1 on the d �rst z-links of the �rst row of the unit ell as shown in Figure3.1(a). Due to the equivalene (3.1), this amounts to reating two vorties separatedlinearly by d links as shown in Figure 3.1(b). By varying d we an study the spetral31



Chapter 3. Non-Abelian Fusion Rules and Braid Statistisevolution as a funtion of the vortex separation up to distanes of d = Lx/2.Instead of just plaing vorties on plaquettes, we an imagine arrying out thevortex transport �ontinuously� as follows. If the sign of the oupling Jij at the link
d+1 is reversed in S steps of size 2

S suh that at step s the value is Jij = 1− 2s
S , theproess will result in vortex transport as illustrated in Figures 3.2(a)-(d). We denotethe ontinuous vortex separation by ds = d + s

S , where s denotes the intermediatevortex position and dS = d+1. Intuitively we an then regard the intermediate stepsfor whih |Jij | < 1 as the vortex oupying some intermediate position in betweenthe plaquettes. Although there is no a priori reason for this interpretation, we willshow below that the spetrum does indeed evolve ontinuously under suh transportproess. Moreover, if this protool is arried out on a link between empty plaquettesor plaquettes with two vorties, the resulting proess orresponds to reation andannihilation of vorties, respetively. This means that we an study also the spetralevolution when interpolating between vortex setors of varying vortex oupation.We note that it is also experimentally motivated to treat the vortex setors andthe oupling on�gurations on equal footing. Given su�ient site addressability, theloal ontrol of the ouplings Jij is also how one ould perform vortex reation andtransport in the proposed optial lattie implementations of the honeyomb lattiemodel [51, 53℄.3.2 Fusion rules from the spetral evolutionIn this setion we study how the presene of vorties modi�es the spetrum and howit depends on the vortex separation ds. Ideally we would like to use as large a unitell as possible in order to isolate the vorties from eah other. It turns out that unitells of around 400 plaquettes (800 spins), suh as a (20, 20)-unit ell, are su�ientto extrat the asymptoti behavior when ds → ∞. The resulting Hamiltoniansare sparse 800× 800 matries, whih an be diagonalized numerially using Matlabon a tabletop omputer. Employing (2.20) and (2.21), we an then alulate theground state Env0,ds and various exited state energies ∆nv
i,ds

orresponding to the32



3.2. Fusion rules from the spetral evolutionvortex separation ds at an n-vortex setor.3.2.1 Zero modes and vortex interationsFigures 3.3(a)-() show the energy behavior of the three lowest lying modes in theabsene of vorties, and in the presene of two and four well separated vorties,respetively. The �rst shows the already known fat that in the absene of vortiesthe spetrum is gapped with all ∆0v
i,ds

being nearly degenerate and non-zero. Onthe other hand, when a pair of vorties is introdued, Figure 3.3(b) shows that
∆2v

1,ds
beomes vortex separation dependent. The energy of the mode osillates withseparation and onverges to zero as ds → ∞, whereas both ∆2v

2,ds
and ∆2v

3,ds
remaininsensitive to it. From Figure 3.3() we see that when a seond vortex pair isintrodued away from the �rst one, both ∆4v

1,ds
and ∆4v

2,ds
aquire the osillatory dsdependene, while ∆4v

3,ds
remains insensitive. By onsidering a system of n isolatedvortex pairs, we �nd that the n lowest lying modes aquire this behavior.Due to the large ds behavior, we all these modes zero modes. Sine they onlyappear in the presene of vorties and their energy deays with vortex separation, weinterpret the vorties having strong short-range interations. In the presene of 2nvorties there are n zero modes in the spetrum, whih means that the diagonalizedHamiltonian (2.19) takes the form

H =

∫BZ d2p LxLy
∑

i=n+1

Ei,pb
†
i,pbi,p +

n
∑

i=1

ǫdsi,pz
†
i,pzi,p −





LxLy
∑

i=n+1

Ei,p
2

+
n
∑

i=1

ǫdsi,p
2







 .(3.2)We have renamed the n smallest eigenvalues and the orresponding modes as ǫdsi,pand zi,p, respetively. Figures 3.3(b) and 3.3() suggest that when the vortex pairsare far from eah other, ǫdsi,p take the form
ǫdsn,p0

∼ ∆2nv
n+1 cos(ωds)e

− ds
ξ , (3.3)where ω > 0 and ξ > 0 depend on the ouplings and parametrize the frequeny ofthe osillations and the onvergene of the energy, respetively.33
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Figure 3.3: The mode spetrum, (2.33), for the three lowest lying modes with ener-gies ∆1,ds , ∆2,ds and ∆3,ds . (a) In the absene of vorties all the modes are gappedand there is trivially no ds dependene. (b) In the presene of a single vortex pair
∆2v

1,ds
osillates with separation and onverges to zero energy ds → ∞. ∆2v

2,ds
and

∆2v
3,ds

are independent of ds. () In the presene of two vortex pairs (nine rows apart,piture not on sale), both ∆4v
1,ds

and ∆4v
2,ds

aquire this idential ds dependene (theplots overlap) while is ∆4v
3,ds

still insensitive. The plots are produed for K = 0.1and S = 20 using a (20, 20)-unit ell.
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3.2. Fusion rules from the spetral evolution
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2,ds
) forK = 0.1. A linear �t gives ξ ≈ 1.2 (in units of ds) for the harateristilength sale. (b) ξ a funtion of K showing ξ ≈ 0.12

K behavior.In partiular, we are interested in the magnitude of ξ as it gives the harateristilength sale of the interations that are not part of the pure topologial theory. InFigure 3.4(a) we plot ln(∆2v
1,ds

) when K = 0.1 for the 2-vortex system illustratedin Figure (3.3)(b). The linear �t with negative slope on�rms the exponential on-vergene of the zero mode energy with vortex separation, and distane betweensuessive dips gives the half of the wavelength of the osillations. By performingsimilar linear �ts for ln(∆2v
1,ds

) for a range of K's, we obtain Figure 3.4(b), whihshows ξ ∼ K−1 behavior with ξ ≈ 1 when K = 0.12. For a partiular value of K, weexpet the system to be well desribed by the Ising anyon theory when the vortexseparation satis�es ds ≫ ξ.The osillatory behavior of the interations, (3.3), does not play a signi�ant rolein the present disussion and thus we leave its systemati study for future work. Tosummarize it brie�y, our numerial studies have shown that the frequeny ω dependsprimarily on the ouplings J , suh that the frequeny is higher the loser one is tothe phase boundaries (2.24). In Chapter 4 we will onnet at a heuristi level theseinteration osillations to the phase spae behavior of the full-vortex setor.
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2-vortex system as funtions of K. The saling is nearly linear in both ases.3.2.2 The low-energy spetrumTo outline the full low-energy spetrum of the model, we onsider the energy gapsto non-zero mode states and the relative ground state energies of di�erent vortexsetors. These are also of interest, beause they desribe the stability of the non-Abelian phase against thermal �utuations.Figures (3.3)(a)-() show that ∆2nv

n+1 = ∆0v
1 , i.e. that the energy of the �rst non-zero mode oinides always with the fermion gap of the the vortex-free setor. Thissuggests that in general the fermion gap for an 2n-vortex system should be de�nedas

∆f ≡ ∆2nv
n+1 = min

p
En+1,p. (3.4)This implies that the modes bi,p in (3.2) still desribe free fermions, and reinforesthe notion that the modes zi,p, although being fermioni operators, desribe somenew degrees of freedom due to the presene of vorties. We will disuss their inter-pretation in a moment.We an also de�ne asymptotially the vortex mass as the relative ground stateenergy of the vortex-free and 2-vortex setors,

2∆v = lim
ds→∞

(

E2v
0,ds − E0v

0

)

. (3.5)36



3.2. Fusion rules from the spetral evolutionIt desribes the amount of energy needed to reate a pair of vorties out of vauumand take them far enough for the interation to be negligible. We plot in Figure3.5 the behavior of both (3.4) and (3.5), whih shows that both inrease roughlylinearly with K. The fermion gap vanishes for K = 0, the vorties have mass alsoin the gapless phase.We an ombine the mode spetra and the vortex gaps for the 0-, 2-vortex setorsto outline the full low-energy spetrum of the Hamiltonian (3.2). Figure 3.6(a) showsthe evolution of the lowest lying states in the 2-vortex setor relative to the groundstate energy E0v
0 of the vortex-free setor. At large ds the states |Ψ2v

0 〉 and z†1|Ψ2v
0 〉di�ering by the oupation of the zero mode are degenerate with energies 2∆v abovethe vortex-free ground state. As the vorties are brought loser, the degeneray islifted due to the mode z†1 aquiring energy, i.e. ǫds1 beoming non-zero as shown inFigure 3.3(b). As ds → 0, the vorties are brought to the same plaquette whihorresponds to fusing them. We observe that the energy orresponding to |Ψ2v
0 〉evolves to the energy of the ground state |Ψ0〉 of the vortex-free setor. On theother hand, z†1|Ψ2v

0 〉 evolves to b†1,p0
|Ψ0〉, the �rst exited free fermion state in thevortex-free setor.Before proeeding to onnet this spetral evolution with the fusion rules, let usomment on the hopping of the energies in Figure 3.6(a). It is due to the employedtransport protool. The minima always our for integer values of ds, i.e. foron�gurations uniform in amplitude, |Jij | = 1, whereas the maxima our at dS/2,i.e. when the transported vortex oupies a omposite plaquette twie the size of aregular plaquette (see Figure 3.2()). We note that E2v,dS/2

0 − E2v,dS
0 ≈ ∆v, whihmeans an energy of ∆v is required to move a vortex to an adjaent plaquette. Thissuggests that we an think the vortex mass ∆v equivalently as the depth of a loalpotential that on�nes the vorties at the plaquettes. The energy gaps ∆f and ∆vgive a measure of the stability of the vortex setors against thermal �utuations attemperature T . When T ≪ ∆f ,∆v, the reation and propagation of both fermionsand vortex exitations is exponentially suppressed.37



Chapter 3. Non-Abelian Fusion Rules and Braid Statistis

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

d
s

E
−

E
00v

∆
f

E0v
0

E2v
0,d

s

E2v
0,d

s

+∆
f

(a)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

d

E
−

E
00v

∆
f

2∆
f

E2v
0,d

s

E4v
0,d

s

E0v
0(b)Figure 3.6: The low-energy spetrum of the B-phase when |Jα| = 1 andK = 0.1 as afuntion of vortex separation. All the energies in the 2-vortex (red lines) and 4-vortex(green lines) setors are with respet to the ground state energy of the vortex-freesetor (blak lines). The solid lines are the total ground state energies, the dash-dotted ones are states with oupied zero modes and the dashed lines orrespond tolowest lying free fermion states over the respetive vortex setors. (a) The 2-vortexlow-energy spetrum as a funtion of ds. (b) The low-energy spetrum inludingboth 2- and 4-vortex setors for the integer values of ds. The near degeneray ofthe 2-vortex ground state with the �rst exited state of the vortex-free setor, i.e.

∆f ≈ 2∆v, is aidental due to the hoie of K = 0.1 as shown in Figure 3.5.38



3.2. Fusion rules from the spetral evolution3.2.3 Zero modes as fusion degrees of freedomThe distint behavior of the 2-vortex states |Ψ2v
0 〉 and z†1|Ψ2v

0 〉 in Figure 3.6(a) as
ds → 0 suggests that the oupation of the zero mode orresponds to the fusionhannel of the vorties. Let us identify the σ partiles of the Ising anyon modelwith the vorties, and the ψ's with free fermion modes b†i . Then in aordane withthe fusion rules (2.28), an oupied zero mode means that the σ's will fuse to a ψ,whereas unoupied mode implies that the fusion will give the vauum 1.This is further on�rmed in Figure 3.6(b), where we plot the low-energy spetruminluding the 4-vortex setor when the separation of the two vortex pairs is variedpair-wise (see Figure 3.3()). The plot is only for the integer values of ds to omitthe irrelevant hopping behavior. The 4-vortex setor has the physially non-trivialtwo-dimensional fusion spaes V 1

σ4 and V ψ
σ4
, (2.29). The spetral evolution showsthat when the vorties are fused, there are two nearly degenerate states (either z1or z2 oupied) that beome the �rst exited state in the vortex-free setor. Thestates with neither or both zero modes oupied beome the ground state or thetwo fermion state, respetively. Therefore we an identify these four states with thefusion spae basis states as:

|Ψ2v
0 〉 ∈ V 1

σ4 : (σ × σ)1 × (σ × σ)2 → 1× 1 = 1,

z†1z
†
2|Ψ2v

0 〉 ∈ V 1
σ4 : (σ × σ)1 × (σ × σ)2 → ψ × ψ = 1,

(3.6)and
z†1|Ψ2v

0 〉 ∈ V ψ
σ4

: (σ × σ)1 × (σ × σ)2 → ψ × 1 = ψ,

z†2|Ψ2v
0 〉 ∈ V ψ

σ4
: (σ × σ)1 × (σ × σ)2 → 1× ψ = ψ.

(3.7)The appearane of the fusion degrees of freedom as zero modes an be understoodin the ontext of p-wave superondutors to whih the honeyomb lattie modelan be mapped [89℄. There one an expliitly show that vorties bind unpairedmassless Majorana fermions γi [83, 90℄, that are responsible for the non-Abelianbehavior [81, 91, 92℄. As γ†i = γi by de�nition, one an not de�ne a loal degreeof freedom for an isolated Majorana mode. However, two suh modes loalized at39



Chapter 3. Non-Abelian Fusion Rules and Braid Statistis
i and i + 1, regardless of how far separated they are spatially, an be ombined toa omplex fermion mode zi = (γi + iγi+1)/2. The oupation of this mode is anon-loal property of a pair and it orresponds to the two possible fusion outomesof the anyoni vorties. When the vorties are nearby, tunneling proesses betweenthe vortex ores lead to an osillating interation that lifts the degeneray of thefusion hannels [93℄. In the honeyomb lattie model we do not observe diretlythe loalized Majorana modes, but the osillating zero modes, (3.3), are exatly aspredited by this dual piture.3.2.4 DisussionBy studying the spetral evolution as a funtion of vortex separation, we have demon-strated that the presene of vorties in the B-phase introdues zero modes and thatthese an be identi�ed with the fusion degrees of freedom of the Ising anyons. Theanyoni vorties are shown to exhibit exponentially deaying interations whosemagnitude osillates with the vortex separation. When the vorties are nearby, thevauum hannel is always energetially favoured. We found that the range of theseinterations is ontrolled by the K dependent parameter ξ. For vortex separations
ds ≫ ξ, the states orresponding to the fusion hannels are degenerate, and we an-tiipate the low-energy spetrum to be well approximated by the pure topologialtheory.To identify the fusion rules from the zero modes, it was su�ient to onsider onlythe very short and the very long-range behavior and neglet the osillatory term in(3.3). Although these limiting behaviors are not altered by its inlusion, our furthernumerial studies have shown that the osillations depend strongly on the ouplings
Jα. As one approahes the phase boundaries (2.24), their frequeny inreases whilethe period dereases. As long as only very few vorties are present, the physis ofthe non-Abelian phase is una�eted by them. However, when the vortex density isinreased, i.e. when many vorties interat simultaneously with eah other, theseosillations quikly smear out the vauum hannel as the favoured fusion hannel.40



3.2. Fusion rules from the spetral evolutionThis turns out to have dramati onsequenes on the olletive states of interatinganyons that an give rise to ompletely new phases. This e�et will be disussed inmore detail in Chapter 4.Apart from the interations, another interesting mirosopi detail of the modelis the dependene of the vortex mass ∆v on the loal oupling on�gurations. Asshowed in Figure 3.6(a), it seems to be diretly proportional to the number of pla-quettes the vortex oupies. This suggests that the ground state admits partialstabilizer representation in terms of the plaquette operators, whih agrees with theform derived in [68℄. The vortex mass an also be interpreted in terms p-wave super-ondutor piture. Sine ∆v gives the amount of energy required to move a vortexto an adjaent plaquette, it an be equivalently viewed as the height of the potentialbarrier on�ning the Majorana modes to the vortex ores. This interpretation agreeswith a larger K suppressing the interations (3.3). As a larger K inreases also thepotential barrier, it suppresses the tunnelings whih an be understood as givingrise to them [93℄.
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Chapter 3. Non-Abelian Fusion Rules and Braid Statistis3.3 Non-Abelian statistis as a Berry phaseIn this setion we expliitly alulate the non-Abelian statistis of the σ anyons.We transport the vorties around eah other using the protool in Figure 3.2 andevaluate the orresponding evolution in the fusion spae as a Berry phase. Byonsidering various �nite systems, we are able to identify parameter ranges whereit orresponds to the statistis of Ising anyons with high �delity. Together with thefusion rules derived above from the spetral evolution, this onlusively demonstratesthe non-Abelian harater of Kitaev's honeyomb lattie model.3.3.1 Statistis and holonomiesIn general, when z1 and z2 are the oordinates of some point-like partiles, theirstatistis is given by the transformation of the olletive wave funtion under theirpermutation,
ψ(z1, z2) = Uψ(z2, z1), (3.8)where U is the harateristi statistial phase or matrix. Due to topologial argu-ments [3℄, in three or more spatial dimensions U must satisfy U2 = 1. The onlysolutions are U = ±1, whih orrespond to bosons and fermions. On the otherhand, in two spatial dimensions one an have U2 6= 1, whih an give rise to anyonistatistis. In partiular, if U = eiθ for some phase θ, the statistis is alled Abelian,and the partiles are Abelian anyons. If U is a unitary matrix ating in a degeneratestate spae, the partiles are alled non-Abelian anyons.In real physial systems the permutation of the oordinates orresponds to adia-batially transporting the partiles suh that their positions are swapped [94℄. Oftensingle exhanges an not be de�ned unambiguously. Instead one needs to onsiderevolutions where a partile winds around another along a suitable hosen losedpath C. Regardless of the loal details of the path, the proess then is topologiallyequivalent to two suessive exhanges. As the evolution of the system is yli,the wave funtion an aquire a non-trivial Berry phase ΓC [95℄, or more generally,42



3.3. Non-Abelian statistis as a Berry phasea holonomy [96℄. In the presene of degenerate states, ΓC an be a matrix imple-menting a rotation in the degenerate subspae [97℄. In general, the evolution due toyli adiabati transport an be split as ΓC = ΓgCΓ
t
C into two ontributions. Here

ΓgC desribes the geometri ontribution, that depends on the loal geometry of thepath. On the other hand, ΓtC depends only on the path's topology, i.e. only on theevolution in the on�guration spae, whih on a simply onneted two-dimensionalmanifold is due the partiles enirling eah other [98℄. Therefore, if the path C anbe hosen suh that ΓgC = 11, the holonomy oinides with the mutual statistis ofthe partiles, i.e. ΓC = U2. For bosons and fermions this is always trivial, with anynon-trivial evolution being a sign of anyoni statistis.One an satisfy ΓC = ΓtC if one demands that the evolution C is not only yliin all parameters employed, but that it is yli suh that it spans no area in positionspae [62℄. In the honeyomb lattie setting, a suitable path is illustrated in Figure3.7(a), where the dashed lines indiate the two oriented parts C1 and C2 of the totalpath C. The evolution along this path is yli in the spae of oupling on�gurations
J where the transport is implemented. Neither does it span any spatial area as Calways involves both Ci and C−1

i . Figures 3.7(b) and 3.7() illustrate that di�erentordering of the parts C1 and C2 give rise to topologially distint evolutions. Theevolution Cl links the world lines of the partiles from di�erent pairs and thus shouldorrespond to the statistis of exhanging the partiles twie. On the other hand, Cospans exatly the same path in the position spae, but topologially it orrespondsto trivial evolution in the on�guration spae.If one regards the vorties onneted by a solid lines being paired, the evolution Clin Figure 3.7(b) orresponds to exhanging twie the vorties belonging to di�erentpairs. Restriting to onsidering a global ψ setor, i.e. onsidering the evolutionin V ψ
σ4
, and adopting the pair-wise fusion basis (3.7), we an predit the outomeof suh an evolution from the abstrat theory of Ising anyons. In Figure 3.8(a) weillustrate the required sequene of F -, (2.31), and R-moves, (2.32). One must �rstuse an F to move to a basis where the braided anyons are fused, then apply R243



Chapter 3. Non-Abelian Fusion Rules and Braid Statistis

Figure 3.7: (a) The honeyomb lattie ontaining two vortex pairs. The parameter dontrols the minimal vortex separation in units of links. It is related to the unit elldimensions through Lx = 4(d+1) and Ly = 2d+1 (piture not on sale). The fourdashed arrows C1, C−1
1 , C2 and C−1

2 are the oriented parts of the path C along whihthe vorties are transported. (b) Cl = C1C2C
−1
1 C−1

2 is topologially equivalent to alink. () Co = C1C
−1
1 C2C

−1
2 is topologially equivalent to two unlinked loops.to perform the braiding, and subsequently use F−1 = F to return to the originalbasis. In general, the proess where a partile winds around another is known as amonodromy. For this partiular ase it is given by

R̄2 = FR2F = e−
π
4
i







0 1

1 0






. (3.9)The overall phase is a harateristi to the Ising anyons, whereas the o�-diagonalityis a harateristi of non-Abelian anyons in general. As the basis on whih R̄2 atsis assoiated with the information about whih pair fuses to a ψ, the monodromyprovides an intuitive illustration of the non-loality of the fusion degrees of freedom.This proess is illustrated in Figure 3.8(b). Regardless of how far the σ partiles arespatially, their monodromy, (3.9), will result in a proess whih an be viewed as a

ψ partile being teleported between the two pairs.44



3.3. Non-Abelian statistis as a Berry phase

(a)

(b)Figure 3.8: (a) To �nd the evolution orresponding to braiding anyons from di�erentpairs, one must �rst use the F -moves to rotate to a basis where the anyons to bebraided are fused, i.e. where the ation of R is de�ned (see Figure 2.4()). Afterapplying R to implement the exhange, one an return to the original basis with
F−1 to �nd the orresponding evolution. (b) When the σ's from di�erent pairs areexhanged twie, the evolution in V ψ

σ4
with basis {|Ψ1〉, |Ψ2〉} is proportional to a σxrotation, (3.9). This proess an be thought of as a ψ being teleported between thetwo pairs.
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Chapter 3. Non-Abelian Fusion Rules and Braid Statistis3.3.2 Disrete holonomiesTo evaluate the aumulated wave funtion evolution orresponding to the mon-odromy, we need to employ the transport protool of Figure 3.2 to simulate thevortex transport using disrete steps. To this end we derive �rst a onvenient dis-rete expression for the holonomy.Consider a Hamiltonian H(λ) with n-fold degeneray {|Ψα(λ)〉|α = 1, . . . , n}that depends on some parameters λ. When we adiabatially vary λ along a losedpath C, the evolution of the degenerate subspae is given by the holonomy [97℄
ΓC = P exp

∮

C
Aµ(λ)dλµ, [Aµ(λ)]αβ = 〈Ψα(λ)|

d

dλµ
|Ψβ(λ)〉 (3.10)where P denotes path ordering in λ, and Aµ(λ) is the onnetion in the spae ofstates |Ψα(λ)〉 above the ontrol parameter spae . Let us disretize the path C into

T in�nitesimal intervals of length δλ with λt denoting the ontrol parameter valueat step t. We an write
ΓC = lim

T→∞
P

T
∏

t=1

[11 + δλµA
µ(λt)] . (3.11)Disretizing the derivative in Aµ(λ), it follows that

[Aµ(λt)]αβ =
1

δλµ
〈Ψα(λµ,t)|Ψβ(λµ,t+1)〉 − δαβ . (3.12)Inserting this into the disretized holonomy (3.11), and grouping the states at step

t together, we obtain
ΓC = lim

T→∞
P

T
∏

t=1

(

n
∑

α=1

|Ψα

(

λt
)

〉〈Ψα

(

λt
)

|
)

. (3.13)This onvenient form means that in the limit δλ→ 0 the holonomy an be alulatedas an ordered produt of projetors onto the ground state spae at eah step t alongthe path C. 46



3.3. Non-Abelian statistis as a Berry phaseResolving the gauge freedomIn general, the non-Abelian holonomy (3.10) is not gauge invariant. This is due tothe freedom to rotate the basis vetors at every step t by |Ψα(λt)〉 → gt|Ψα(λt)〉 bysome n× n unitary matrix gt. This transforms the onnetion Aµ at step t by
gt : Aµ(λt) → g†tA

µ(λt)gt + g†t∂µgt. (3.14)It follows that the holonomy transforms as
g : ΓC → gΓCg

†, (3.15)where g ≡ g1 = gT , whih is guaranteed by hoosing expliitly |Ψα(λ1)〉 = |Ψα(λT )〉[98℄. Beause Tr(ΓC) = Tr(g†ΓCg), only the trae of a non-Abelian holonomy isgauge invariant, and thus resolving the full form of the matrix ΓC is in general notunambiguous.In an atual physial system like ours, the states |Ψα〉 are never perfetly degen-erate. This means that instead of g being a rotation in a degenerate spae, it onlyassigns independent phases to eah state, i.e. g = diag(eiφ1 , . . . , eiφn). The diagonalelements of ΓC will be naturally gauge invariant, with the o�-diagonal elements a-quiring some orrelated phases. To be preise, when ΓC is a 2×2 unitary, the gaugetransform ats as
g :











[ΓC ]12 → [ΓC ]12 e
i(φ1−φ2)

[ΓC ]21 → [ΓC ]21 e
−i(φ1−φ2)

(3.16)When ΓC is unitary, and predominantly o�-diagonal, i.e. |[ΓC ]12| = |[ΓC ]21| ≈ 1, wean remove the phases by replaing the o�-diagonal elements of ΓC with
[ΓC ]12, [ΓC ]21 → ±

√

[ΓC ]12[ΓC ]21. (3.17)The residual overall sign freedom is �xed by ontinuity requirements.47



Chapter 3. Non-Abelian Fusion Rules and Braid Statistis3.3.3 Holonomy due to vortex transportTo redue the omplexity of the alulations, we onsider a �nite system of 2LxLyspins on a torus. This is equivalent to a (Lx, Ly)-unit ell with elements (2.15)-(2.18) when one sets p = 0 everywhere. The initial four-vortex on�guration isshown in 2.1(a), where the d parametrizes the minimal vortex separation at alltimes during the transport proess.As shown in the previous setion, for large d this system has altogether four de-generate ground states arising from a pair of zero modes. Due to the onservation ofthe global fermioni parity, the degenerate states split into two orthogonal subspaes
V 1
σ4 and V ψ

σ4
spanned by the pair-wise fusion hannel states (3.6) and (3.7), respe-tively. For tehnial reasons we onsider here the latter ase, where the numerialrepresentations, (2.35), of the states |Ψ1〉 ≡ z†1|Ψ2v

0 〉 and |Ψ2〉 ≡ z†2|Ψ2v
0 〉} are givenby

|Ψα〉 =
LxLy−1
∑

{k,...,l=1|
k,...,l 6=α}

εk,...,l
√

(LxLy − 1)!
|ψ−
k 〉 ⊗ · · · ⊗ |ψ−

l 〉. (3.18)The ontinuous transport of the vorties is simulated by tuning the loal ou-plings J in TS steps along the path C in an ordered manner. Let us denote by |Ψts
α 〉the eigenvetors at step ts, 1 ≤ ts ≤ TS , where t indexes a partiular plaquette alongthe path and s the intermediate loations as required for the transport in Figure3.2. Using the properties of determinants, the inner produts of the eigenvetorrepresentations (3.18) from steps ts and t′s are given by

〈Ψts
α |Ψ

t′s
β 〉 = det(B

tst′s
αβ ), [B

tst′s
αβ ]kl = 〈ψ−

k (ts)|ψ−
l (t

′
s)〉, (3.19)where 〈ψ−

k (ts)| (|ψ−
l (t

′
s)〉) spans now the modes belonging to the state 〈Ψts

α | (|Ψt′s
β 〉).Taking {λ} = {J} to be the ontrol parameter spae and assuming TS to bea su�iently large, the disrete holonomy (3.13) for the degenerate states (3.18) is48



3.3. Non-Abelian statistis as a Berry phasewell approximated by
ΓC ≈ P

TS−1
∏

ts=1







det(Bts,ts+1
11 ) det(Bts,ts+1

12 )

det(Bts,ts+1
21 ) det(Bts,ts+1

22 )






. (3.20)This means that there is a simple algorithm to evaluate the holonomy:1. Diagonalize the Hamiltonian at eah step ts orresponding to a partiularoupling on�guration J .2. Form the four inner produts (3.19) of the eigenvetors from steps ts and ts+1.3. Multiply the matries ontaining the inner produts together aording to(3.20).This algorithm is onvenient for two reasons. First, one never needs to onstrut thestates (3.18), whih in general are too large to be stored on a omputer. The innerproduts (3.19) an be evaluated using only the mode spetrum (2.33). Seond, allthese steps an be arried out in parallel.3.3.4 The study of the holonomyTo study how the holonomy depends on the system size, degeneray of the states

|Ψα〉 and the fermion gap in a �nite system, we alulate ΓC for a range of K usingthe three parametrizations shown in Table 3.1.Adiabatiity of the transportAs the vorties are transported, their relative separations vary. Due to the vortex-vortex interations, this means that the spetrum varies also with ts during thebraiding proess. To onsider the e�et on ΓC , we de�ne the minimal fermion gap,
∆, and the maximum energy splitting between the two ground states, δ, by

∆ = min
ts

(Ets3 − Ets2 ), δ = max
ts

(Ets2 − Ets1 ), (3.21)49



Chapter 3. Non-Abelian Fusion Rules and Braid Statistis
d S TS 2LxLy(i) 2 2·103 32·103 120(ii) 3 2·103 48·103 224(iii) 4 4·103 128·103 360Table 3.1: Three parametrizations (i), (ii) and (iii) for whih the holonomy is eval-uated. Here d is the minimal vortex separation in units of links, S is the numberof steps in hanging the sign of the oupling at every link, TS = 8Sd is the totalnumber of steps in C and 2LxLy = 8(d + 1)(2d + 1) gives the number of spins inthe system. S has been inreased in (iii) to suppress aumulation of disretizationerrors due to longer path.
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Figure 3.9: The minimal fermion gap ∆ and the maximum energy splitting betweenthe ground states δ, (3.21) as funtions of K for parametrizations (i), (ii) and (iii)given in Table 3.1. In agreement with the results on the thermodynami limit, thefermion gap grows linearly and the degeneray improves with inreasing K for allparametrizations. The fermion gap is relatively insensitive to the vortex separation,whereas the degeneray improves when the vorties are further apart.
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3.3. Non-Abelian statistis as a Berry phaserespetively, where Etsk is now the kth eigenvalue at step ts. These are plotted inFigure 3.9 for the three parametrizations (i)-(iii) of the holonomy. We observe thatboth the fermion gap and the level of degeneray improve as K and d inrease.These agree with the behavior in the thermodynami limit as studied in Setion 3.2.Under the adiabati approximation the holonomy orresponds to the exat timeevolution when ∆ ≫ δ and δ → 0 [99℄. To physially aommodate these onditionsin a �nite size system, the vortex transport should be fast enough ompared to δ forthe states |Ψts
α 〉 to appear as degenerate, but slow enough ompared to ∆ so that nofermioni exitation is produed.We expet the parametrization (iii) where the vorties are furthest from eahother to be physially the most relevant one. Figure 3.9 shows that for it δ

∆ . 10−2when K & 0.07. This region an support the adiabatiity onditions and hene wetake K ≈ 0.07 as a lower bound for identifying a stable topologial phase for the�nite size system in onsideration.The resultsTo quantitatively study the holonomy, we introdue a �delity measure for a targetmatrix U and a test matrix V as
s(U, V ) =

1

4
Tr
(

UV † + V U †
)

. (3.22)When U and V are unitary 2 × 2 matries, we have that s(U, V ) = 1 if and only if
U = V , while in general s(U, V ) ≤ 1.We onsider �rst the unitarity of the transport. It is aptured by the �delity
s(11,ΓCl

Γ†
Cl
), whih measures how lose ΓCl

Γ†
Cl

is to an identity matrix. We plotit in Figure 3.10(a), where we an see that the unitarity measure is above 98% forall parametrizations (i)-(iii) when K . 0.10. For larger K we observe the unitarityreduing, whih we interpret being due to the oarse graining in our simulation. Theemployed algorithm, (3.20), approximates the holonomy well for the parametriza-tions (i)-(iii) only when K . 0.10. Therefore, we take this as a bound for our51



Chapter 3. Non-Abelian Fusion Rules and Braid Statistissimulation's physial relevane. Together with the lower bound due to adiabatiityof the transport, we expet the holonomy to oinide with an atual time evolutionin the range 0.07 . K . 0.10.The monodromy R̄2, (3.9), is haraterized by its o�-diagonality. When thetransport is unitary, we an also haraterize ΓC by its o�-diagonal elements. Afterthe gauge �xing (3.17), we take them to be some omplex numbers [ΓC ]12 = [ΓC ]21 =

reiθ, where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. To study ΓC we onstrut two di�erent�delity measures, whih take the form:
s(|R̄2|, |ΓC |) = r, (3.23)

s̄(R̄2,ΓC) =
1

2
[s(R̄2,ΓCl

) + 1] =
1

2
[r cos(

π

4
+ θ) + 1]. (3.24)Here |U | denotes a matrix U with its elements replaed by their absolute values.

s(|R̄2|, |ΓC |) measures the o�-diagonality that haraterizes R̄2, wheres s̄(R̄2,ΓC) isthe total �delity that aounts also for the overall phase. The residual sign ambiguityin the gauge �xing, (3.17), has been resolved based on the ontinuity of s̄.The holonomies for the three parametrizations (i), (ii) and (iii) in Table 3.1 areplotted in Figures 3.10(b)-(d), respetively. We onsider eah separately:(i) The holonomy shows no signi�ant o�-diagonality over the onsidered range of
K. We attribute this to the too small size of the system (120 spins) where thevorties are always too near eah other (d = 2).(ii) The holonomy is predominantly o�-diagonal for 0.02 . K . 0.04. There isalso a small region aroundK ≈ 0.02 with s̄ > 0.9. However, sine in this region
δ
∆ > 10−1, the adiabatiity onditions do not hold and thus we disregard it asunphysial.(iii) The holonomy is predominantly o�-diagonal for 0.02 . K . 0.09. The total�delity, s̄, has two regimes of interest in this region. Around 0.02 . K . 0.05 ittakes the limiting value s̄ ≈ 0.481, and in the region 0.08 . K . 0.10 it peaks at
s̄ ≈ 0.991. These orrespond to overall phases of the so alled SU(2)2 (s̄ = 1/2)52



3.3. Non-Abelian statistis as a Berry phase
0.9

1
s(

 1
,Γ

 Γ
+
)

(i)
(ii)
(iii)

(a)

0

0.5

1
(i)

s

s

(b)

0

0.5

1

s

s

(c)
(ii)

0.05 0.10 0.15
0

0.5

1

K

 
s

s

(iii)
(d)

Figure 3.10: (a) The unitarity measure, s(11,ΓCl
Γ†
Cl
), as a funtion ofK for the threeon�gurations given in Table 3.1. The measure of o�-diagonality, s(|R̄2|, |ΓCl

|), andthe total �delity, s̄(R̄2,ΓCl
), as a funtion of K for the parametrizations (b) (i), ()(ii) and (d) (iii). Based on unitarity and the adiabatiity, we expet a stable phasein the area 0.07 . K . 0.10 bounded by the dashed vertial lines.
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Chapter 3. Non-Abelian Fusion Rules and Braid Statistisand the Ising anyons (s̄ = 1), respetively. Both theories have the same partileontent with the fusion rules (2.28), but their statistis di�er [10℄. We disregardthe again 0.02 . K . 0.05 regime, beause it does not aommodate theadiabatiity onditions. On the other hand, the 0.08 . K . 0.10 regime isphysially relevant in the light of both adiabatiity and the oarse graining inour simulation. In this regime the holonomy is both o�-diagonal and has thehighest total �delity.Finally, we verify the topologial nature of our alulation for all the parametriza-tions. First, when the evolution is topologially trivial as shown in Figure 3.7(),
ΓCo ≈ 11 with error less than 10−2. Seond, when the orientation of the braidingis reversed, we obtain inverse evolution, i.e. ΓC−1

l
= Γ†

Cl
. Third, the holonomy isnot a�eted by path deformations C → C ′, i.e. ΓC = ΓC′ , as longs as the topologyof the path remains invariant. Together these mean that the holonomy ΓC dependsonly on the spae-time topology of the path C when it is hosen as shown in Figure3.7(a). The result of our simulation should therefore orrespond to the statistis ofthe vorties.3.3.5 DisussionThe main results are that the o�-diagonality of the holonomy ΓC improves system-atially with the system size, and that the highest total �delity s̄ ≈ 0.991 appearsin the physial region 0.07 . K . 0.10. We regard these giving a validation of thenon-Abelian nature of the vorties as well as providing strong support that they areindeed Ising anyons. Our method is validated by the expliit demonstration thatthe holonomy depends only on the spae-time topology of the path C.In Setion 3.2 we identi�ed the length sale ξ assoiated with the vortex-vortexinterations. The improvement of the holonomy with inreasing system size an bediretly related to the minimal vortex separation beoming larger and larger than

ξ. For the parametrization (iii), there holds always d & 4ξ in the physial region,whih provides damping of the interations by a fator of at least 10−2. We regard54



3.3. Non-Abelian statistis as a Berry phasethis as providing a good approximation of the ds ≫ ξ riteria for the topologialbehavior to emerge in a �nite size system.The physial domain of K was hosen suh that it aommodated both theadiabatiity and unitarity. The �rst was based on the energy splitting and fermiongaps, while the latter is due to the oarse graining in the simulation. Althoughwe observe systemati improvement of o�-diagonality with inreasing system size,stritly speaking only the parametrization (iii) aommodates both of these riteriasimultaneously. In order to unambigously on�rm that the statistis onverges tothe Ising statistis as the system size inreases, one needs better numeris with largervortex separation d and more ontinuous transport, i.e. larger S. Larger systemsshould also resolve the asymmetry between the o�-diagonality and the total �delity.The �rst exhibits now systemati improvement with the system size, while suhbehavior is absent for the latter. It would be interesting to study whether the phaseis indeed more sensitive to the degeneray splitting than the non-Abelian haratergiven by the o�-diagonality. Were the model ever employed for quantum informationproessing, suh studies would relate diretly to the �delities of quantum gates.Our method of tuning the ouplings J on the links along the path an be di-retly translated, given su�ient site addressability, to how one ould perform vortextransport in the experiments. Therefore, a alulation like ours provides exat pre-ditions for experiments performed in �nite size systems. However, it has beenreently shown that the setor with a single ψ-partile should not atually exist ona torus [68℄. This problem ould be irumvented by arrying out a similar alu-lation with a third vortex pair far away from the two used in the braiding. Thisan be used to hide another ψ partile, suh that the fermioni parity is even andthe degenerate ground states are still separated from the rest of the spetrum bythe energy gap. This alulation would be tehnially idential to ours and thus wewould expet similar results. Unfortunately systems of this nature were too largefor us to onsider and thus better numeris are again desirable.The reason we arried out the alulation in the setor with a single ψ-partile55



Chapter 3. Non-Abelian Fusion Rules and Braid Statistisis purely tehnial. In order to alulate the inner produts, (3.19), required for theholonomy, the two degenerate states, (3.18), have to inlude an equal number of themodes |ψ−
i 〉. In a setor with four vorties, this is possible only when employingstates that di�er by the inlusion of the zero mode z†1 or z†2. Physially there isnothing prohibiting onsidering the global vauum setor. It would be desirable to�nd a method to arry out a similar alulation also diretly there.Despite of these tehnial limitations, we regard our study providing an im-portant general demonstration that a diret alulation of non-Abelian statistis ispossible in a variety of physially relevant systems. Similar alulations have beenperformed previously by only using trial wave funtions [34, 94, 100℄. Ours is the�rst to employ exat eigenstates.3.4 SummaryIn this hapter we have expliitly demonstrated the non-Abelian fusion rules andbraid statistis of the Ising anyons by using the exat solutions of the model. In the�rst part we found that the anyoni vorties are interating with a harateristilength ξ that depends inversely on the magnitude K of the time-reversal symmetrybreaking term. When the vorties are nearby, the interations allowed us to assoiatedi�erent degenerate states with the fusion degrees of freedom.In the seond part we alulated the braid statistis as a holonomy assoiatedwith proess where a vortex is transported around another. For the largest onsid-ered system where the vortex separation satis�ed d > 4ξ, we found a region in Kwhere the holonomy oinides with high �delity to the statistis of the Ising anyons.As this region also aommodates the adiabatiity onditions, we regard it as astrong diret evidene for existene of non-Abelian anyons in the honeyomb lattiemodel.This onludes �The Dirty Work�, whih onsisted of the expliit demonstrationof properties whih, in a sense, were all antiipated by a single integer, the Chernnumber ν = −1. However, we showed that the information it gives on the physis56



3.4. Summaryof the system is limited. New physis was disovered in the form of the interations,whih set limits on the system size and the vortex density for the predited topolog-ial behavior to be manifest. Understanding these limits is of ruial importane toexperiments, whih will eventually be performed in �nite size systems. Also, only byunderstanding the mirosopis of the system an one envisage ontrol proeduresto arry out the experiments. A prime example of this is our method of simulatingvortex transport through manipulating the ouplings J loally. As this orrespondsto how transport ould be implemented also in laboratory, the performed alula-tions provide exat preditions for suh experiments. Likewise, the energy gaps andthe lifting of zero mode degeneray provide measures of stability and ways to detetthe fusion hannels of the vorties, respetively.The essential new disovery was the interations, that are not part of the puretopologial theory, but arise due to the underlying mirosopi model. Their role hasso far been two-fold. The identi�ation of the zero modes with fusion hannels wasonly possible beause of them. On the other hand, they made the alulation of thestatistis harder resoure-wise. The vorties had to be kept as far as possible, andthus larger systems were required. However, their signi�ane for the physis of thehoneyomb lattie model goes beyond just modifying the pure topologial theory.In the next hapter we will show that the interations an drive phase transitionsto ompletely new topologial phases.
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Chapter 4
Going Beyond: A New ChiralTopologial Phase
In this hapter we study the B-phase in the full-vortex setor of the honeyomblattie model. In Setion 4.1 we obtain the band struture analytially and outlinethe phase spae of the full-vortex setor. The B-phase is haraterized now byChern number ν = ±2, whih implies a new phase where the vorties behave ashiral Abelian anyons. By studying the Fermi surfae of the model, we identify anemergent symmetry that is responsible for the new phase. To study the transitionsto the tori ode (ν = 0) and Ising (ν = −1) phases, we onsider in Setion 4.2 theevolution of the Fermi surfae under global perturbations. This is disovered to beequivalent to onsidering the low-energy �eld theory of Dira fermions oupled togauge �elds. We identify two distint types of topologial phase transitions based onFermi surfae symmetries and outline the extended phase spae. Finally, in Setion4.3 we illustrate the role of anyon-anyon interations on the transition between thenon-Abelian Ising phase and the new hiral Abelian phase.
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Chapter 4. Going Beyond: A New Chiral Topologial Phase
(a) (b)Figure 4.1: The full-vortex on�guration an be reated, for instane, by allowingthe sign Jz to alternate in diretion nx, while keeping the Jx and Jy ouplingspositive. Dashed links denote the links where Jz < 0. (a) Inside the two plaquetteunit ell this is equivalent to setting Jz,1 = −Jz2 , whih gives (b) a vortex on everyplaquette.

4.1 The full-vortex setor
The hiral Abelian phase emerges in the B-phase (Jx ≈ Jy ≈ Jz and K > 0) ofthe full-vortex setor (wp = −1 on all plaquettes). This setor an be reated byhoosing a (2, 1)-unit ell and using a gauge where, for instane, uij alternates on
z-links in diretion nx. In terms of ouplings, (3.1), this is equivalent to settinginside the unit ell Jz,1 = −Jz,2 as illustrated in Figures 4.1(a) and 4.1(b).Inserting these ouplings into (2.15)-(2.18), we obtain a Hamiltonian whih isunitarily equivalent to [86℄

Hp =







hbb hbw

h†bw −hTbb  , (4.1)where
hbw =







i(Jxe
ipx + Jye

ipy) iJz

iJz i(−Jxeipx + Jye
ipy)






(4.2)60



4.1. The full-vortex setor
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(a) (b)Figure 4.2: (a) The fermion gap ∆fv as a funtion of J = Jx = Jy when Jz = 1 fordi�erent values of K. The gap vanishes at J = 1/
√
2 when K = 0, but shifts tosmaller J as K is inreased. When J = 1 the gap sales as ∆fv ≈ 2

√
2K. (b) Thephase diagram of the full-vortex setor. The shaded area shows the region wherethe phase transitions ours with the exat value of Jz depending on K. In thefull-vortex setor the B-phase supports hiral Abelian anyons desribed by Chernnumber ν = −2.and

hbb = K







sin(px − py) sin(py)− i cos(px)

sin(py) + i cos(px) − sin(px − py)






. (4.3)Diagonalization gives again the double spetrum with the eigenvalues

±Ei,p = ±2

√

f(p) + (−1)i2
√

g(p), i = 1, 2, (4.4)where
fp = J2

x + J2
y + J2

z + 4K2(sin2(px − py) + sin2 py + cos2 px),

gp = J2
xJ

2
y cos

2(px − py) + J2
xJ

2
z sin

2 px + J2
yJ

2
z cos

2 py +

4K2
[

J2
x sin

2 py + J2
y cos

2 px + J2
x sin

2(px − py)

−(JxJy + JxJz + JyJz) sin(px − py) sin py cos px

]

.The expressions for the eigenvetors are too ompliated to be obtained analytially.61



Chapter 4. Going Beyond: A New Chiral Topologial PhaseSimilar to the study of the vortex-free setor in Setion 2.3, we outline the phasespae struture of the full-vortex setor by onsidering the behavior of the energygap
∆fv = min

p
E1,p. (4.5)Figure 4.2(a) shows the behavior of ∆fv as funtions of J and K. In ontrast tothe vortex-free setor, in the full-vortex setor the gap persists deeper into the B-phase with the gap losing point depending now also on K. This in agreementwith [86℄, where the phase boundaries for K = 0 between the A- and B-phases inthe full-vortex setor were shown to be

|Jx|2| = |Jy|2 + |Jz|2, |Jy|2| = |Jz|2 + |Jx|2, |Jz |2| = |Jx|2 + |Jy|2. (4.6)The B-phase is again gapped only if K 6= 0. The phase spae of the full-vortexsetor is illustrated in Figure 4.2(b).Evaluating the Chern numbers, (2.26), in the full-vortex setor, one �nds thatthe Aα-phases still give ν = 0 implying Abelian tori ode anyons. However, the
B-phase gives now ν = −2, whih means it is a new topologially ordered phase. Inthis phase the vorties behave as ertain hiral Abelian anyons as atalogued in [62℄.To larify how vorties an appear in the full-vortex setor, we emphasize again thatthe full-vortex setor should be viewed as the sign-alternated oupling on�gurationover the vortex-free setor (see Figures 4.1(a) and 4.1(b)). Over this bakgroundvorties an be de�ned as usual through the plaquette operators (2.9).4.1.1 Symmetries of the Fermi surfaeTo understand why the B-phase turns out to be desribed by a new topologialphase, we study �rst its spetrum. Let us normalize the ouplings as Jx = Jy = 1and Jz,1 = −Jz,2 = 1, whih amounts to onsidering the system in the middle ofthe B-phase. In partiular, we are interested in the Fermi surfae, the manifold ofoupied states of highest energy, that plays an integral role in fermion systems [79℄.62



4.1. The full-vortex setor

(a)

(b)Figure 4.3: (a) The vortex-free band struture, (2.23), and (b) the full-vortex bandstruture, (4.4), of the phase B plotted aross the �rst Brillouin zone when Jx =
Jy = Jz = 1 and K = 0. In the �rst ase there are two Fermi points at Q0

± =
±(2π3 ,−2π

3 ), whereas in the latter ase there are four Fermi points at Q1
± = ∓(π3 ,

π
6 )and Q2

± = ±(−π
3 ,

5π
6 ). The dispersion relation is linear around all the Fermi points.
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Chapter 4. Going Beyond: A New Chiral Topologial PhaseDi�erent Fermi surfae topologies orrespond in general to di�erent phases.In our ase the Fermi surfae oinides with the band −E1,p, as it ontains thestates highest (lowest negative) energy that belong to the ground state (2.20). It isbest visualized by plotting the band struture aross the �rst Brillouin zone. Foromparison, we plot in Figures 4.3(a) and 4.3(b) the band struture of both thevortex-free, (2.23), and full-vortex setors, (4.4). Both are haraterized by onialFermi points around whih the dispersion relation is linear. To be preise, there aremomenta Q around whih E1,p satis�es
E1,Q = 0, E1,Q+k ∼ k, |k| ≪ 1. (4.7)The ruial di�erene is that while the vortex-free setor that has two Fermi points(Q0

± = ±(2π3 ,−2π
3 )), the full-vortex setor has four (Q1

± = ∓(π3 ,
π
6 ) and Q2

± =

±(−π
3 ,

5π
6 )). This means that they have distint topologies, and hene orrespond todi�erent phases in agreement with di�erent Chern numbers. For K > 0 the Fermipoints are gapped with the dispersion relation around them beoming quadrati.However, the haraterization of the phases based on their Fermi surfae topologiesstill holds. Only when gaps lose and reopen an the topology hange permanently.As the Fermi surfae topology an di�erentiate between di�erent phases, it isimportant to understand what physial properties of a theory an give rise to apartiular Fermi surfae. These are in general related to the global spatial symme-tries Hamiltonian, whih at loally in the momentum spae. Let us onsider theHamiltonian (4.1) of the full-vortex setor, whih has the following symmetries when

K = 0:
Γ = σz ⊗ 11 : ΓHpΓ

† = −Hp, (4.8)
Θ = σx ⊗ 11 : ΘHpΘ

† = −H−p, (4.9)
Λ = 11⊗ σy : ΛHpΛ

† = −Hp+πny . (4.10)
Γ and Θ desribe the partile-hole and sublattie symmetries that guarantee the64



4.2. The Fermi surfae evolutiondouble spetrum and the even number of Fermi points, respetively. They botharise due to the honeyomb lattie geometry and they are therefore present alreadyin the vortex-free Hamiltonian with the spetrum shown in Figure 4.3(a).The symmetry Λ is new and spei� only to the full-vortex setor. It ats on theindies that orrespond to the two z-links inside the unit ell. Exhanging these linksmaps (Jz,1, Jz,2) = (−1, 1) → (1,−1), whih preserves the full-vortex setor. It isstill a non-trivial transformation, beause the orresponding gauges are inequivalentunder the loal gauge transformations Di, (2.6). At the level of the honeyomblattie, Λ an be thought of as an emergent global Z2 lattie symmetry, that isresponsible for the further doubling of the Fermi points. In Setion 4.3 we provideanother interpretation in terms of the vortex-vortex interations.When K 6= 0, i.e. when the time-reversal symmetry is broken, the symmetries(4.8)-(4.10) hold no longer independently. However, they an be ombined suh thatthe Hamiltonian still satis�es
Γ1 ≡ iΓΘ = σy ⊗ 11 : Γ1HpΓ

†
1 = H−p, (4.11)

Γ2 ≡ ΓΛ = σz ⊗ σy : Γ2HpΓ
†
2 = Hp+πny . (4.12)These guarantee that the double spetrum struture still holds and that the relativeloations of the Fermi points remain invariant even when they are gapped. As thestruture of the Fermi surfae is fully ontained in the symmetries (4.11) and (4.12),it is natural to expet that breaking them will lead phase transitions. This will bethe topi of next setion.4.2 The Fermi surfae evolutionIn priniple one ould arry out an analysis like that of Chapter 3 to verify theharateristi properties of the new hiral Abelian anyons. We leave this for futurework and onentrate here instead on the phase transitions. This is performed bystudying the evolution of the Fermi surfae that was shown above to distinguish the65



Chapter 4. Going Beyond: A New Chiral Topologial Phasedi�erent phases. Unlike the Chern number, the Fermi surfae evolves ontinuouslyunder perturbations and hene it provides a natural setting to study the phasetransitions. To this end we onsider the low-energy theory of Dira fermions, whihallows us to relate the Chern number to the Fermi surfae topology and provides adual piture in terms of oupling to gauge �elds.4.2.1 The low-energy �eld theory of Dira fermionsWe have identi�ed above the global Hamiltonian symmetries (4.11) and (4.12) thatare responsible for the distint Fermi surfae topologies. At the phase transitionswhere the topologies hange, the Fermi points have to be reated or annihilated pair-wise unless both symmetries are simultaneously broken. Therefore, it is naturalto assume that perturbations whih drive phase transitions lead to a ontinuoustransport of the Fermi points. The way this ours is most onveniently studied byonsidering the low-energy theory around the Fermi points.We set again Jx = 1, Jy = 1 and (Jz,1, Jz,2) = (−1, 1), i.e. onsider the system�rst at the enter of the hiral Abelian phase. The linearization is performed byexpanding the Hamiltonian (4.1) to �rst order around the Fermi point Q by writing
p = Q+ k, with |k| ≪ 1. In general, one obtains

HQ = H0
Q +Hx

Qkx +Hy
Qky +O(k2), (4.13)for some 4× 4 matries Hη

Q. When K = 0, H0
Q must have two zero eigenvalues. Itfollows that we an de�ne a projetion onto the 2-dimensional low-energy spae by

H̄Q = PUQHQU
†
QP, (4.14)where in our normalization UQH

0
QU

†
Q = diag(√6, 0, 0,−

√
6) and P = diag(0, 1, 1, 0).Around eah of the four Fermi points Qi

±, the Hamiltonian beomes
H̄Qi

±
≈ σ

i
± · ki ∓ σz

K

2
√
3
. (4.15)66



4.2. The Fermi surfae evolutionHere σ
i
± = (σx,±(−1)iσy) give di�erent representations of the algebra of Diramatries in two dimensions [101℄. The momentum has been resaled by ki =

(
aikx−ky
1+ai

,
kx−aiky
1+ai

), with the Fermi point dependent onstant being given by ai =

2− (−1)i
√
3.Fermi surfae topology and the Chern numberBeause the low-energy Hamiltonian (4.15) is linear in k, it desribes relativistiDira fermions [101℄. Due to the appearane of the term proportional to σz, thefermions are massive. We interpret this mass to be due to a salar �eld of magnitude

K, whih ouples hirally, i.e. with a di�erent sign, at the di�erent Fermi points.The e�et of suh hiral oupling is to give opposite mass to the Dira fermions at
Qi

+ and Qi
−. This general mehanism where the Fermi points are gapped due totime-reversal symmetry breaking was disovered by Haldane [82℄. It is known togive rise to a hiral phase, whih is haraterized by a non-zero Chern number suhthat every Fermi point pair will ontribute ν = ±1.We an verify this argument in our ase by using a topologial argument given byKitaev [62℄, whih relates the Fermi surfae topology to the Chern number. Let us�rst normalize the Hamiltonian (4.15) by Ĥk = H̄k/|H̄k|. As a funtion of k arossthe whole Brillouin zone, Ĥk an then be interpreted as de�ning an orientationpreserving mapping from a torus (the �rst Brillouin zone) to a unit sphere enlosingthe origin (oordinates given in the basis {σα}). The number of times this map windsaround the sphere gives the Chern number [102℄. When K = 0 the orientation ofthe Fermi points an be haraterized by the winding number [103℄

µQ =
1

4πi

∮

CQ

Tr (ΓH−1
p dHp

)

, (4.16)where CQ is a loop in the momentum spae around Fermi point Q and Γ = σz ⊗ 11.This orientation is preserved for non-zero K. Due to the hiral oupling of K > 0,the neighborhoods of both Qi
+ (Qi

−) with orientations µQi
+
= +1 (µQi

−
= −1) aremapped to the lower (upper) hemisphere. As the ontribution of K vanishes away67



Chapter 4. Going Beyond: A New Chiral Topologial Phase

Figure 4.4: The normalized Hamiltonian Ĥk de�nes a mapping from the Brillouinzone, whih is topologially a torus T 2, to a unit sphere S2. Depending on the sign ofthe term ±Kσz, the Fermi points are mapped to either lower or upper hemisphere.As the ones with same orientations µ end up to same hemispheres, the map windsaround the unit sphere twie when viewed from the origin.from the Fermi points, the rest of the Brillouin zone is mapped to the equator. Weillustrate this in Figure 4.4. When viewed from the origin enlosed by the unitsphere, the four Fermi points imply that the map winds twie around the spheregiving the Chern number ν = −2.
4.2.2 Topologial phase transitions driven by gauge �eldsWe have seen above that Fermi points together with the hiral salar �eld K giverise to a topologially ordered phase haraterized by a non-zero Chern number.Even though a non-zero K is required to open the energy gaps and alulate theChern number, it does not alter signi�antly the loations of the Fermi points, whihdepend predominantly only on the ouplings J . Therefore, the phase transitions aredue to J perturbations, that an transport the Fermi points. In the low-energytheory of Dira fermions, this is equivalent to oupling to gauge �elds as shownbelow. We set K = 0 for the time being and onsider the system in the middle ofthe hiral Abelian phase (Jx = 1, Jy = 1 and (Jz,1, Jz,2) = (−1, 1)).68



4.2. The Fermi surfae evolution
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(a) (b)Figure 4.5: A numerial study of the evolution of Fermi point loations (blak dots)aross the �rst Brillouin zone when (a) δJ1 = 0 → ∞ (ν = −2 → 0 transition) and(b) δJ2 = 0 → 1 (ν = −2 → −1 transition). In (a) all the Fermi points annihilatewhen δJc1 =
√
2 − 1, whereas in (b) only the Q1

± Fermi points annihilate when
δJc2 = 1

4 .Transition to the tori ode (ν = 0) phaseLet us onsider �rst the transition to the phase with non-hiral Abelian tori odeanyons (ν = 0). It appears, for instane, when |Jz | ≫ |Jx|, |Jy| as shown in Figure4.2. In this limit the transition an be understood as being due to dimerization onthe z-links.We model it as the Hamiltonian perturbation δH1 = iδJ1
∑

r cb,rcw,r, whih inthe linearized piture (4.13) around eah of the four Fermi points translates to
δH0

1,Qi

±

= −δJ1σy ⊗ σx. (4.17)Let us treat the Fermi points Qi
+ and Qi

− as being paired, suh that we an ombinetheir Hamiltonians (2.14) as
H̄Qi = diag(H̄Qi

+
, H̄Qi

−
). (4.18)Assuming then the perturbation to be small, i.e. δJ1 ≪ 1, a projetion, (4.14), of69



Chapter 4. Going Beyond: A New Chiral Topologial Phasethe perturbation (4.17) gives the low-energy Hamiltonian
H̄Qi + δH̄j,Qi = α

i · (ki + γ5Ai
j). (4.19)Here αi = (11⊗σx, (−1)iσz⊗σy) form a four-dimensional representation of the Dira

α-matries, γ5 = σz ⊗ 11 is the hiral matrix and
Ai

1 = δJ1
(ai − 1)

ai + 1
(1, 1). (4.20)This Hamiltonian desribes the Dira fermions being oupled to a gauge �eldAi

1. Inpartiular, due to the appearane of γ5, whih desribes Ai
1 oupling at the pairedFermi points Qi

+ and Qi
− with opposite signs, we interpret it as a hiral gauge �eld[104℄.As ki = (0, 0) no longer gives a vanishing Hamiltonian, the oupling to the gauge�eld shifts the Fermi points Qi

+ and Qi
− by Ai

1. Due to hiral oupling, both ofthe paired points are shifted towards eah other, suh that the diretion is the samefor both pairs. This agrees with δH0
1,Qi

±

respeting both symmetries (4.11) and(4.12). It implies also that if the Fermi points are to vanish, they have to do itsimultaneously. This is indeed the ase as shown in Figure 4.5(a), where we plot thetrajetories of the Fermi points as funtions of the perturbation magnitude δJ1. Itdemonstrates that dimerization in the large δJ1 limit an ause loalization of thefermions on the z-links and thus ompletely remove the Fermi points.Transition to the Ising anyon (ν = −1) phaseWe an similarly study the transition to the non-Abelian Ising phase (ν = −1),whih ours for the uniform oupling on�guration (Jz,1, Jz,2) = (1, 1) . Changingthe sign of the ouplings on alternating z-links an be modelled by the Hamiltonianperturbation δH2 = iδJ2
∑

r(1−eiπr·nx)cb,rcw,r, whih interpolates between the sign-alternated (δJ2 = 0, full-vortex setor) and the uniform (δJ2 = 1, vortex-free setor)ouplings on�gurations. 70



4.2. The Fermi surfae evolutionA linearization of this perturbation around the four Fermi points gives
δH0

2,Qi
±

= δJ2σ
y ⊗ (σx − 11), (4.21)whih respets the sublattie symmetry (4.11), but breaks (4.12), the emergentsymmetry responsible for the hiral Abelian phase. The low-energy theory is againa Dira �eld oupled to a hiral gauge �eld (4.19), but now with

Ai
2 =

δJ2
ai + 1

(1, (−1)i+1
√
3). (4.22)The ruial di�erene is that the omponents of Ai

2 depend now on the Fermi points,whih means that the oupling to this �eld shifts the pairs Q1
± and Q2

± independentof eah other. This is on�rmed by Figure 4.5(b), where the trajetories of the Fermipoints are plotted as funtions of δJ2. It shows that large δJ2 distortions an ausethe Q1
± Fermi points to annihilate while only transporting the other two.We interpret the transitions driven by (4.17) and (4.21) as being fundamentallyof di�erent type. The �rst obeys the global symmetries (4.11) and (4.12), but aloalization mehanism drives the transition making the Aα phases band insulatorswith no Fermi points. Still, the ground state is topologially ordered, but the hiral-ity is lost when the Fermi points vanish. On the other hand, δJ2 driven transitionis due to a breaking of one of the symmetries and thus does not ompletely removethe Fermi points. Although the Fermi surfae topology, i.e. the number of Fermipoints, and the Hamiltonian symmetries responsible for them hold in priniple thesame information about the phase, we regard the piture of symmetries more il-lustrative. While the ontrary is not always true, a perturbation breaking a Fermisurfae symmetry should always lead to a phase transition.The extended phase spaeBeause of the symmetries (4.11) and (4.12), the study of the Fermi point transportholds also forK 6= 0. As δJi is varied, the gapped Fermi points (the minima/maxima71



Chapter 4. Going Beyond: A New Chiral Topologial Phase

Figure 4.6: A setion of the phase spae as a funtion of δJ1 and δJ2 when |Jα| = 1and K > 0. The dashed lines are the phase boundaries and the irles are theloations of the K dependent ritial points δJc1 =
√
2 +K2 − 1 and δJc2 = 1+K2

4 .of the bands E±
1,p) follow the same trajetories, although slower for larger K. Theannihilations still our at the points Qc = {(0, 0), (π2 , 0), (π2 , π)}, where the gapalways loses. We an use this information to obtain the K dependent ritialpoints δJci .At exatly the ritial momenta Qc there must hold

PUQc(H
0
Qc

+ δHi)U
†
Qc
P = 0, (4.23)whih gives at every ritial momenta the same single independent equation. For

δH1, (4.17), and δH2, (4.21), this gives the analyti ritial points
1 + δJc1 =

√

2 +K2, (4.24)
δJc2 =

1 +K2

4
, (4.25)respetively. We an see from Figure 4.2(a) that (4.24) agrees with the numeriallyobtained shifting of the phase transition point.72



4.3. The role of anyon-anyon interations in the phase transitionIn Figure 4.6 we outline the extended phase spae as funtions of δJ1 and δJ2showing the three distint topologial phases. The ritial perturbations (4.24)and (4.25) an be translated to relative oupling on�gurations. In general, the Kdependent tri-ritial point δJc1 ours when
J2
z = J2

x + J2
y +K2, (4.26)and similarly also for the other phase boundaries, (4.6). Likewise, when δJ1 = 0the transition between the hiral phases when ours when the Jz ouplings on thealternating rows satisfy

Jz,1 =
K2 − 1

2
Jz,2. (4.27)Both (4.26) and (4.27) show that a larger K has a stabilizing e�et on the ν = −2phase by making it more resistant to relative oupling �utuations. The reasonbehind this lies in the role of anyon-anyon interations whih are the topi of nextsetion.4.3 The role of anyon-anyon interations in the phasetransitionThe transition from the non-Abelian Ising phase to the hiral Abelian phase hasbeen predited to arise due to anyon-anyon interations [14, 25, 105, 106℄. Thebasi idea is that interations between anyons at as a Hamiltonian on the fusiondegrees of freedom by favouring ertain fusion hannels while assigning an energypenalty to others. This gives rise to a new emergent theory, where the new degreesof freedom are the fusion hannels of the underlying anyon model. Although theoriginal mirosopi and anyoni properties are lost, the new theory an be thoughtof as a nuleated topologial liquid that an support other types of anyons as ol-letive quasipartile exitations. Depending on the types of anyons interating andwhih fusion hannels are favoured, both topologial and non-topologial phases an73



Chapter 4. Going Beyond: A New Chiral Topologial Phase
(a) (b) () (d)Figure 4.7: A shemati illustration of the emergene of the full-vortex band stru-ture in Figure 4.3 due to interating anyoni vorties (blak squares) as the vortexdensity is inreased. (a) A separated pair of vorties arries a zero mode. (b) Short-range interation auses the zero mode to aquire momentum dependene. () Thepresene of many interating vorties auses the zero modes to form a band. (d)The full-vortex band struture.appear.As demonstrated by Figure (3.6)(b), the non-Abelian Ising anyons appearing inthe honeyomb lattie model are interating. These interations exhibit osillations,(3.3), and their range is ontrolled by the parameter ξ. When the vorties oupyneighbouring plaquettes, suh as in the full-vortex setor, the vauum fusion hannelis always favoured. For this ase the general theory predits that non-Abelian natureis lost, while the hirality is preserved [25℄. This is exatly the transition impliedby the Chern number hange ν = −1 → −2, whih we have veri�ed both through adiret alulation using eigenstates, (2.26), as well as by studying the Fermi surfaeevolution, (4.15).We an establish the role of interations also from the spetral evolution as thevortex density is inreased. Based on numerial studies, we provide a shematiillustration in Figures 4.7(a)-(d):(a) As demonstrated in Chapter 3, isolated vorties introdue zero modes, thathave zero energy when the vorties are muh further from eah other than theharateristi interation length ξ.(b) When the vorties are nearby, the zero modes aquire a momentum dependenedue to the interations (3.3). 74



4.3. The role of anyon-anyon interations in the phase transition() When many vorties interat with eah other simultaneously, the zero modesdesribing the fusion hannels an be no longer assoiated with ertain vortexpairs. Their harateristi behavior is lost and they start forming a new bandstruture whih is separated from the free-fermion bands.(d) Finally, as the vortex density approahes the limiting full-vortex setor, thisband aquires the four Fermi points, that haraterize the behavior of the newphase. The emergent band and the free-fermion band are separated in energy.Exatly half of the states in the spetrum belong to eah.Based on this spetral evolution, we an identify the bands ψ±
1 in Figure 4.3(b)being due to the interating anyoni vorties, whereas the bands ψ±
2 orrespond stillto the free fermions. As the emergent low-energy bands ψ±

1 are responsible for thehange in the Fermi surfae topology, we an on�rm the anyon-anyon interationsas being responsible for the transition.This role of interations in the phase transition �ts also with the observationthat a larger K has a stabilizing e�et only on the ν = −2 phase. This has to dowith the osillations in the interations, (3.3), whih imply that anyons at di�erentseparations favour di�erent fusion hannels. Near the phase boundaries the osilla-tion period is smaller and thus there is more ompetition between di�erent fusionhannels. A larger K brings down the interation range ξ and dampens the osil-lations, whih makes the nearest neighbour interations stronger relative to longerrange ones. Therefore, a larger K extends the area in the phase spae where thenearest neighbour interations responsible for the new phase dominate.Finally, the role of interations provides an intriguing alternative way to under-stand the origin of the emergent symmetry Λ that is responsible for the new phasein the full-vortex setor. Although we an not make this interpretation rigorousyet, we present it here as it paves way to interesting future researh. The idea isas follows. In Chapter 3 we reviewed how the Ising anyons an be understood asloalized bound states of Majorana fermions γi at the vortex ores [83℄, with theinterations being due to their tunneling [93℄. In the full-vortex setor the vorties75



Chapter 4. Going Beyond: A New Chiral Topologial Phase

Figure 4.8: In the full-vortex setor the vorties oupy the verties of the triangulardual lattie of the honeyomb lattie. The ground state for the Hamiltonian forMajorana fermions on a triangular lattie ours for π
2 -�ux per plaquette. This anbe e�etively ahieved by setting sij = 1 on solid links and sij = −1 on dashedlinks, whih gives a π-�ux on every other triangular plaquette. Suh on�gurationis periodi respet to bi-oloring the olumns blak and white, whih gives rise tothe lattie symmetry Λ under their exhange.

form a triangular lattie, whih is the dual lattie of the honeyomb lattie. Wean thus envisage modeling the tunnelings of the Majorana fermions on a triangularlattie by a Hamiltonian
H = t

∑

ij

sijγiγj , (4.28)where the t is the tunneling amplitude related to the nearest neighbour interationsand sij = ±1 desribes a loal gauge freedom. The ground state of suh Hamiltonianours when one imposes a π
2 -�ux per triangular plaquette [106℄, whih requires theunit ell to ontain two sites, i.e. two vorties on the honeyomb lattie (see Figure4.8). Therefore, we onjeture that the symmetry Λ, (4.10), ating on the z-linksof the honeyomb lattie, is inherently a lattie symmetry on the vortex lattie.Likewise, we postulate that the states in the bands |ψ±

1 〉 are eigenstates of (4.28)and live on the dual lattie. This is exatly the piture envisaged in [25℄ about theinterations nuleating a new topologial phase on top of the original one. It is aninteresting projet to make this onnetion rigorous.76



4.4. Summary4.4 SummaryIn this hapter the full-vortex setor of the honeyomb lattie model has been stud-ied. We showed that the B-phase no longer supports non-Abelian Ising anyons, butis instead desribed by hiral Abelian anyons. We showed that this agrees with thepredition by anyon-anyon interation driven phase transitions [14, 25℄, and illus-trated expliitly how the interations mirosopially give rise to the new phase.To understand the di�erent phases beyond the Chern number, we onsideredtheir Fermi surfaes. These desribe the harateristi long-range properties, whihare manifest as a di�ering number of Fermi points in eah phase. In agreementwith [82℄, we showed that the disovered ν = −2 phase is haraterized by fourFermi points. As an alternative way to haraterize the phases, we identi�ed thesymmetries that are responsible for the Fermi surfae topologies. In partiular, wedisovered that the full-vortex setor gives rise to a new lattie symmetry, that isresponsible for the further doubling of Fermi points. We observed that phase transi-tions may our either through breaking of the Fermi surfae symmetries or due toother mehanisms suh as loalization. It is an interesting topi of future researh toobtain a more holisti piture of the di�erent phase transition mehanisms manifestin the honeyomb lattie model.Having established the onnetion between Hamiltonian symmetries, the Fermisurfae topology and the di�erent topologial phases, we studied how the Fermisurfaes evolve under phase transition driving perturbations. By monitoring thetransport of Fermi point we identi�ed the loations in the momentum spae wherethe phase transitions our and used them to derive analytially the ritial behaviorof the extended phase spae. This is a novel tehnique, whih ould be employedin a variety of fermion problems. We performed the analysis numerially, but itwould be desirable to be able to infer the ritial momenta, i.e the loations in themomentum spae where the gap loses, diretly from the Hamiltonian.As an analyti study of the Fermi surfae evolution, we onsidered the low-energy�eld theory of Dira fermions. It was shown that perturbations translate to hiral77



Chapter 4. Going Beyond: A New Chiral Topologial Phasegauge �elds, that always lead to a transport of the Fermi points. We found that theform of the gauge �elds is diretly related to the driving perturbations obeying orbreaking the Fermi surfae symmetries. Although this o�ers an attrative alternativepiture, it does not reveal at the urrent level new physis beyond the Fermi surfaesymmetries. Finding analytially a full gauge theory desription similar to graphene,[104℄, would provide new insight. Still, we note that although Fermi point transporthad been studied before in the ontext of fermion systems subjeted to disorder[107℄, strain [108℄ or non-Abelian gauge �elds [109℄, our results show analytiallythe role of gauge �elds for the �rst time.
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Chapter 5
Conlusions
In this thesis we have demonstrated that in exatly solvable systems one an gobeyond the Chern number when studying the anyoni exitations. The key advanewas the generalization of the solution of the model to arbitrary vortex setors, whihenabled to study the physis of only few vorties at a time. These studies revealedthat the vorties introdue zero modes to the spetrum, whih an aquire �niteenergy due to short-range interations. By onsidering the spetral evolution asa funtion of the vortex separation, the interations enabled us to unambiguouslyidentify the zero modes with the fusion degrees of freedom of the Ising anyons. Ourresults using the exat solution agreed with the preditions of p-wave superondu-tors where the analysis employs e�etive �eld theory [81, 83, 89�93℄. Furthermore,we fully haraterized the low-energy spetrum by obtaining the oupling dependentenergy gaps and the length sales of the system.The understanding of the low-energy spetrum enabled us to onsider the non-Abelian statistis, that together with the fusion rules provide full haraterizationof the anyon model. The alulation was arried out by evaluating the holonomy as-soiated with a transport proess where a vortex winds around another. We showedthat suh a alulation is possible for any system where the ground state admitsrepresentation in terms of Slater determinants, i.e. the Hamiltonian is diagonal inthe basis of free fermions. By onsidering a range of �nite systems and parameters,79



Chapter 5. Conlusionswe observed the holonomy onverging systematially to non-Abelian statistis asthe system size and the vortex separation were inreased. We also obtained strongsupport that the statistis orresponds indeed to Ising anyons, but better numerisusing larger systems are still needed for onlusive on�rmation. As opposed toprevious alulations employing trial wave funtions [34, 94, 100℄, our alulationwas the �rst to employ exat eigenstates of a mirosopi model.The disovery of interations demonstrates learly that the Chern number doesnot give a full desription of the low-energy physis. Only a diret study of theanyoni exitations an reveal the length sale where the pure anyon theory providesa good approximation. This sets limits on the future experiments,[51℄, that aregoing to be performed on �nite size systems. As demonstrated by our holonomyalulation, one has to be areful when preparing the system in order for it tosupport the predited topologial behavior. When these systems beome aessiblein the laboratory, our holonomy alulation provides both an experimental protoolfor vortex transport as well as exat preditions for braiding experiments. Likewise,the energy gaps and the lifting of zero mode degeneray provide measures of stabilityand ways to detet the fusion hannels of the vorties, respetively.The importane of understanding and ontrolling the interations is emphasizedby our demonstration that they not only interfere with the topologial behavior, butthat they an even lead to phase transitions. To understand how these transitionsour, we studied numerially the spetral evolution as the vortex density is inreasedand observed diretly the formation of new band struture with a modi�ed Fermisurfae topology. The Fermi surfae symmetry responsible for the topology ouldbe interpreted as an emergent lattie symmetry, that appears due to the interatinganyons. This interplay of a parent model and an interation driven emergent modelhas only been proposed very reently parallel to our work [25℄. Our results providethe �rst on�rmation of this novel extension to the theory of topologially orderedsystems. In Setion 4.3 we took �rst steps in understanding how the interationsgive mirosopially rise to a new lattie model. It is fasinating topi of future80



researh to make this onnetion rigorous.Future workIn general, the theory of interating anyon liquids predits di�erent phase transitionsdepending on the favoured fusion hannels [14, 25℄. A natural extension of our workis to onsider these in the ontext of the honeyomb lattie model. This is possiblebeause of the osillations in the interations. They imply that for ertain sparsevortex setors the fermion hannel an be favoured. It would be interesting to studywhat happens in vortex setors where this ours or where a omplex arrangementsof the vorties makes the fusion hannels ompete. Kitaev's atalogue, [62℄, basedon Chern numbers allows for up to eight di�erent anyon models and we believe thatat least some of them an be atually realized within the honeyomb lattie model.It would also be interesting to see where does the honeyomb lattie model withits various topologial phases �t in the lassi�ation of topologial insulators andsuperondutors [11, 110℄.Fermi surfae symmetries that arise due to emergent lattie symmetries is a newonept in the haraterization of the phases. For the hiral Abelian phase, thesymmetry Λ ould be interpreted as ating on the dual lattie. This is atuallya speial ase, beause for sparse vortex setors the lattie of vorties does not ingeneral oinide with the dual lattie of the honeyomb lattie. We predit thatthe same mehanism should hold though. If other new phases are disovered, wepostulate that their Fermi surfaes are also haraterized by emergent symmetriesthat are lattie symmetries of the vortex lattie.One an also turn this postulate around and envisage �nding vortex latties withdi�erent symmetries. If one then starts from the vortex-free setor and reates apartiular vortex-lattie on top of it, the new symmetries of this lattie will im-mediately imply a new phase due to inreased number of Fermi points. Althoughit is well known that lattie symmetries lead to doubling of Fermi points [82℄, toour understanding the idea of using this mehanism to drive the system into other81



Chapter 5. Conlusionstopologial phases has not been onsidered before. As eah Fermi point ontributes
ν = ±1 to the Chern number, any emergent Z2 lattie symmetry, suh as Λ, willdouble the Fermi points and drive the system to some hiral Abelian phase. Oneould also entertain a more ambitious senario. If the interating vorties an giverise to a lattie with a Z3 symmetry by having a three-site unit ell, this wouldlead to tripling of Fermi points giving rise to a transition between two non-Abelianphases. It is hard to see immediately how this ould our though.Even though the physial interpretation of the Fermi surfae symmetries is notyet fully understood, we regard them as useful tools to study transitions betweentopologially ordered phases. As they are diretly related to the Chern numberthrough the Fermi surfae topology, a perturbation breaking one of these symmetrieswill neessarily drive a phase transition. The ritial perturbations an be obtainedby performing a study of the Fermi surfae evolution, like the one we performedin Setion 4.2. However, they do not provide full haraterization of the phasetransitions as illustrated by the transition to the Abelian tori ode phase. It brokeno symmetries, but it still led to the removal of all Fermi points. Therefore, wepredit the Fermi surfae symmetries to be useful for understanding transitionsbetween hiral phases, i.e. ones with non-zero Chern number. In general, it is afasinating topi of future work to fully map the phase spae of the honeyomb lattiemodel aross all vortex setors and understand the role of the di�erent physialmehanisms that give rise to it.Finally, one would also like to understand the new hiral Abelian anyons better.Although they have no fusion degrees of freedom and thus no zero modes, outliningthe low-energy spetrum would be the obvious �rst step. It ould be employed tounderstand mirosopially how the anyoni harater of the vorties hanges at thephase transitions. As a pairing of the non-Abelian Ising anyons is known to giverise to the anyons of the hiral Abelian phase [26℄, one ould investigate whether thevorties in the ν = −2 phase ould somehow be understood as bound states of two
ν = −1 vorties. Also, a braiding alulation similar to Setion 3.3 ould be readily82



arried out to verify the harateristi statistis of the vorties.In summary, the ontribution of the honeyomb lattie model to the ontempo-rary study of topologially ordered phases is far from being exhausted. In this thesiswe have investigated in detail its non-Abelian phase and obtained novel results onthe mirosopi behavior. Our results pave the way to future experiments as wellas open new researh diretions. One the honeyomb lattie model will hit thelaboratories, its signi�ane as a testbed for topologial order an only inrease.
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